Quantenlogik für eine neue Generation von Atomuhren
Experimentalphysiker um Dr. Christian Roos haben nun ein Experiment durchgeführt, in dem quantenmechanisch verschränkte Atome für genauere Zeitmessungen verwendet werden. Darüber berichten sie in der aktuellen Ausgabe der Zeitschrift NATURE.
Die Innsbrucker Experimentalphysiker um Univ.-Prof. Dr. Rainer Blatt arbeiten seit Jahren sehr erfolgreich an den Grundlagen eines zukünftigen Quantencomputers. Erst im Vorjahr gelang den Forschern die Erzeugung des weltweit ersten ‚Quantenbytes’. Diese Erkenntnisse werden nicht nur die Zukunft der Informationsverarbeitung revolutionieren, der Einsatz von Quantenlogik verspricht auch Anwendungen für den Bau neuer Atomuhren. Schon jetzt wird die Zeit in Atomuhren über die Schwingungsfrequenz von einzelnen Atomen bestimmt. Die Genauigkeit dieser Uhren ist durch äußere Störungseinflüsse wie elektrische Felder begrenzt. Die Forscher um Christian Roos und Rainer Blatt haben nun ein System aus zwei verschränkten Kalzium-Ionen (40Ca+) entwickelt, das die Störanfälligkeit einzelner Atome umgeht. Sie nutzten dabei ihre Erfahrungen aus der Entwicklung von Quantencomputern. „In Systemen aus zwei oder mehr verschränkten Teilchen lassen sich Klassen von Zuständen finden, die unempfindlich gegen bestimmte Arten von Störungen sind“, erklärt Dr. Roos. „Diese so genannten dekohärenzfreien Unterräume sind wichtig für den Bau von Quantencomputern, müssen dort doch die empfindlichen Quantenzustände vor schädlichen Einflüssen aus der Umgebung geschützt werden. Diese dekohärenzfreien Sphären nutzen wir nun auch für unsere Messungen der Zeit.“
Verschränkung erlaubt noch exaktere Messung
„In unserem Experiment zeigen wir, dass quantenmechanische Zustände, die für die Messung der Zeit interessant sind, sehr stabil sein können“, erklärt Dr. Christian Roos vom Institut für Quantenoptik und Quanteninformation (IQOQI) in Innsbruck. Der Wissenschaftler misst die Zeit noch nicht direkt, er verwendet diese Zustände zur Messung einer atomaren Eigenschaft, des so genannten elektrischen Quadrupolmoments in einem Kalziumion. Für Atomuhren ist diese elektrische Größe sehr wichtig, denn sie bestimmt, wie stark äußere, elektrische Felder die Zeitmessung stören können. Deshalb sind in den letzten Jahren die Quadrupolmomente für eine Reihe von Atomen bestimmt worden. „Unsere Messung ist fast um den Faktor 10 genauer als alle bisherigen Messungen“, erklärt Roos, „und dies obwohl das störende Rauschen bei den verwendeten Kalziumionen viel stärker ist.“ In naher Zukunft wollen die Innsbrucker Physiker das Verfahren für eine genauere Bestimmung der Schwingungsfrequenz im Kalziumion verwenden, um damit eine verbesserte Zeitmessung zu erreichen.
Durchgeführt wurde dieses Experiment am Institut für Experimentalphysik der Universität Innsbruck. Unterstützt wurden die Wissenschaftler dabei vom Österreichischen Wissenschaftsfonds (FWF), der Österreichischen Akademie der Wissenschaften (ÖAW) und der Europäischen Union.