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ABSTRACT 

The goal of this master thesis is to optimize the micro-heat pump controller by means of 

software and hardware in the loop (HiL) simulations. An optimized controller is important to 

ensure comfortable condition in the building, a high energy efficiency, and a long life of the 

mechanical components. The HiL simulations are essential for the analysis of the heat pump 

behaviour and for the detection of the implementation error and bugs. 

A façade-integrated mechanical ventilation with heat recovery (MVHR) in combination with a 

micro-heat pump (m-HP) is developed within the framework of the European project iNSPiRe. 

A functional model of the MVHR and micro-heat pump is developed and integrated in a test 

façade. This experimental work is done using PASSYS test cell (Passive Solar System and 

Component Testing) and a dynamic Simulink model of a demo building in order to be able to 

test the m-HP under different conditions. The HiL simulations involve the hardware (the 

PASSYS test cell) and the software (Simulink). The data exchange between these two actors 

is done with BCVTB (Building Control Virtual Test Bed). With this experimental setup, it is 

possible to reproduce the internal and external ambient conditions with which the m-HP 

operates. The PASSYS test cell environment permits to get measured data of the m-HP 

behaviour and of the airflows used by the m-HP. The temperature deviations between the set 

point temperatures (set by the simulation) and the measured temperatures in the coldbox and 

test room are analysed in order to ensure the quality of the HiL simulations results. A 

performances map of the heat pump working points (power and performances) is defined by 

using the PASSYS test cell dynamic behaviour. 

A dynamic Simulink model of the controller and of the heat pump based on lookup tables is 

developed within this work and validated by means of HiL simulations. This model is used in 

order to optimize the parameter of the controller and to test different types of controller. The 

parameters of the controller are determined by studying the dynamic behaviour of the system 

with an open loop configuration. 

From the analysis of the dynamic behaviour of the simple (lumped capacity) and complex (two 

star nodes) building models, it turns out that the simple building model is not accurate enough 

in order to be used for the simulations and analysis of the controller behaviour.  

From the comparison between experimental and simulation results, it can be seen that the 

model of the heat pump and controller delivers accurate results when the extract air is dry 

while the deviation between the Simulink model and the measured data increases when the 

relative humidity of the extract air increases. This effect is caused by the enhanced power of 

the heat pump when it operates with high level of relative humidity in the extract air. The 

model can be improved by measuring more working points of the heat pump with different 

level of relative humidity in the extract airflow. 





 

ABSTRACT 

L’obiettivo di questa tesi è l’ottimizzazione del controllo della micro-pompa di calore tramite 

l’uso di simulazioni software e simulazioni Hardware in the Loop (HiL). Un controllo ottimizzato 

garantisce un elevato livello di comfort all’interno dell’abitazione, un’elevata efficienza 

energetica ed una vita longeva dei componenti meccanici della pompa di calore. Le 

simulazioni HiL sono essenziali per la caratterizzazione della pompa di calore e per la 

detenzione di eventuali errori di implementazione. 

Grazie al progetto europeo iNSPIRe è stato sviluppato un sistema di ventilazione meccanica 

controllata con recuperatore di calore e micro-pompa di calore integrato alla facciata, tale 

sistema è stato studiato all’interno di questo lavoro. La parte sperimentale di questa tesi è 

basata sull’utilizzo della PASSYS test cell (Passive Solar System and Component Testing) e 

di un modello di simulazione dinamico implementato in Simulink. 

Il funzionamento della pompa di calore in diverse condizioni è stato testato mediante HiL 

(Hardware in the Loop). I due attori coinvolti nelle simulazioni HiL sono la PASSYS test cell 

(hardware) e Simulink (software) per lo scambio di dati è stato usato l’ambiente software 

BCVTB (Building Control Virtual Test Bed). All’interno della PASSYS test cell è possibile 

riprodurre le condizioni dell’aria negli ambienti esterno ed interno tra i quali la micro-pompa di 

calore lavora. L’ambiente della PASSYS test cell, grazie ai sensori installati, permette di 

misurare diverse variabili che caratterizzano il comportamento della pompa di calore. Le 

deviazioni tra le temperature di set point determinate dal software e le temperature misurate 

all’interno della coldbox e della test room sono state analizzate in modo da garantire la qualità 

dei risultati ottenuti con le simulazioni HiL. Grazie ai dati misurati nella PASSYS test cell è 

stato possibile definire una mappa delle prestazioni della pompa di calore. Il modello della 

pompa di calore e del sistema di controllo, basato sull’uso delle lookup tables, è stato 

implementato in Simulink e validato mediante l’uso di simulazioni HiL. Questo modello è stato 

usato per l’ottimizzazione dei parametri di controllo della pompa di calore e per l’analisi di 

diverse tipologie di controllo.  

Dall’analisi delle due diverse tipologie di modello di edificio “Simple” (a parametri concentrati) 

e “Complex” (a due nodi) è stato riscontrato che il modello “Simple” non è abbastanza 

accurato per essere utilizzato nella simulazione ed analisi del sistema di controllo. 

Dalla comparazione di risultati ottenuti mediante simulazioni HiL e dei risultati ottenuti dal 

modello Simulink della pompa di calore e del sistema di controllo si può concludere che il 

modello Simulink implementato genera risultati realistici in particolar modo quando si 

considerano situazioni in cui la pompa di calore lavora con aria estratta con basso grado di 

umidità. La potenza che la pompa può produrre aumenta quando l’aria estratta ha un elevato 

tasso di umidità. Questo effetto può essere considerato nel modello ampliando la mappa dei 

punti di funzionamento della pompa di calore con diversi livelli di umidità relativa. 
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1 INTRODUCTION 

1.1 iNSPIRe PROJECT 

“The objective of iNSPiRe (Infrastructure for Spatial Information in Europe) is to tackle the 

problem of high-energy consumption by producing systemic renovation packages that can be 

applied to residential and tertiary buildings. The renovation packages developed by iNSPiRe 

aim to reduce the primary energy consumption of a building to lower than 50 CkWh
m2 aD. The 

packages need to be suitable to a variety of climates while ensuring optimum comfort for the 

building users” (iNSPIRe, 2016). After an analysis of building stock across Europe the second 

stage of iNSPiRe is the development of multifunctional renovation kits that involves innovative 

envelope technologies, energy generation systems and energy distribution systems. This 

multifunctional renovation kits will be installed and tested on three case studies, two 

residential and one office building, in Germany, Spain and Italy.  

A decentralised façade-integrated mechanical ventilation system with heat recovery (MVHR) 

and a micro heat pump is developed by the University of Innsbruck, Unit for Energy Efficient 

Building, together with the companies SIKO Solar (Jenbach, Austria) and Gumpp & Maier 

(Binswangen, Germany).  

 

The present work is focused on the optimization of the façade integrated micro-heat pump 

(m−HP) in combination with mechanical ventilation with heat recovery (MVHR) control. The 

PASSYS test cell is used in order to test the performance of the mechanical ventilation unit 

with heat recovery and of the micro-heat pump. 

1.1 HEAT PUMP AND HEAT RECOVERY SYSTEM 

Figure 1-1 shows the sketch of the heat pump and of the MVHR. The heat pump recovers 

energy from the exhaust airflow and increases the temperature of the inlet airflow. The heat 

recovery system preheats the inlet airflow by using the energy of the extract airflow. 

Condensation can occur inside the heat exchanger when the extract air has high humidity 

level and/or the ambient air has low temperature. The preheater is present in order to avoid 

the icing of the condensation inside the heat exchanger. The heat pump compressor is speed 

controlled. The backup heater placed after the heat pump condenser, works when the heat 

pump does not deliver enough power to the supply airflow. A more detailed description of the 

heating system can be found in the chapter 3. 
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the sketch of the heat exchanger. The blue arrow represents the ambient air while the red one 

he extract air. The pre-heater operates

in order to avoid ice formation in the heat exchanger.
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heat source for the zones 4, 5, 2 and 3, as it can be seen in 

. The heat transfer is calculated by using a static formulation. 

section, with the insulation layer and the steel layer.

-1: Ducts section

is described in the equation 

ln	}rinsrin ~ | 2w

are the internal and external heat transmission coefficient 

duct 	m�; 
are the internal and ezternal insulation 

is the conductivity coefficient of the insulation and of the steel 

The heat transfer is calculated according to the equation 

1
-�/�o ⋅ g���

Recovery (MVHR)

ounter/cross flow 

the sketch of the heat exchanger. The blue arrow represents the ambient air while the red one 

heater operates in case of low

in order to avoid ice formation in the heat exchanger.

heat source for the zones 4, 5, 2 and 3, as it can be seen in 

. The heat transfer is calculated by using a static formulation. 

section, with the insulation layer and the steel layer. 

: Ducts section 

n (2.3): 

~ 1
w ∙ � ∙ �/qr ln	

are the internal and external heat transmission coefficient 

insulation radius and the external 

is the conductivity coefficient of the insulation and of the steel 

The heat transfer is calculated according to the equation (2.4) with t

�� " ���h	

Recovery (MVHR) 

cross flow heat exchanger

the sketch of the heat exchanger. The blue arrow represents the ambient air while the red one 

in case of low

in order to avoid ice formation in the heat exchanger. 

heat source for the zones 4, 5, 2 and 3, as it can be seen in 

. The heat transfer is calculated by using a static formulation. Figure 
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are the internal and external heat transmission coefficient C W
m2	KD

and the external 

is the conductivity coefficient of the insulation and of the steel 

with the hypothesis of constan

heat exchanger. Figure 

the sketch of the heat exchanger. The blue arrow represents the ambient air while the red one 

in case of low ambient air temperature 

heat source for the zones 4, 5, 2 and 3, as it can be seen in 

Figure 2-1 represents 

~ 1
ex ∙ 2w ∙ � ∙ rex	

D; 

and the external duct 

is the conductivity coefficient of the insulation and of the steel C Wm	KD. 

he hypothesis of constan

Figure 2-2 

the sketch of the heat exchanger. The blue arrow represents the ambient air while the red one 

bient air temperature 

heat source for the zones 4, 5, 2 and 3, as it can be seen in 

represents 

	 (2.3) 

duct radius 

D

he hypothesis of constant 

(2.4) 

 shows 

the sketch of the heat exchanger. The blue arrow represents the ambient air while the red one 

bient air temperature 
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Where: 

In this case 

The effectiveness of the heat exchanger is 

it is described by the equation

 

The heat transfer effectiveness is the ratio between the exchanged thermal power and the 

maximum value of h

 

Where:
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From the equation 
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ctiveness and the inlet 
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have the same mass

maximum value of 

Where: ��t/q i �V
In this case ��� i
The effectiveness of the heat exchanger is 

it is described by the equation

The heat transfer effectiveness is the ratio between the exchanged thermal power and the 

maximum value of h

Where: 

 � is the overall heat transfer coefficient 

   is the heat transfer area 

From the equation 

he temperature of the supply air

and the inlet air

calculate �r��,j/. It is supposed that the two flows have the same heat capacity rate

, this hypothesis is realistic

have the same mass flow and almost the same capacity because they are both air flows. The 

maximum value of heat transfer rate

�V L ���� i ��
� ���. 

