Neues Quantengatter gebaut
Die Gesetze der Quantenmechanik erlauben es Quantencomputern, Informationen wesentlich schneller und effizienter zu verarbeiten, als dies herkömmliche Rechenmaschinen können. Auch schwierigste Algorithmen führen sie in nur wenigen Rechenschritten durch. Die Grundbausteine für Quantencomputer sind Gatter (Rechenoperationen) mit einem oder mehreren Quantenbits (Qubits). Schon mit Einzelqubit-Operationen und einer Zweiqubit-Operation sind grundlegende Experimente in der Welt der Quantenphysik möglich. Dies haben die Innsbrucker Forscher um Rainer Blatt in den letzten Jahren bereits eindrücklich gezeigt. So konnten sie zum Beispiel im Jahr 2005 erstmals den Quantenzustands eines Atoms in vollständig kontrollierter Weise auf ein zweites Atom teleportieren. Im Vorjahr führten die Wissenschaftler zum ersten Mal eine deterministische Verschränkungsübertragung (Entanglement Swapping) durch.
Gatter aus drei Qubits
Zwar können mit Quantengattern aus einem oder zwei Qubits grundsätzlich alle möglichen Algorithmen realisiert werden, bei komplexeren Aufgabenstellungen führt dies in der praktischen Umsetzung jedoch rasch an Grenzen. Neben den im Labor bereits existierenden Ein- und Zwei-Qubit-Gattern war die internationale Forschergemeinde deshalb auf der Jagd nach einem Rechengatter aus drei Qubits. Dies gelang nun den Experimentalphysikern in Innsbruck mit drei in einer Falle gefangenen Kalzium-Ionen, die jeweils ein Qubit repräsentieren. Das Ziel-Qubit des Toffoli-Gatters wird dabei nur dann geschaltet, wenn beide Kontroll-Qubits den Wert „1“ annehmen – in allen anderen Fällen bleibt das Ziel-Qubit unverändert.
Wesentlicher Schritt auf dem Weg zum Quantencomputer
Mit diesem neuen Gatter wird nicht nur die Palette der im Labor verfügbaren Quantengatter größer, es steigert auch deren Effizienz. „Um ein Toffoli-Gatter auf konventionelle Weise zu realisieren, müssten sechs kontrollierte Schaltoperationen miteinander verknüpft werden“, erklärt der am Experiment beteiligte Tiroler Nachwuchsphysiker Thomas Monz. „Im Vergleich dazu ist unser Toffoli-Gatter dreimal so schnell und weist zudem eine geringere Fehlerrate auf.“ Das Gatter kann bei der Realisierung von Quantenfehlerkorrekturverfahren oder der quantenmechanischen Primfaktorzerlegung zum Einsatz kommen und stellt einen wesentlichen Grundbaustein für einen zukünftigen Quantencomputer dar.