Quantenteilchen tunneln Gegner gleich mehrfach
Er erklärt den radioaktiven Alphazerfall mancher Atomkerne, macht Sterne zu Fusionskraftwerken und ermöglicht die Supraleitung: der Tunneleffekt. Einzelne Quantenteilchen können eine Barriere auch dann überwinden, wenn sie die dafür notwendige Energie nicht besitzen. Das ist eine der bemerkenswerten Konsequenzen aus den Regeln der Quantenmechanik. Technisch wird dieses Phänomen bei zahlreichen Anwendungen ausgenutzt, so beim Rastertunnelmikroskop und Flash-Speichermedien. Nun haben Forscher um Hanns-Christoph Nägerl vom Institut für Experimentalphysik der Universität Innsbruck im Labor Quantenteilchen erstmals dabei beobachtet, wie diese eine Reihe von bis zu fünf Barrieren hintereinander durchdringen. Dabei ist entscheidend, dass die Teilchen miteinander wechselwirken und sich gegenseitig mit einer Art Räuberleiter helfen, um zusammen ans Ziel zu kommen.
Wechselspiel der Kräfte
In ihrem Experiment kühlen die Innsbrucker Physiker eine Gaswolke aus bosonischen Cäsiumatomen bis nahe an den absoluten Nullpunkt ab. Diese Atome platzieren sie in einer Potentiallandschaft, die mit Hilfe von Laserstrahlen geschaffen wird. Dieses sogenannte optische Gitter zwingt die Teilchen in eine regelmäßige Struktur. Die Potentialwände hindern anfänglich die stark abgekühlten Teilchen daran, ihren Platz zu verlassen. „Die Atome können die Hürden nicht überspringen, weil ihnen dazu die Energie fehlt“, erklärt Hanns-Christoph Nägerl. „Es bleibt ihnen nur die Möglichkeit, die Barrieren mit Hilfe des quantenphysikalischen Tunneleffekts zu durchdringen.“ Doch auch das geht nicht, wenn die Nachbarplätze schon besetzt sind und dadurch eine Wechselwirkungsblockade besteht. Um trotzdem ein Quantentunneln zu ermöglichen, kippen die Forscher die Reihen der Teilchen mit einer äußeren Kraft. So verändert sich die potentielle Energie der Teilchen. Im Zusammenspiel mit den benachbarten Teilchen können die Atome dann eine oder mehrere Barrieren durchdringen, so das auch für die Forscher überraschende Ergebnis. „Jetzt helfen sich die Teilchen gegenseitig, anstatt sich zu blockieren, wie in einer Räuberleiter. Es ist entscheiden für das Experiment, dass wir das Zusammenspiel der Wechselwirkung zwischen den Teilchen und der äußeren Kraft genau kontrollieren“, sagt Nägerl. „Denn tunnelnde Atome müssen potentielle Energie abgeben, und das können sie in unserem System nur über die Wechselwirkung mit den benachbarten Atomen.“ So können die Physiker über die Anpassung von potentieller Energie und Wechselwirkungsenergie genau bestimmen, wie viele Barrieren ein Teilchen durchdringt. Interessant ist, dass die Quantenräuberleiter besser funktioniert als eine gewöhnliche Räuberleiter. Da die Cäsiumatome ununterscheidbare Quantenteilchen sind, die der Bose-Statistik gehorchen müssen, kommt es nicht darauf an, welches der Atome ins Ziel kommt, sondern nur, dass eines der Atome ins Ziel kommt. Das Mehr an Wahrscheinlichkeit erhöht folglich die Geschwindigkeit des Tunnelprozesses.
Neue Einsichten möglich
„In diesem Experiment haben wir erstmals beobachtet, wie Teilchen in einem stark wechselwirkenden System mehrere Barrieren hintereinander durchdringen“, sagt Hanns-Christoph Nägerl. Solche langreichweitigen Tunnelprozesse wurden in der Forschung bisher wenig beachtet, auch weil sie experimentell nicht zugänglich waren. Der ERC-Preisträger erwartet sich, dass die aktuellen Ergebnisse das Interesse daran rasch wachsen lassen werden. „Die Zukunft wird zeigen, welche Einsichten für molekulare, biologische oder elektronische Systeme daraus gewonnen werden können“, meint der Physiker. „Auch Anwendungen in der Quanteninformationsverarbeitung oder Quantensimulation sind denkbar.“
An der Arbeit beteiligt war der Theoretiker Andrew Daley, der 2010 aus Innsbruck an die University of Pittsburgh, USA, berufen wurde und mittlerweile an der University of Strathclyde in Schottland forscht und lehrt. Finanziell unterstützt wurden die Forscher unter anderem vom Europäischen Forschungsrat ERC und der National Science Foundation NSF.