The effectiveness of the heat exchanger is 

it is described by the equation

The heat transfer effectiveness is the ratio between the exchanged thermal power and the 

maximum value of heat transfer rate:

!

is the overall heat transfer coefficient 

is the heat transfer area 

From the equation (2.7) it is possible to define the equation for the 

Figure 2-2: Sketch of the heat exchanger

he temperature of the supply air

air states. The NTU (Number of Transfer Unit) method is used in 

. It is supposed that the two flows have the same heat capacity rate

, this hypothesis is realistic, 

flow and almost the same capacity because they are both air flows. The 

at transfer rate is given by the

$�t.s
�� osz ⋅ ��osz; �

The effectiveness of the heat exchanger is 

it is described by the equation (2.6): 

! i 1
The heat transfer effectiveness is the ratio between the exchanged thermal power and the 

at transfer rate:  

i ��
1 | ��

is the overall heat transfer coefficient 

is the heat transfer area �m2�.

it is possible to define the equation for the 

�r��,j
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: Sketch of the heat exchanger

he temperature of the supply airflow is calculated 

The NTU (Number of Transfer Unit) method is used in 

. It is supposed that the two flows have the same heat capacity rate

, in case of balanced system, 

flow and almost the same capacity because they are both air flows. The 

is given by the

� i ��t/q ⋅ g�
��� i �� .tu ⋅

The effectiveness of the heat exchanger is calculated by using the NTU method, for this case 

��
| �� ; 					

The heat transfer effectiveness is the ratio between the exchanged thermal power and the 

�� i $�os��.q�o�
$�t.s

is the overall heat transfer coefficient C W
m2

�. 

it is possible to define the equation for the 

j/ i �� ⋅ �
1

: Sketch of the heat exchanger

flow is calculated 

The NTU (Number of Transfer Unit) method is used in 

. It is supposed that the two flows have the same heat capacity rate

e of balanced system, 

flow and almost the same capacity because they are both air flows. The 

is given by the equation 
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⋅ ��.tu�		CWK

calculated by using the NTU method, for this case 

			NTU i � ⋅
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The heat transfer effectiveness is the ratio between the exchanged thermal power and the 

.q�o� i �r��,j/�osz,j/

C W
	KD; 
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�osz,j/ | �.tu1 | ��

: Sketch of the heat exchanger 

flow is calculated with given

The NTU (Number of Transfer Unit) method is used in 

. It is supposed that the two flows have the same heat capacity rate

e of balanced system, because the two flows 

flow and almost the same capacity because they are both air flows. The 
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⋅  
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The heat transfer effectiveness is the ratio between the exchanged thermal power and the 
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.tu,l	
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determination: 

(2.

heat recovery 

The NTU (Number of Transfer Unit) method is used in 
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�r��,j is then calculated, with the equation (2.9), by considering the temperature increment 

caused by the fan. 

 �r��,j = �r��,j/ + #o{�� ./0 ⋅ �����
 (2.9) 

Where: 

- #o{ is the electric power demand of the fan [W]; 
- �� ./0 is the air massflow Ckg

s D; 
- �� is the specific heat capacity of the air C J

kg KD. 

Zone balances 

Each zone i has balances for: 

- $� / = ∑ $��q��l    Power balance [W]; 
- �� /,./0 = ∑ �� �,./0q��l   Air mass balance Ckg

s D; 
- �� /,��� = ∑ �� �,���q��l   Vapor mass balance Ckg

s D; 
- �� /,��� = ∑ �� �,���

q��l   Carbon dioxide mass balance Ckg
s D. 

The simple building model has only one node for each zone instead the complex building 

model has the convective and the radiative nodes, so the complex model has two power 

balances while the simple model has only one power balance. The power balances are 

explained in chapters 2.2 and 2.3.  

The air mass balance is used in order to calculate the pressure of the zones with the equation 

(2.10). 

 %/ = � �� /,./0  2W
(/ ⋅ -./0 ⋅ �/ (2.10) 

Where: 

- �� /,./0 is the results of the air massflow balance Ckg
s D; 

- (/ is the zone i volume �m3�; 
- -./0 = 287 is the air gas constant C J

kg KD; 
- �/ is the air temperature [K]. 

 

The vapour mass balance is used in order to identify the air absolute humidity by means of 

the equation (2.11): 

 1/,��� = � �� /,��� 2W
�/,./0 ⋅ (/  (2.11) 
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The carbon dioxide mass balance is used in order to identify the �\[ concentration in the 

air by means of equation (2.12): 

 1/,��� = � �� /,���  2W
�/,./0  ⋅ (/  (2.12) 

 

The contributes j, involved in these balances, are: 

- Air extraction; 

- Supply air; 

- Infiltration; 

- Ventilation zone to zone; 

- Ventilation intersection. 

a. Air Extraction 

The air extraction has no contribute to the zone power balance because a Lagrangian 

approach is used. On the other hand, the mass of the extract air, calculated as in the equation 

(2.13), is subtracted to the mass balance of the zone. 

 �� osz,./0 = (�osz,/ ∙ �/,./0  (2.13) 

Where: 

- (�osz,/ is the extract volume flow C� 
¡ D; 

- ρ/ is the air density of the zone C kg
m3D. 

The extract air has an influence also on the vapour and CO2 balance of the zone. The vapour 

and CO2 flows are calculated by multiplying the air mass flow and the vapour or CO2 mass 

fraction as the equations (2.14) and (2.15) show. Then these flows are subtracted from the 

vapour and CO2 balances of the zone i. 

 �� osz,��� = �� osz,./0 ⋅ 1/,��� (2.14) 

 �� osz,��� = �� osz,./0 ⋅ 1/,���  (2.15) 

b. Supply air 

The air mass flow is calculated as the equation (2.16) shows: 

 �� r��,./0 = (�r��,/ ∙ �r��,./0  (2.16) 
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Where: 

- (�r��,/  is the inlet volume flow C� 
¡ D ; 

- �r��,./0 is the inlet air density C kg
m3D. 

In the zones with the supply air, in addition to the air mass, also thermal power needs to be 

considered. The thermal power is calculated by means of the equation (2.17). 

 $�r�� = �� r��,./0 ∙ ��r��,./0 ∙ (�r�� − �/) (2.17) 

Where: 

- �� r��,./0 is the inlet mass flow Ckg
s D; 

- c¤r��,./0 is the specific capacity of the air C J
kg KD; 

- �r�� is the temperature of the inlet air [°C]; 
- �/ is the temperature of the zone [°C]. 

 

The air, vapour, and CO2 flows are calculated as already explained for the extract air. 

 �� r��,��� = �� r��,./0 ⋅ 1r��,��� (2.18) 

 �� r��,��� = �� r��,./0 ⋅ 1r��,���  (2.19) 

Where: 

- �� /q,���, �� /q,��� are the inlet vapour and carbon dioxide mass flow Ckg
s D; 

- 1/q,���, 1/q,��� are the vapour and carbon dioxide mass fraction Ckg
kgD; 

c. Infiltration and Windows Opening 

The infiltration involves the accidental air exchange between the external ambient and the 

building. In this model, a constant value is taken for the infiltration rate. 

The infiltration mass flow depends on many factors (e.g. the pressure difference, the 

temperature difference, the wind speed and direction etc.), but these factors are disregarded 

in the model. 

It is not possible to know if the air flows from inside to outside or in the opposite direction due 

to the simplifications introduced in the model, but the same incoming and out coming mass 

flow are considered. Therefore, the infiltration has no contribute to the air mass balance of the 

zone. Vice versa, the contribute of the thermal energy is considered, as it is shown in equation 

(2.20): 

 



 

Where:

- 

- 

- 

- 

 

The vapour

considering the same inlet and outlet air mass flow 

 

 

Where:

- 

d. 

A constant and known airflow takes place 

schematized in

The mass flow

 

Where:

- 

- 

 

 

 

Where: 

 (�/q¥,/ is the infiltration volume flow 

 ��.tu,./0 is the specif

 �.tu,./0 is the density of the ambient air 

 �.tu is the temperature of ambient air 

vapour and CO

considering the same inlet and outlet air mass flow 

Where: 

 1���/���,/ , 
the ambient air 

 Ventilation zone to zone

A constant and known airflow takes place 

schematized in Figure 

The mass flow from the zone 

Where: 

 (�§z§,/ is the volume flow from the zone 

 �/,./0 is the density of the zone 

$� /

is the infiltration volume flow 

is the specif

is the density of the ambient air 

is the temperature of ambient air 

and CO2 mass flows are calculated with the equation

considering the same inlet and outlet air mass flow 

, 1���/���,.tu
the ambient air CkgCO2kgair

Ventilation zone to zone

A constant and known airflow takes place 

Figure 2-3.  

from the zone 

is the volume flow from the zone 

is the density of the zone 

� /q¥,/ i (�/q¥,/

is the infiltration volume flow 

is the specific capacity of the ambient air 

is the density of the ambient air 

is the temperature of ambient air 

mass flows are calculated with the equation

considering the same inlet and outlet air mass flow 

�� /q¥,���

�� /q¥,���

.tu are the CO

/H2O
air D. 

