Zweikampf in der Quantenwelt
Einen tiefen Einblick in das Wesen quantenmechanischer Phasenübergänge gewannen Innsbrucker Quantenphysiker um Rainer Blatt und Peter Zoller im Labor. Sie haben als erste Forscher den Kampf gegensätzlicher Dynamiken an einem neuartigen Übergang zweier quantenmechanischer Ordnungen simuliert und berichten darüber in der Fachzeitschrift Nature Physics.
„Bringen wir Wasser zum Kochen, steigen Wassermoleküle als Dampf auf. Eine solche Änderung der physikalischen Ordnung von Materie nennen wir Phasenübergang“, erklärt Sebastian Diehl vom Institut für Theoretische Physik der Universität Innsbruck. Zusammen mit Kollegen vom Institut für Experimentalphysik und dem Theoretiker Markus Müller von der Complutense-Universität in Madrid hat er den Übergang zwischen zwei quantenmechanischen Ordnungen untersucht, der so noch nie beobachtet werden konnte. Die Quantenphysiker in Innsbruck nutzen dafür ein neues Instrument, das aktuell zu den vielversprechendsten Entwicklungen in der Quantenphysik zählt: einen Quantensimulator. Dieser funktioniert ähnlich wie ein Quantencomputer und kann physikalische Phänomene nachbilden, die kein klassischer Rechner simulieren kann. „Die Eigenschaften eines Quantensimulators erlauben es uns, auch Quantenphänomene in Vielteilchensystemen, die an eine Umgebung gekoppelt sind, im Labor zu untersuchen“, sagen die Experimentalphysiker Philipp Schindler und Thomas Monz.
Wettbewerb beobachtet
Mit wenigen gefangenen Ionen in einer Vakuumkammer können die Wissenschaftler bereits die komplexe Physik quantenmechanischer Phasenübergänge simulieren. Dafür müssen sie die Teilchen sehr exakt kontrollieren und manipulieren können. Die Innsbrucker Experimentalphysik ist hier weltweit führend. „Hier haben wir aus vier beziehungsweise fünf Ionen einen programmierbaren Quantensimulator gebaut“, erzählt Philipp Schindler. Eines der Teilchen dient dazu, gezielt Störungen in das System zu bringen. Mit den anderen Ionen wird gerechnet. „Wir nennen das einen offenen Quantensimulator. Während Störungen sonst möglichst unterbunden werden, weil sie die fragilen Quanteneffekte zerstören, nutzen wir sie hier, um ein quantenmechanisches System zu ordnen“, sagt Schindler. „Im konkreten Fall erzeugen wir auf diese Weise mit einer Sequenz von Rechenoperationen zwischen den Teilchen fragile, quantenmechanische Korrelationen über große Distanzen hinweg.“ Dieser räumlich geordnete Zustand, für den es in unserer klassischen Welt kein Gegenstück gibt, wurde in Innsbruck überhaupt zum ersten Mal gezielt durch solche maßgeschneiderten Störungen erzeugt und beobachtet. In einem weiteren Schritt unterbrechen die Physiker diese Dynamik immer wieder durch weitere, anders geartete Rechenoperationen. „Dadurch wird die ordnende Dynamik zeitweise unterbrochen“, erklärt Theoretiker Sebastian Diehl. „Wir können dann beobachten, wie die beiden Prozesse miteinander konkurrieren und was an diesem Übergang zwischen zwei Ordnungen passiert.“
Fehler reduziert
Das Experiment verlangt enorme Präzision, weshalb es auch notwendig ist, allfällige Rechenfehler sofort zu korrigieren, um die physikalischen Prozesse korrekt simulieren zu können. Da eine umfassende Fehlerkorrektur, wie sie für Quantencomputer entwickelt wird, mit enormen technischen Aufwand verbunden ist, wählten die Innsbrucker Physiker einen anderen, zukunftsweisenden Weg. Sie identifizierten die wichtigsten Fehlerquellen während der Simulation und gingen gezielt gegen solche Fehler vor. „Diese Art der Fehlerreduktion wird sicher Vorbildwirkung für weitere Experimente haben“, ist Schindler überzeugt. „Während die allgemeine Quantenfehlerkorrektur ein langfristiges Ziel bleibt, könnten auf diese Art und Weise sehr viel früher verlässliche Quantensimulationen größerer Systeme erfolgreich durchgeführt werden“, ergänzt Markus Müller.
Enge Verzahnung von Theorie und Experiment
Dieser tiefe Einblick in das Wesen quantenmechanischer Phasenübergange ist weltweit einzigartig. Möglich war er nur dank der erfolgreichen Verbindung von enorm fortgeschrittenem experimentellem Know-how mit der federführenden theoretischen Forschung, die für dieses Projekt in einer engen Zusammenarbeit der Physiker aus Innsbruck und Madrid entwickelt wurde. „Diese ideale Verbindung zwischen Theoretikern und Experimentalphysikern mit direktem und intensivem Austausch gibt es nur an ganz wenigen Standorten und ist eine der größten Stärken der Innsbrucker Quantenphysik. Sie führte uns wieder einmal in einen Bereich der Physik, den bisher noch niemand betreten hatte“, freut sich Rainer Blatt. „Hier wird in einem Experiment mit wenigen gefangenen Ionen sehr erfolgreich die Physik von Vielteilchensystemen simuliert. Das zeigt eindrücklich das Potential und die Möglichkeiten der Quantensimulation auf“, ergänzt Peter Zoller.
Publikation: Quantum simulation of dynamical maps with trapped ions. P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller und R. Blatt. Nature Physics 2013
DOI: 10.1038/NPHYS2630