Ventilation zone to zone 

A constant and known airflow takes place 

 

Figure 

from the zone i to the zone 

�

is the volume flow from the zone 

is the density of the zone i
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� ∙ ��.tu,./0 ∙

is the infiltration volume flow Cm3
h D; 

ic capacity of the ambient air 

is the density of the ambient air C kg
m3

is the temperature of ambient air 	°C�.

mass flows are calculated with the equation

considering the same inlet and outlet air mass flow 

� i �� ./0 ⋅ g1

� i �� ./0 ⋅ g1

are the CO2 or H2O 

A constant and known airflow takes place between each zone and the hallway

Figure 2-3: Airflow zone to zone

to the zone j, is calculated with the equation 

�� §z§,./0 i (�§z§

is the volume flow from the zone i to the zone 

i. 

∙ �.tu,./0 ∙ g

ic capacity of the ambient air C J
kg K

C kg
3D; 

	 �. 

mass flows are calculated with the equation

considering the same inlet and outlet air mass flow �� ./0. 

1���,.tu " 1
1���,.tu " 1

O mass fraction

between each zone and the hallway

: Airflow zone to zone

is calculated with the equation 

�§z§,/ ∙ �/,./0 

to the zone j; 

�.tu " �/h 

Ckg KD; 

mass flows are calculated with the equations 

1���,/h 
1���,/h 

mass fraction of the considered zone and of 

between each zone and the hallway

 
: Airflow zone to zone 

is calculated with the equation 

 

 

 (2.21) and 

of the considered zone and of 

between each zone and the hallway

is calculated with the equation (2.23). 

(2.20

and (2.32) by 

(2.21

(2.22

of the considered zone and of 

between each zone and the hallway as it is 

(2.23

20) 

by 

21) 

22) 

of the considered zone and of 

as it is 

23) 



Equation (2

zone j: 

 

 

The vapour

for the air mass flow. Then t

 

 

e. Ventilation intersection

An additional air exchange is considered in order to take into 

Since the additional 

function of the pressure, temperature and composition difference between the zones, it is not 

possible to know in 

incoming and 

The extra intersection

involved zones.

the two streams are mixed. 

while the cold airflow take

capacity and temperature are used in the equation

the equation 

 

Where: 

- (�/qzo0r
- c¤t

and temperature 

- �/ is the temperature of the considered zone 

 

2.24) is used in order to calculate the energy carried by the air from the zone 

vapour and CO2 

for the air mass flow. Then t

Ventilation intersection

An additional air exchange is considered in order to take into 

Since the additional 

function of the pressure, temperature and composition difference between the zones, it is not 

possible to know in 

incoming and out coming

The extra intersection

involved zones. It is assumed that the air flows from each zone to the intersection and then 

the two streams are mixed. 

while the cold airflow take

capacity and temperature are used in the equation

the equation (2.27): 

�/qzo0r is the exchanged volume flow 

to.q,/�, ρto.q
and temperature 

is the temperature of the considered zone 

) is used in order to calculate the energy carried by the air from the zone 

 mass flows are calculated by multiplying the 

for the air mass flow. Then they are subtracted from the zone 

Ventilation intersection 

An additional air exchange is considered in order to take into 

Since the additional volume flow is taken 

function of the pressure, temperature and composition difference between the zones, it is not 

possible to know in which direction it occurs

out coming is considered

Figure 

The extra intersection ventilation gives a null 

It is assumed that the air flows from each zone to the intersection and then 

the two streams are mixed. Actually, the warm airflow takes place in the upper part of 

while the cold airflow takes place in the lower part. 

capacity and temperature are used in the equation

$� /qzo0r,/ i

is the exchanged volume flow 

to.q,/�, �to.q,/�
and temperature 	K�; 

is the temperature of the considered zone 

) is used in order to calculate the energy carried by the air from the zone 

$�§z§ i �� §z§

mass flows are calculated by multiplying the 

hey are subtracted from the zone 

�� §z§,���
�� §z§,���

An additional air exchange is considered in order to take into 

volume flow is taken 

function of the pressure, temperature and composition difference between the zones, it is not 

direction it occurs

considered for each intersection, as it is shown in

Figure 2-4: Intersection’s ventilation

ventilation gives a null 

It is assumed that the air flows from each zone to the intersection and then 

Actually, the warm airflow takes place in the upper part of 

place in the lower part. 

capacity and temperature are used in the equation

i (�/qzo0r ∙ c¤to.q

is the exchanged volume flow 

/� are the mean values of 

is the temperature of the considered zone 
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) is used in order to calculate the energy carried by the air from the zone 

� §z§,./0 ∙ ��/,./0

mass flows are calculated by multiplying the 

hey are subtracted from the zone 

� i �� §z§,./0

� i �� §z§,./0

An additional air exchange is considered in order to take into 

volume flow is taken as a constant value and it is not calculated in 

function of the pressure, temperature and composition difference between the zones, it is not 

direction it occurs. For this reason, the same mass flow 

for each intersection, as it is shown in

: Intersection’s ventilation

ventilation gives a null air mass flow

It is assumed that the air flows from each zone to the intersection and then 

Actually, the warm airflow takes place in the upper part of 

place in the lower part. Th

capacity and temperature are used in the equations. The power to the zone 

to.q,/� ∙ ρto.q

is the exchanged volume flow Cm3
s D; 

are the mean values of 

is the temperature of the considered zone 	K�

) is used in order to calculate the energy carried by the air from the zone 

∙ g�/ " ��h 

mass flows are calculated by multiplying the 

hey are subtracted from the zone i and added to the zone 

⋅ 1���,/ 

⋅ 1���,/ 

An additional air exchange is considered in order to take into 

as a constant value and it is not calculated in 

function of the pressure, temperature and composition difference between the zones, it is not 

For this reason, the same mass flow 

for each intersection, as it is shown in

: Intersection’s ventilation 

mass flow, but energy contributes to both the 

It is assumed that the air flows from each zone to the intersection and then 

Actually, the warm airflow takes place in the upper part of 

The mean values of density, specific 

The power to the zone 

to.q,/� ∙ g�to.q

are the mean values of specific capacity 

	 �;. 

) is used in order to calculate the energy carried by the air from the zone 

 

mass flows are calculated by multiplying the mass fractions

and added to the zone 

An additional air exchange is considered in order to take into account the doors open

as a constant value and it is not calculated in 

function of the pressure, temperature and composition difference between the zones, it is not 

For this reason, the same mass flow 

for each intersection, as it is shown in

 

but energy contributes to both the 

It is assumed that the air flows from each zone to the intersection and then 

Actually, the warm airflow takes place in the upper part of 

e mean values of density, specific 

The power to the zone i 

to.q,/� " �/h 

specific capacity C

) is used in order to calculate the energy carried by the air from the zone i

mass fractions of the zone 

and added to the zone j. 

account the doors open

as a constant value and it is not calculated in 

function of the pressure, temperature and composition difference between the zones, it is not 

For this reason, the same mass flow 

for each intersection, as it is shown in Figure 2-4

but energy contributes to both the 

It is assumed that the air flows from each zone to the intersection and then 

Actually, the warm airflow takes place in the upper part of the door 

e mean values of density, specific 

i is calculated with 

C J
kg KD, density 

i to the 

(2.24) 

of the zone i 

 

(2.25) 

(2.26) 

account the doors opening. 

as a constant value and it is not calculated in 

function of the pressure, temperature and composition difference between the zones, it is not 

For this reason, the same mass flow �� ./0 

4. 

but energy contributes to both the 

It is assumed that the air flows from each zone to the intersection and then 

the door 

e mean values of density, specific heat 

is calculated with 

(2.27) 

, density C kg
m3D 
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- 

2.1.3

The internal loads are strictly dependent on the 

they are

loads involve the sensible heat, the humidity and CO

power delivered by the lights and equipment.

2.1.4

The climate 

The incoming 

weighted

2.2 

2.2.1

The simple model involves just one node

which 

Figure 

summed up

mass of the building (air, furniture, structure).

same already ex

infiltration, while 

vapour and CO

Where: 

 �� ./0 is the exchanged air mass flow 

 1���/���,/, 
concentration between the two air flows 

 Internal Gains2.1.3

The internal loads are strictly dependent on the 

they are not easy to predict 

loads involve the sensible heat, the humidity and CO

power delivered by the lights and equipment.

 Solar2.1.4

The climate considered 

incoming irradiation 

weighted factors.

 SIMPLE 

 Introduction2.2.1

The simple model involves just one node

which will be explained 

Figure 2-5 shows a simplified sc

summed up in one node and 

mass of the building (air, furniture, structure).

same already explained in the previous sections. 

infiltration, while $

and CO2 mass flows calculation is done 

is the exchanged air mass flow 

, 1���/���,to.q
concentration between the two air flows 

Internal Gains

The internal loads are strictly dependent on the 

not easy to predict 

loads involve the sensible heat, the humidity and CO

power delivered by the lights and equipment.

olar Gains 

considered in this work 

irradiation is distributed 

. 

SIMPLE BUILDING 

Introduction 

The simple model involves just one node

will be explained in more detail with the results

shows a simplified sc

in one node and 

mass of the building (air, furniture, structure).

plained in the previous sections. 

$� /qzo0r involves the ventilation zone to zone and ventilation intersection.

mass flows calculation is done 

�� ���,/ i
�� ���,/ i

is the exchanged air mass flow 

to.q are the CO

concentration between the two air flows 

 

The internal loads are strictly dependent on the 

not easy to predict therefore,

loads involve the sensible heat, the humidity and CO

power delivered by the lights and equipment.

in this work is the sta

is distributed 

BUILDING MODEL 

The simple model involves just one node

more detail with the results

shows a simplified scheme of the simple model for one zone.

in one node and only one capacity is present in order to represent the whole 

mass of the building (air, furniture, structure).

plained in the previous sections. 

involves the ventilation zone to zone and ventilation intersection.
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mass flows calculation is done 

i �� ./0 ⋅ g1�
i �� ./0 ⋅ g1�

is the exchanged air mass flow Ckgs D; 
are the CO2 or H2

concentration between the two air flows Ckg

The internal loads are strictly dependent on the presence and

fore, in the model

loads involve the sensible heat, the humidity and CO

power delivered by the lights and equipment. 

is the standard climate of Stuttgart

is distributed between the structures of the zone by means of 

The simple model involves just one node for the whole 

more detail with the results

heme of the simple model for one zone.

one capacity is present in order to represent the whole 

mass of the building (air, furniture, structure). The power

plained in the previous sections. $
involves the ventilation zone to zone and ventilation intersection.

mass flows calculation is done with equation 

���,to.q " 1�
��,to.q " 1�

D
2O mass fraction

CkgCO2/H2Okgair D. 

presence and

n the model a constant value

loads involve the sensible heat, the humidity and CO2 delivered from

ndard climate of Stuttgart

between the structures of the zone by means of 

for the whole zone

more detail with the results in section 

heme of the simple model for one zone.

one capacity is present in order to represent the whole 

The powers, involved in the balances

$��oqz involve

involves the ventilation zone to zone and ventilation intersection.

equation (2.28)

���,/h 

���,/h 

ss fraction of the zone 

presence and behaviour 

a constant value 

delivered from the inhabitants

ndard climate of Stuttgart

between the structures of the zone by means of 

zone. This is a strength

in section 4.3.3 and in the appendix A1

heme of the simple model for one zone.

one capacity is present in order to represent the whole 

involved in the balances
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the surfaces and the nodes (convective and radiative) are calculated by means of the 

convective resistance (-�) and radiative res

resistances are joined in one global resistance.

considers only the conductive heat transfer

also the convective and irradiati

for the generic 

is given by the sum over all the elements

$
The thermal bridges transmission losses are calculated with the

into account all the thermal bridges j involved in the considered zone

$

BUILDING MODEL

building model, two nodes

 In this way two temperature

radiative) and not only one as for the simple model.

The analogy between electric and thermal circuits 

heat exchange

, the heat flow 	W� is the analogous of the current

is analogous to the electric resistance

exchange power with the radiative and the convective node (just one surface is present in 

Other gains are present in each node balance. These gains came 

ng system, the solar irradiation, internal loads, etc

gains between the radiative and the convective node

the surfaces temperatures, the view factor 

radiative heating system will be mainly added to the radiative node. The convective node has 
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The convective temperature is calculated in the model by integration of the convective power 

balance. The c

node is calculated with the equation 
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The radiative 

can be schematised as in 

Since the triangle conductance is equivalent to the star one, the sketch in 

equivalent to the connection 

Convective Node

The equation (2.38) is solved in the convective node:

The convective temperature is calculated in the model by integration of the convective power 

balance. The convective power exchanged between the 

node is calculated with the equation 

Radiative Node

The radiative exchange that takes
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equivalent to the connection 

Figure 
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The convective temperature is calculated in the model by integration of the convective power 

onvective power exchanged between the 

node is calculated with the equation 

Radiative Node 

exchange that takes
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Since the triangle conductance is equivalent to the star one, the sketch in 

equivalent to the connection of Figure 

Figure 2-6: Two star model sketch

is solved in the convective node:
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The convective temperature is calculated in the model by integration of the convective power 

onvective power exchanged between the 

node is calculated with the equation (2.39) (Glück, 1990)
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exchange that takes part between three wall surfaces at different temperatures 

Figure 2-7. 

Figure 2-7: Triangle resistance

Since the triangle conductance is equivalent to the star one, the sketch in 

Figure 2-8. 
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(Glück, 1990)

1.6 ⋅ µ�r,/ " �

part between three wall surfaces at different temperatures 

Triangle resistance

Since the triangle conductance is equivalent to the star one, the sketch in 

: Two star model sketch 

2��¬q�2W  
The convective temperature is calculated in the model by integration of the convective power 
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Figure 3-11: Control behaviour without anti-windup 

Figure 3-12 shows the idea of the back calculation anti-windup. In this case, the output signals 

starts to decrease after 200 s (the half respect to the case without anti-windup). In this case, 

the integral part is able to follow the input behaviour, so there is no delay between the moment 

in which the input signals becomes negative and the moment in which the output starts to 

decrease. 

 
Figure 3-12: Control behaviour with back calculation anti-windup 

Figure 3-13 shows the conditional integration anti-windup. When the output is equal to 90 the 

saturation is working and the integral part is hold. At 190 s, the integral part is not hold 

because the proportional part is sufficiently decreased. Also with this kind of anti-windup the 

delay between the period of time in which the input becomes negative and the output starts to 

decrease is reduced with respect to the case without anti-windup. 
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Figure 3-13: Control behaviour with conditional integration anti-windup 

 

Conditional Integration Anti-Windup Sensibility to the Limits of the Saturation Block 

With the conditional integration anti-windup, the lower and higher limit values of the saturation 

block are critical values. By considering a practical case is easier to understand why the 

maximum and minimum saturation block values are important. If the controller starts with a 

null initial value for the integral part, only the proportional part is activated until the output of 

the controller is higher than the lower limit of the saturation. The system needs an error higher 

than the ratio between the lower limit of the saturation block and the proportional gain before 

that the integration part starts to count and gain influence on the output. This means that if the 

lower limits of the saturation block is 20°� and the proportional gain is 35 CK
KD, the system 

needs an error of 0.571 [K] before that the integrator is enabled to count and to gain influence 

on the controller output. If the lower limit of the saturation block is 10°C, the system needs an 

error of 0.285 [K]. If the maximum and minimum values of the saturation block change, also 

the operative interval of the lookup table of the controller has to be changed according to the 

maximum and minimum value of the saturation. Figure 3-14 shows the comparison between 

the results of the same model with the same boundary conditions but with different lower value 

of the saturation block. The case 1 shows the results when the lower temperature limit of the 

controller is 10°C while the case 2 shows the results when the lower temperature limit of the 

controller is 20°C. The initial error for both cases is 0.4 [K]. As before described, the case 2 

needs an error of 0.571[K] in order to enable the system frequency to increase. The frequency 

starts immediately to increase in the case 1 because from the first instant the system has 

already an error higher than 0.285 [K]. 
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4 SYSTEM PARAMETERS DETERMINATION 

AND OPTIMIZATION 

4.1 INTRODUCTION 

The studied system (building and heating system) can store energy, i.e. the state of the 

system can change only gradually. The controlled variable responds with delay to manipulated 

variable changes. Therefore, the new steady state of the controlled variable is reached after a 

finite time. The parameters tuning is done in order to achieve the desired control response for 

the studied system (SAMSON, 2003). Response velocity, few oscillations, stability and small 

overshoot are the goals for a good controller, but these requirements may conflict with one 

another. An incorrect gains determination can lead the system to the instability. When the 

system becomes instable, its output diverges and it is limited only by a saturation or 

mechanical breakage (Wikipedia, 2016). This can happen with too high gains. 

A linear system is stable if for each limited input, it has a limited output over a time interval 

[t0,∞) for all the initial condition. With the transfer function analysis of the system, it is possible 

to understand if the system is instable. The equation (4.1) shows a generic transfer function: 

 Úg+h i  Ü ⋅ ∏ (l=âã⋅r)äãåÑræ⋅∏ (l=â�⋅r)ç�åÑ           U{ = − l
èÅ          U/ = − l

¤é (4.1) 

F/ are the zeros and %� are the poles of the transfer function, they can be real or complex. The 

system is stable, if all the poles of the closed loop transfer function have a negative real part. 

In this section is studied the Laplace transform of a simple linear system for a little variation 

governed by the following equations: 

 ∆$�l = 5 ⋅ ∆�osz − 5 ⋅ ∆�0¬¬t (4.2) 

 ∆$�[ = �� r���{ê ./0 ⋅ �ë,./0⋅ »∆�r���{ê − ∆�0¬¬t½ (4.3) 

 �0¬¬t ⋅ + ⋅ ∆�0¬¬t = −5 ⋅ ∆�0¬¬t + 5 ⋅ ∆�osz + �� r���{ê ./0 ⋅ �ë,./0⋅ »∆�r���{ê − ∆�0¬¬t½ (4.4) 

Since this system is linear, the superposition principle can be used. It is possible to analyse the 

system by considering only ∆�r���{ê and ∆�0¬¬t. So in this scheme �osz is considered as a 

constant.  
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The heat pump transfer function is 
l

làö÷⋅r where �  is the time constant of the heat pump. The 

transfer function of the whole system in an open loop configuration is shown in the equation 

(4.13). 

  ∆�0¬¬t = ∆�roz ⋅ ) N� ⋅ + + N/
+ ⋅ (� ⋅ + + 1) ⋅ (1 + X + Y ⋅ +) + »N� ⋅ + + N/½, (4.13) 

All the changes in the root sign can be determined by the application of the Routh-Hurwitz 

method (Bhattacharya, 2013) to the transfer function denominator: 

+* ⋅ (� ⋅ Y) + +[ ⋅ (� + Y + X ⋅ �) + + ⋅ »N� + 1 + X½ + N/ 
The Table 4-1 shows the results of the Routh method application. 

Table 4-1: Routh-Hurwitz method 

� ⋅ Y N� + 1 + X 

� + Y + X ⋅ � N/ 

(� ⋅ Y ⋅ N/) − [»N� + 1 + X½ ⋅ (� + Y + X ⋅ �)]
−(X ⋅ � + � + Y)  0 

 

According to Routh if all the elements of the first column are positive, the denominator roots 

are all negative. This is the desired case because it means that the system is stable. The 

element in the third row of the first column is the only one that can be negative, so the 

following inequality should be satisfied: 

 (� ⋅ Y ⋅ N/) < [»N� + 1 + X½ ⋅ (� + Y + X ⋅ �)] (4.14) 

In this case, N/ and N� cannot be choosen freely but they has to satisfied (4.14) in order to 

ensure a stable control. 

4.2 DETERMINATION OF THE SYSTEM CHARACTERISTICS 

Experiments have been carried out in the PASSYS test cell, in order to characterize m-HP 

behaviour in different working points. Five tests at the frequency of 50 Hz, 90 Hz, 110 Hz, 

130 Hz, and 150 Hz are done for three different ambient temperatures 

�.tu,j (−4 °C, 0 °C, 5 °C). The PASSYS test cell is preconditioned with fixed values for the test 

room and for the coldbox, until steady state conditions for the ventilation unit are reached, for 

each �.tu,j. Then in each test, the m-HP is operated for the duration of three hours at the 

fixed frequency 
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Figure 4-5, Figure 4-6 and Figure 4-7 show the supply air temperature for each frequency with 

�.tu,j = 5 °�, 0 °�, −4 °� and �osz,j = 20 °�. 

 

Figure 4-5: Supply air temperatures of the test with �.tu,j = 5 °C and �osz,j = 20 °C 

 

Figure 4-6: Supply air temperatures of the test with �.tu,j = 0 °C and �osz,j = 20 °C 
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Figure 4-7 Supply air temperatures of the test with �.tu,j = −4 °C and �osz,j = 20 °C 
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Figure 4-8: Supply air temperatures for each �.tu,j for each frequency 
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 �\# i  $��ë,t#t  (4.16) 

Figure 4-9 shows the electric power consumption of the heat pump for each test. 

 

Figure 4-9 : Electric power required by the HP for each �.tu,j, as a function of the frequency 

 

Figure 4-10: Thermal power delivered for each �.tu,j as a function of the frequency 
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Figure 4-14 shows the zone five temperatures from the HiL and Simulink simulation. The 

incline of the HiL results changes after two hours because of the ice formation. 

 
Figure 4-13: Simple model step 

 
Figure 4-14: Zoom of the step 
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simple model, only one capacity is present this makes the dynamic response slower 

compared to the complex.  

 

The steady state temperature of the simple model (Figure 4-17) is shifted 0.25 °C in order to 

easily compare the dynamic behaviours. This steady state temperature difference is due to the 

simplified thermal transmittances used within the simple model.  

  (a) 

 b) 

Figure 4-17: (a) Comparison of the complex and simple model dynamic behaviour. (b) zoom of the plot 
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The results for the simple and complex building models are the following:
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- Reaction Speed; 

- Energy demand; 

- Controlled temperature behaviour; 

- Number of On/Off cycles; 

- Heating system performance (SCOPHP and SCOPSYS). 

 

The analysed cases are: 

- Case1:  N�  i  59.3 CK
KD ;   q  =  12.4 [min]; 

- Case 2: N�  =  34.6 CK
KD ;   q  =  4688.2 [min]; 

- Case 3: N�  =  7.6 CK
KD ;   q  =  4.9 [min]; 

- Case 4: N�  =  4.5 CK
KD ;   q  =  241.2 [min]; 

- Case 5: N�  =  35 CK
KD ;   q  =  10 [min]. 

Reaction speed 

Figure 4-19 shows the supply air temperatures for each case, where: Figure 4-19 underlines 

that the parameter involved in the cases 2 and 4 are too slow responding.  

 
Figure 4-19: Supply air temperature for each test  
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- Case 1: 

The case 1 is the fastest between the considered cases. The system reaches the maximum 

frequency after few seconds, but since the proportional gain is high, the proportional part 

rapidly decrease with the error and after four minutes there is a decrement of the system 

frequency due to the reduction of the proportional output but it reaches again the maximum 

frequency after sixteen minutes thanks to the integral contribute. Figure 4-20 shows the 

comparison of the first minutes of simulation between the cases 1, 3 and 5. Here the before 

described behaviour can be observed. 

- Case 2: 

The proportional gain is higher with respect to the case 4 and in fact the system has higher 

supply air temperature in the first period. As the error decreases, the proportional output 

decreases its influence on the controller output. In the same time, the integral time constant is 

too high, so the integral part is slowly gaining influence on the controller output. The system 

dares not reach the maximum power within these 3 days of simulation. 

- Case 3: 

The case 3 is slower than the case 1. The system reaches here the maximum supply air 

temperature after 39 minutes. 

- Case 4: 

In this test, the heating system never reaches the maximum power within the analysed period. 

Thanks to the anti-windup the system is suddenly switched on but when the system is not 

anymore below the saturation limit the PI parameters are responsible for the controller 

behaviour. It can be seen along the considered period that q is too high and the integral part 

needs long time in order to gain influence and the proportional gain is not high enough to 

ensure a fast control. 

- Case 5: 

The case 5 is slightly slower than the case 1 but faster than the case 3. The system reaches 

here the maximum supply air temperature after 15 minutes. 
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Figure 4-20: Zoom of the first period of the Figure 4-19 

Figure 4-21 shows the sensitive temperature of the zone 5 for each case. 

 
Figure 4-21: Temperatures of the zone 5 for each test 

The parameters of the case 5 are the most suitable for the considered case as regard to the 

reaction speed. 
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Energy Demand and System Performance 

The energy demand together with the controlled temperature, are important factors for the 

determination of the parameter. ¹�\#�ë (seasonal coefficient of performance of the heat 

pump) and ¹�\#ùþù (seasonal coefficient of performance of the system) are used for the 

analysis of the heating system performance, see equation (4.22) and (4.23). 

 ¹�\#�ë i $�ë!�ë  (4.22) 

 ¹�\#ùþù i $�ë | $O�!�ë | !O�  (4.23) 

Where: 

- $�ë is the thermal energy provided by the heat pump; 

- !�ë is the electric energy demand of the heat pump; 

- $O� is the thermal energy provided by the backup heater; 

- !O� is the electric energy demand of the backup heater. 

 

Only the cases 1, 3 and 5 are analysed because the cases 2 and 4 are not suitable for the 

studied system. Table 4-2 shows the energy demand of the heat pump, the energy demand of 

the backup heater (equal to the thermal energy provided by the backup heater to the system), 

the thermal energy provided by the heat pump to the system, the total energy demand, the 

¹�\#�ë and the ¹�\#ùþù. The energy demands of the fans and pre heater are equal in every 

case because the fans power is taken as a constant and the pre-heater energy demand 

depends on the ambient temperature that is the same for every case. The power of the fan is 

taken as 54 W, so the energy required by the fan is 473 CkWh
a D for the whole year. If the 

ambient temperature is lower than -6 °C the pre-heater is switched on in order to avoid ice 

formation inside the heat exchanger. The pre-heater energy demand is 13.17 CkWh
a D, with the 

considered weather. Case 1 is the fastest reacting system, so it uses more backup heater 

respect to the cases 3 and 5. The three cases have similar total energy demand. 

Table 4-2: Energy demands, ¹�\#�ë and ¹�\#ùþù 

 
HP energy 

demand CkWh
a D 

BU energy 

demand CkWh
a D 

HP thermal 

energy CkWh
a D 

Energy 

demand 

tot CkWh
a D 

¹�\#�ë [−] ¹�\#ùþù [−] 

Case 1 353.89 100.15 1138.57 940.05 3.22 2.73 

Case 3 349.44 90.63 1105.80 926.09 3.17 2.72 

Case 5 348.07 95.27 1121.90 929.35 3.22 2.75 
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Controlled Temperature Behaviour 

The numbers of hours in which the controlled temperature falls below 19.9 °C and in which it 

is higher than 20.1 °C are calculated for January and February. Only these two months are 

considered because in other periods it is possible that the overheating is caused by high 

ambient temperature. 

 

Table 4-3 shows for each case: 

- The number of underheating hours and the per cent value; 

- The number of overheating hours and the per cent value; 

- The minimum temperature reached in the considered period; 

- The maximum temperature reached in the considered period. 

 

Case 3 is the slowest reacting system between the three considered cases, for this reason, 

according to Table 4-3, it has the highest number of overheating and underheating hours, the 

highest maximum temperature and the lowest minimum temperature. 

 

Table 4-3: Over and under heating comparison for January and February (1416 [h]) 

 
Under heating Over heating Min temp Max temp 

[h] [%] [h] [%] [°C] [°C] 

Case 1 1.70 0.120 13.10 0.935 19.89 20.15 

Case 3 18.23 1.29 2.00 0.141 19.85 20.13 

Case 5 11.27 0.796 5.90 0.417 19.88 20.14 

On/Off Cycles 

An important factor is the number of compressor On/Off cycle which has effects on the life 

time and on the LCC (Life Cycle Cost). This depends mainly on the correct dimensioning of 

the m-HP with respect to the energy demand of the building and on the minimum runtime. 

When the heat pump is at the minimum power level, the system cannot regulate its power 

anymore and if the energy demand decreases, the only one way to regulate the power is 

doing On/Off cycles. The On/Off behaviour decreases the heating system performances and 

reduces the service life of the components. The number of yearly On/Off cycles is calculated 

by means of Simulink simulation with a minimum runtime of 15 [min] for all the three cases: 

Table 4-4: Number of On/Off cycles 

 Number of yearly On/Off Cn
a
D 

Case 1 3855 

Case 3 2315 

Case 5 3345 
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Since the test 3 is the slowest reacting, it has the minimum number of yearly 

The number of On/Off cycles can be reduced by increasing the minimum run

of the case 5 are the best solution for the s

make the control system enough fast responding and stable and they ensure that the 

controlled temperature lies inside an acceptable range of temperature.

Optimization 

cycles can be changed by modifying the minimum run

simulations are carried out for the case 5 with different value

90 [min]). By changing this factor

rature profile change. Table 4-5

runtimes. Table 4-

d the maximum and minimum temperatures reached by the controlled temperature 

over a period of two months (January and February). By reading these two tables 

is possible to observe that by increasing the minimum 

 of the zone 5 is less controlled. 

: Energy demands, ¹�\#
HP 

thermal 

energy 

CkWhD 

Energy 

demand 

tot C
1098.41 933.76

1121.90 929.35

1140.91 924.80

1156.98 924.43

1165.94 922.37

1171.86 922.30

inimum number of yearly 

d by increasing the minimum run

of the case 5 are the best solution for the studied system. Th

make the control system enough fast responding and stable and they ensure that the 

controlled temperature lies inside an acceptable range of temperature.

d by modifying the minimum run

different values of minimum run

[min]). By changing this factor

5 shows the results of yearly simulations 

-6 shows the hours of over and under 

d the maximum and minimum temperatures reached by the controlled temperature 

over a period of two months (January and February). By reading these two tables 

is possible to observe that by increasing the minimum runtime

zone 5 is less controlled. 

#�ë  and ¹�\

Energy 

demand 

CkWha D 

Number 

of yearly 

On/Off

933.76 5328

929.35 3345

924.80 2138

924.43 1213

922.37 860

922.30 670

inimum number of yearly 

d by increasing the minimum run

tudied system. Th

make the control system enough fast responding and stable and they ensure that the 

controlled temperature lies inside an acceptable range of temperature. 

d by modifying the minimum run

of minimum run

[min]). By changing this factor,

shows the results of yearly simulations 

shows the hours of over and under 

d the maximum and minimum temperatures reached by the controlled temperature 

over a period of two months (January and February). By reading these two tables 

runtime, the performances of the

zone 5 is less controlled.  

¹�\#ùþù  

Number 

of yearly 

On/Off Cn
a
D 

¹�\

5328 3.13

3345 3.22

2138 3.31

1213 3.36

860 3.40

670 3.42

inimum number of yearly On/Off cycles. 

d by increasing the minimum runtime period 

tudied system. These parameter

make the control system enough fast responding and stable and they ensure that the 

d by modifying the minimum runtime. Six 

of minimum runtime (5

[min]). By changing this factor, also the energy 

shows the results of yearly simulations 

shows the hours of over and under 

d the maximum and minimum temperatures reached by the controlled temperature 

over a period of two months (January and February). By reading these two tables together,

, the performances of the

¹�\#�ë 

	"� 
¹�\

3.13 

3.22 

3.31 

3.36 

3.40 

3.42 

cycles. 

time period 

parameters 

make the control system enough fast responding and stable and they ensure that the 

 yearly 

5 [min], 

also the energy 

shows the results of yearly simulations 

shows the hours of over and under 

d the maximum and minimum temperatures reached by the controlled temperature 

together, it 

, the performances of the 

¹�\#��� 

	"� 

2.67 

2.75 

2.82 

2.85 

2.89 

2.90 



Table 

Min. 

runtime

5 

15 

30 

60 

90 

120 

 

In the case of 

controller output 

or passed the 

minimum 

than the set point temperature and the 

saturation block. When the minimum 

switched off

controlled temperature always next to

react in a fast way to error changes.

4.4 

The same method already explained is 

parameter

determination of the highlighted PI controller parameter. The heating system 

Figure 

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

input is a step of the

temperature. From the dynamic characterization of the system output, it is possible to use the 

Chien, Hrones and Reswick for the parameter determination.

Table 4-6: Over and under heating comparison fo

Min. 

runtime [h]

11.87

 11.27

 10.53

 11.00

 10.87

 10.70

In the case of high 

controller output 

or passed the set point temperature

minimum runtime

than the set point temperature and the 

saturation block. When the minimum 

switched off. The system with the minimum 

controlled temperature always next to

react in a fast way to error changes.

 DETERMINATION AND OPTIMIZATION OF THE 

PARAMETER

The same method already explained is 

parameter. Figure 

determination of the highlighted PI controller parameter. The heating system 

Figure 4-24) is studied in an open loop conf

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

input is a step of the

temperature. From the dynamic characterization of the system output, it is possible to use the 

Chien, Hrones and Reswick for the parameter determination.

: Over and under heating comparison fo

Under heating

[h] 

11.87 

11.27 

10.53 

11.00 

10.87 

10.70 

high minimum run

controller output would give signal to

set point temperature

runtime period, the error is negative because the controlled temperature is higher 

than the set point temperature and the 

saturation block. When the minimum 

The system with the minimum 

controlled temperature always next to

react in a fast way to error changes.

DETERMINATION AND OPTIMIZATION OF THE 

PARAMETERS

The same method already explained is 

Figure 4-22 shows the system studied in this chapter. The goal is the 

determination of the highlighted PI controller parameter. The heating system 

is studied in an open loop conf

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

input is a step of the frequency from 49

temperature. From the dynamic characterization of the system output, it is possible to use the 

Chien, Hrones and Reswick for the parameter determination.

: Over and under heating comparison fo

Under heating 

[%] 

0.838 

0.796 

0.744 

0.780 

0.767 

0.756 

minimum runtime

give signal to switch it off because the controlled

set point temperature this causes t

the error is negative because the controlled temperature is higher 

than the set point temperature and the 

saturation block. When the minimum runtime

The system with the minimum 

controlled temperature always next to the set point temperature because the system is free to 

react in a fast way to error changes. 

DETERMINATION AND OPTIMIZATION OF THE 

S 

The same method already explained is 

shows the system studied in this chapter. The goal is the 

determination of the highlighted PI controller parameter. The heating system 

is studied in an open loop conf

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

frequency from 49

temperature. From the dynamic characterization of the system output, it is possible to use the 

Chien, Hrones and Reswick for the parameter determination.

Figure 

69 

: Over and under heating comparison fo

Over heating

[h] 

0 

5.90 

25.37 

49.00 

59.00 

64.07 

time, the heating system is kept switch

switch it off because the controlled

this causes t

the error is negative because the controlled temperature is higher 

than the set point temperature and the output of the

runtime period finish

The system with the minimum runtime

the set point temperature because the system is free to 

DETERMINATION AND OPTIMIZATION OF THE 

The same method already explained is now used for 

shows the system studied in this chapter. The goal is the 

determination of the highlighted PI controller parameter. The heating system 

is studied in an open loop configuration with the set point frequency

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

frequency from 49 Hz to 90

temperature. From the dynamic characterization of the system output, it is possible to use the 

Chien, Hrones and Reswick for the parameter determination.

Figure 4-22: Studied system

: Over and under heating comparison for January and February (1416

Over heating 

[%]

0

0.417

 1.79

 3.46

 4.17

 4.53

the heating system is kept switch

switch it off because the controlled

this causes the over-heating period

the error is negative because the controlled temperature is higher 

output of the controller

period finishes

runtime of five minutes

the set point temperature because the system is free to 

DETERMINATION AND OPTIMIZATION OF THE 

used for the 

shows the system studied in this chapter. The goal is the 

determination of the highlighted PI controller parameter. The heating system 

iguration with the set point frequency

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

Hz to 90 Hz and the output is the supply air 

temperature. From the dynamic characterization of the system output, it is possible to use the 

Chien, Hrones and Reswick for the parameter determination. 

Studied system 

r January and February (1416

Min temp

[%] 

0 19.88

0.417 19.88

1.79 19.88

3.46 19.88

4.17 19.8

4.53 19.88

the heating system is kept switch

switch it off because the controlled

heating period

the error is negative because the controlled temperature is higher 

controller reached the lower limits of the 

es, the heat pump is immediately 

of five minutes

the set point temperature because the system is free to 

DETERMINATION AND OPTIMIZATION OF THE 

the determination of the 

shows the system studied in this chapter. The goal is the 

determination of the highlighted PI controller parameter. The heating system 

iguration with the set point frequency

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

Hz and the output is the supply air 

temperature. From the dynamic characterization of the system output, it is possible to use the 

 

 

r January and February (1416

Min temp 

[°C] 

19.88 

19.88 

19.88 

19.88 

19.88 

19.88 

the heating system is kept switched on even if the 

switch it off because the controlled temperature reached 

heating periods. At the end of the 

the error is negative because the controlled temperature is higher 

reached the lower limits of the 

, the heat pump is immediately 

of five minutes is able to keep the 

the set point temperature because the system is free to 

DETERMINATION AND OPTIMIZATION OF THE HEAT PUMP 

determination of the 

shows the system studied in this chapter. The goal is the 

determination of the highlighted PI controller parameter. The heating system (encircled part of 

iguration with the set point frequency as input

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

Hz and the output is the supply air 

temperature. From the dynamic characterization of the system output, it is possible to use the 

r January and February (1416 [h]) 

Max temp 

[°C] 

20.07 

20.14 

20.17 

20.18 

20.20 

20.21 

d on even if the 

temperature reached 

. At the end of the 

the error is negative because the controlled temperature is higher 

reached the lower limits of the 

, the heat pump is immediately 

is able to keep the 

the set point temperature because the system is free to 

HEAT PUMP 

determination of the heat pump

shows the system studied in this chapter. The goal is the 

(encircled part of 

as input, and 

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

Hz and the output is the supply air 

temperature. From the dynamic characterization of the system output, it is possible to use the 

d on even if the 

temperature reached 

. At the end of the 

the error is negative because the controlled temperature is higher 

reached the lower limits of the 

, the heat pump is immediately 

is able to keep the 

the set point temperature because the system is free to 

HEAT PUMP 

heat pump 

shows the system studied in this chapter. The goal is the 

(encircled part of 

, and 

as output the supply air temperature. The dynamic behaviour of the open loop system is 

studied, in order to define the parameter with the Chien, Hrones and Reswick formulation. The 

Hz and the output is the supply air 

temperature. From the dynamic characterization of the system output, it is possible to use the 

 



70 

Figure 4-23 and Figure 4-24 show the step of the heat pump supply air temperature with the 

step of the frequency from 49 Hz to 90 Hz as input. On the right side the zoom of the first step 

part is reported. The first green dotted line represents the moment in which the frequency is 

changed, the second green dotted line represents the moment in which the supply air 

temperature starts to increase and the last green dotted line represents the moment in which 

the tangent line reaches the maximum supply temperature value. From these times the 

system time constants can be calculated. 

 
Figure 4-23: Heat pump dynamic behaviour 

 
Figure 4-24: Zoom of the previous figure 
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The data of the problem are: 

�r��,¥ = 27.4 [°C] 
�r��,/ = 16.3 [°C] 

P/ = 49 [Hz] 
P¥ = 90 [Hz] 

U� = 11.0 [s] 
U� = 94.0 [s] 

Pt/q = 49 [Hz] 
Pt.s = 150 [Hz] 

 

Where: 

- �r��,¥ is the supply air temperature at the steady state after the step; 

- �r��,/ is the supply air temperature at the steady state before the step; 

- P/ is the system frequency before the step; 

- P¥ is the system frequency after the step; 

- U�, U� are the delays. U� = W[ − Wl is called dead time and it is the time interval between 

the moment in which the disturbance is introduced and the moment in which the 

system starts to respond. U� = W* − W[ is the time for the response to occur. 

- Pt/q is the system minimum frequency; 

- Pt.s is the system maximum frequency. 

 

The parameters resulting from the formulation (4.18) are: 

Different PI parameters are considered in order to optimize the control: 

- Case 1: N� =  0.188 CK
KD        q = 0.733 [min]; 

- Case 2: N� =  0.054 CK
KD         q = 0.09 [min]; 

- Case 3: N� =  0.733 CK
KD         q = 0.188 [min]; 

 

Figure 4-25 shows the comparison between the different cases. The two subplots show the 

frequency and the controlled temperature error.  

N� =  0.188 �KK�         q = 0.733 [min] 
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Figure 4-25: Comparison between the behaviour of different PI parameters 

Two zooms are reported in order to highlight two important aspects: the delay with which the 

system reaches the maximum frequency (Figure 4-26) and the use of the backup heater after 

or while the de-icing period (Figure 4-27).  
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Figure 4-26: Zoom  of Figure 4-25 (from 0 to 1.4 hours) 

 
Figure 4-27: Zoom  of Figure 4-25 (from 49.4 to 51.7 hours) 

 

Figure 4-28 shows the energy demand of the heat pump and of the backup heater over the 

three considered days. The total energy demands are listed in Table 4-7.  
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Since the lookup table used in the controller does not contain information about all the working 

points an error is introduced. The lookup table implemented in the hardware controller 

contains measured data for �.tu,j = 0 °C. When �.tu,j is not 0 °C, an error is introduced 

because the performance of the system changes with the boundary conditions. Figure 4-29 

shows in the x-axis the supply air temperature of set point and in the y-axis the set point 

frequency. The line for �.tu,j = 0 °C represents the behaviour of the lookup table 

implemented in the controller. The other lines represent the controller behaviour in case of 

two-dimensional lookup table where the inputs are the ambient temperature and the set point 

for the temperature of the supply air and the output is the set point frequency. By considering 

a �r��,roz equal to 30 °C, with the lookup table for �.tu,j = 0 °C the set point frequency would 

be 125.7 Hz for every ambient temperature. Actually, the set point frequency with the fixed 

�r��,roz should change with the ambient temperature from 91.3 Hz for �.tu,j = 5 °C to 

159,0 Hz for �.tu,j = −4 °C. This difference is balanced by a growing error for lower ambient 

temperature and decreasing error for higher ambient temperature.  

 
Figure 4-29: Controller’s lookup table comparison 

The differences between a controller with 1D and 2D lookup table can be better explained by 

means of Simulink simulations. The boundary conditions are described in chapter 5.4. In one 

simulation, a two-dimensional lookup table is used while in the other one, a one-dimensional 

lookup table is used. 
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Figure 4-30 shows the Simulink results: 

- the first subplot shows the supply air temperature �r��,[; 

- the second subplot shows the difference between the sensitive temperature of the 

zone 5 (hallway) and the set point temperature (20 °C); 

- the third subplot shows the system frequency; 

- the last subplot shows the ambient temperature. 

The differences between the two control systems are insignificant. 

 
Figure 4-30: Comparison of controllers with one and two dimensional lookup table 

 

Figure 4-31 is a zoom of the previous figure. �.tu,j is below 0 °C in the period around the 

hour 7, so the two dimensional lookup table delivers higher set point frequency and higher 

�r��,[ than the one dimensional lookup table. Therefore, in the 1D case the error is higher and 

the response slower than in the 2D case. The opposite happens when the ambient 

temperature is higher than 8 C. In the case of Figure 4-31, the 1D case reaches a null error 

11.7 min after the 2D case, so it can be calculated that the difference in this application is 

acceptable. 
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Figure 4-31: Zoom of Figure 4-30 

 

The results of two yearly simulations with the one-dimensional and two-dimensional lookup 

tables (1D LuT and 2D LuT) are presented in Table 4-8 and Table 4-9. Here the yearly energy 

demands, the number of On/Off cycles the ¹�\#�ë and ¹�\#ùþù are reported in order to 

analyse the differences between the usage of the one and two dimensional lookup tables. It 

can be seen that the main reported parameters are mostly the same. The controller with the 

two-dimensional lookup tables has a slightly higher number of On/Off cycles with respect to 

the one-dimensional lookup tables because the 2D LuT reacts slightly faster than the 1D LuT. 

 

Table 4-8: Energy demands, ¹�\#�ë and ¹�\#ùþù 

 

HP 

energy 

demand

 CkWh
a D 

BU energy 

demand CkWh
a D 

HP thermal 

energy CkWh
a D 

Energy 

demand 

tot CkWh
a D 

¹�\#�ë [−] ¹�\#ùþù  [−] 
Number 

of yearly 

On/Off Cq
.D 

LuT 1D 348.07 95.27 1121.90 929.35 3.22 2.75 3345 

LuT 2D 345.22 95.45 1099.40 926.69 3.18 2.71 2859 
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Table 4-11 shows the second analysed case where four points are considered. 

Table 4-11: Case 2  

  1D 2D 

  
ϑamb,0 / [°C] ϑamb,0 / [°C] 

  
0 -4 0 5 

ϑ
su

p
,s

e
t 

10.0 49.0 0 0.0 0.0 

23. 7 50.0 74.4 50.0 0.0 

28.8 110.0 150.9 110.0 80.1 

34.5 175.0 189.0 175.0 157.1 

45,9 250.0 250.0 250.0 232.1 

 

Table 4-12 shows the third considered case. Here, only three measured points are 

considered. 

Table 4-12: Case 3 

  1D 2D 

  
ϑamb,0 / [°C] ϑamb,0 / [°C] 

  
0 -4 0 5 

ϑ
su

p
,s

e
t 

10.0 49.0 0 0.0 0.0 

23. 7 50.0 74.4 50.0 0.0 

30.3 130.0 161.2 130.0 94.3 

45,9 250.0 250.0 250.0 232.1 

 

Table 4-13 shows the fourth considered case in which only the first and the last working points 

are considered. 

Table 4-13: Case 4 

  1D 2D 

  
ϑamb,0 / [°C] ϑamb,0 / [°C] 

  
0 -4 0 5 

ϑ
su

p
,s

e
t 10.0 49.0 0 0.0 0.0 

23. 7 50.0 74.4 50.0 0.0 

45,9 250.0 250.0 250.0 232.1 
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Figure 4-32 shows the data involved in the two-dimensional lookup table for ϑ¿��,j = −4°C in 

each considered case.  

 
Figure 4-32: Data of the lookup tables for �.tu,j = −4°� 

Figure 4-33 shows the data involved in the two-dimensional lookup table for ϑ¿��,j = −0°C 

and in the one-dimensional lookup table, in each considered case.  

 
Figure 4-33: Data of the lookup tables for �.tu,j = 0°� 
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Figure 4-34 shows the data involved in the two-dimensional lookup table for ϑ¿��,j = 5°C. 

 
Figure 4-34: Data of the lookup tables for �.tu,j = 5°� 
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Figure 4-36: Comparison between the three different kinds of controllers 

Figure 4-37 shows the zooms of the first part of the simulation and Figure 4-38 shows the 

zoom over the de-icing period. It can be seen that the PI-PI controller and the PI-LuT 

controller decrease the error with almost the same speed. From Figure 4-38 can be observed 

that the PI-PI controller is able to keep the error closer to zero with respect to the PI-LuT 

controller by reducing the over and under heating periods. The PI-PI controller leads to use 

more backup heater than the PI-LuT controller. 

 
Figure 4-37: Zoom of the Figure 4-36 
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Figure 4-38: Zoom of the Figure 4-36 

 

Figure 4-39 shows the comparison of the backup heater and of the heat pump energy 

demands for the three cases. The backup heater energy demand is higher for the PI-PI 

controller but it features lower HP energy demand. 

 
Figure 4-39: Comparison of the BU heater energy demand and of the HP energy demand for the three 

considered cases. 
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Table 4-14 shows the comparison between the total energy demand for the three considered 

cases. As it can be seen the PI-PI controller has slightly higher energy demand compared to 

the PI-LuT controller. 

Table 4-14: Total energy demand of the three cases over the considered period 

 Energy demand tot [kWh] 

PI-LuT 1D 16.95 

PI-LuT 2D 16.93 

PI-PI 17.17 

 

The PI-PI controller enables the system to ensure a smaller error with respect to the cases 

with the LuT but it requires a second temperature sensor and leads to higher energy demand. 

The controller PI-LuT is easier to implement with respect to the PI-PI controller because it 

requires only one sensor while the PI-PI controller needs two sensors (one for the controlled 

temperature and one for the supply air temperature). The feasibility of a PI-PI controller should 

be tested in a real system where the noise of the signals can create problem in the control. 

From these results, it is possible to conclude that the controller PI-LuT ensures a good quality 

control and it is simpler to implement compared to the PI-PI controller. 
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5 HiL HARDWARE IN THE LOOP SIMULATION 

5.1 INTRODUCTION 

Within this work HiL Hardware in the Loop simulations are used in order to test the m-HP. The 

HiL simulation involves the PASSYS test cell, the heat pump and the Simulink building model. 

Thus, HiL simulation provides a virtual building for the heat pump controller validation and 

verification. During the HiL simulation, the extract and supply air behaviour are reproduced in 

the hardware (PASSYS test cell) and their behaviours are controlled by means of Simulink 

simulation, where the building model is implemented. With an appropriate building model, the 

dynamic of the studied building can be reproduced inside the PASSYS test cell, so the heat 

pump can be tested as it works in a real building (SaLüH!, 2016). The data exchange between 

the PASSYS test cell and the Simulink model is done with a co-simulation. In the co-

simulation more than two simulators are coupled to exchange data. In this specific case, the 

actors are Simulink and the PASSYS test cell. BCVTB (Building Control Virtual Test Bed) is 

the software environment used in order to conduct the HiL (Wetter, 2010). It synchronizes the 

exchanged data and allows the user to follow the system evolutions by means of a graphic 

interface. For the HiL simulations, a discrete solver is used within this work. This is necessary 

for the data exchange between the different actors that happens every fixed time step. 

5.2 PASSYS TEST CELL 

Figure 5-1 shows the sketch of the PASSYS (Passive Solar Systems and Component Testing) 

test cells with which the m-HP is tested. The PASSYS test cell has three rooms: 

- the service room is used in order to access to the test room. The temperature of the 

service room is controlled in order to avoid temperature fluctuation in the test room 

when the door is opened. 

- the test room, where the conditions of the extract air of the simulated building are 

reproduced; 

- the coldbox, where the conditions of the ambient air are reproduced. 

The mechanical ventilation system with heat recovery and heat pump is integrated inside the 

test façade. 

The measurement system is described in (Siegele, 2015). A high power heater and cooler 

allow to control the test room temperature. Humidifier devices in the test room enable to 

control the vapour content. The cold box air temperature can be controlled by means of a 

second heating and cooling system. Therefore, the temperature and humidity conditions of the 

extract air and the temperature of the ambient air can be reproduced inside the test room and 
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Figure 5-5: Comparison of the relative humidity trends 

Figure 5-6 shows the temperature profiles measured during the scenario 1 with dry air. The 

extract airflow is exposed to risk of condensation. As it has a temperature around 20°C before 

the heat exchanger and its temperature decreases rapidly in the heat exchanger. �os�,l is the 

temperature measured after the heat pump evaporator, it increases quickly during the de-icing 

periods. 

 
Figure 5-6: Temperature profiles for dry air in the heat exchanger 

Figure 5-7 shows the psychrometric diagram with two highlighted areas that represent 

humidity and the temperatures range in which the condensation takes place in the heat 

exchanger with an extract air temperature of 20 C. When �os�,j is 0 °C (blue area), the 

condensation takes place for a relative humidity range of the extract airflow between 25% and 
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100%. When �os�,j is 8.9 °C (red area), the condensation takes place for a relative humidity 

range between 48% and 100%.  



Figure 5-77: Condensation zones 
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: Condensation zones (Enerclima, 2016)(Enerclima, 2016)(Enerclima, 2016) 
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The ambient temperature and the boundary temperatures are shown in Figure 5-10. The 

climate is the standard climate of Stuttgart. The chosen period is suitable for the intention of 

the HiL simulation because: 

- It involves one day of low temperature where the m-HP and the backup are working 

toghether; 

- In the period between hour 40 and 50 only the m-HP works, thanks to the temperate 

climate; 

- A temperature peak is present at the hour 60. This is important in order to study the 

on/off behaviour. 

 

 
Figure 5-10: HiL boundary temperatures 
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Figure 5-11 shows the solar irradiation for each zone. 

 
Figure 5-11: Solar irradiation 

The windows opening is used in order to test the controller with a disturbance. 

A windows opening profile is considered in the model. Figure 5-12 shows the infiltration and 

the windows opening trend. A constant factor of 0.07 Ct 
� D is taken for the infiltration, and it is 

ten times higher when the windows are open. As the infiltration regards the whole volume of 

the flat, also the zone 5 has the infiltration losses. The opening lasts 30 minutes and the 

windows are opened in the morning for the zones 3, 4 and 6, at midday in the zone 1 and in 

the evening for the zone 2.  

  
Figure 5-12: Infilatration and windows opening 
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Figure 5-15: Comparison of the measured and set point temperature of the test room (scenario 1) 

Table 5-2 shows the maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 

calculated according to equations (5.7), (5.8) and (5.9).  

These powers are calculated by doing a balance over the test room, the set point power 

($�roz �¬/qz,z0) uses the set point temperature of the extract air while the measured power 

($�to.r,z0) uses the measured temperature of the extract air. $��/¥¥,z0 is the difference between 

the set point and the measured power. 

The mean value of $��/¥¥,z0 and $�roz �¬/qz,z0 are calculated by considering the absolute values. 

 

Table 5-2: Maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 for the balance over the test 
room (scenario 1) 

 $��/¥¥,z0 [W� $�
roz �¬/qz,z0 	W� 

Max 15.0 818.5 

Mean 1.47 298.1 

Min -17.8 -135.5 
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The energy can be obtained by integration of the powers over the considered period, as it is 

shown in the equations (5.10), (5.11) and (5.12), and these values are listed in Table 5-3. 

 

Table 5-3: Energy values of the balance over the test room (scenario 1) 

 $z0 [Wh� 

$roz �¬/qz,z0 20958.5 

$to.,z0 20960.0 

$�/¥¥,z0 -1.5 

 

The balance already explained in section 5.5.1 is now applied to the most critical point around 

the hour 12.5. Figure 5-16 shows the zoom of the Figure 5-15 around the hour 12.5.  

 
Figure 5-16: Zoom of Figure 5-15 

With the equations (5.7), (5.8) and (5.9) the power differences are calculated and the results 

are listed in the Table 5-4. The mean value of $�
�/¥¥,z0 and $�

roz �¬/qz,z0 are calculated by 

considering the absolute values. 

 

Table 5-4: Maximum, mean and minimum value of $�
�/¥¥,z0 and $�

roz �¬/qz,z0 for a section of period of the 
scenario 1 

 $�
�/¥¥,z0 	W� $�

roz �¬/qz,z0 	W� 

Max 10.8 725.7 

Mean 6.0 328.7 

Min -17.8 -70.1 
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From these results, it is possible to conclude that the temperatures deviations which 

the test room are not significant in the considered case.
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egration of the powers,

and these values are listed in 

values of the balance over the test room 
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Figure 5-18: zoom of the Figure 5-17 

$�roz �¬/qz,�u, $�to.r,�u and $��/¥¥,�u are calculated by means of the equations (5.13), (5.14) and 

(5.15). These powers are calculated by doing a balance over the heat pump condenser and 

backup heater, the set point power $�roz �¬/qz,�u is calculated by using the set point temperature 

of the supply air after the heat exchanger, the measured power $�to.r,�u is calculated by using 

the temperature of the supply air after the heat exchanger that occurs with the measured 

coldbox temperature. Table 5-6 shows the maximum, mean and minimum values of $��/¥¥,�u 

and $�roz �¬/qz,�u. The mean value of $��/¥¥,�u is calculated by considering the absolute values of 

$��/¥¥�u. 

 

Table 5-6: Maximum, mean and minimum value of $��/¥¥,�u and $�roz �¬/qz,�u for the balance over the 
coldbox (scenario 1) 

 $��/¥¥,�u  [W� $�
roz �¬/qz,�u  	W� 

Max 1.52 1142.7 

Mean 0.142 468.14 

Min -0.911 0 

 

The energy values can be obtained by integration of the powers, as it is shown in the 

equations (5.16), (5.17) and (5.18), and these values are listed in Table 5-7. 

 

Table 5-7: Energy values of the balance over the coldbox (scenario 1) 

 $�/¥¥,�u  	Wh� 

$roz �¬/qz,�u 33706.0 

$to.r,�u 33707.0 

$�/¥¥,�u -1 
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From these results, it is possible to conclude that the 

are calculated by means of the equations

By using the superposition principle, the errors calculated from the balances over the coldbox 

and over the test room can be summed up in order to define the total error.

The maximum, minimum and mean value of $��/¥¥ and of 

is calculated by considering the absolute values.

: Maximum, mean and minimum value of $�
$��/¥¥ 		W� 

17.5 

1.58 
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The energy values can be obtained by integration of the powers,

and these values are listed in 

values calculated from the whole balance for the scenario 1
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The energy values can be obtained by integration of the powers, as it is shown in the 
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Comparison of the HiL and Simulink simulation

In this section, the results obtained from the HiL simulation are compared with the results 

obtained from the Simulink model of the heat pump and 

results comparable, the same 

in the Simulink model.
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 the HiL simulation (where the heat pump is control

 the Simulink simulation, where the heat pump
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constant air volume flow while the volume flow that occurs within the PASSYS is not constant 

and the simulated air density is not equal to the real one).
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When the frequency is equal to 251 Hz or 151 Hz the heat pump is doing the de-icing. Within 

the first 7 hours, the heat pump and the backup heater are both working with the maximum 

power, then the windows opening disturbance is simulated. Here the backup heater has some 

on/off cycles because the controlled temperature reaches the set point value and because of 

the disturbance. Until the hour 34, the heat pump works with the maximum power and the 

backup heater is switched on only when the heat pump is in the de-icing period. In the period 

after 35 hours, only the heat pump is working. Since the error increases during the de-icing 

period, the set point frequency can becomes higher than 150 Hz, so the backup heater is 

switched on and the set point frequency becomes 251 Hz. In the hour 60, the heat pump is 

doing on/off cycles, in this simulation the minimum runtime of the heat pump is 15 min.  

 

The Simulink model cannot recognize that the heat pump is working at the minimum level and 

the evaporator temperature is not low enough for the de-icing, so it is doing the de-icing also 

in this period where the hardware controller does not require the de-icing. Moreover, the 

Simulink frequency cannot match exactly the de-icing timing. Even if the heat pump is working 

all the simulation time with the full power, the real de-icing timing are different from the timing 

set in the simulation (e.g. after the de-icing the evaporator temperature takes time to decrease 

so the next de-icing cycle will take place later than 2 hours). This effect is not avoidable with 

this model because the physical model of the refrigerant cycle is not implemented. 

 

The hardware controller variables can change with an accuracy of 0.05, while in Simulink the 

accuracy is S%+ = 2.2204 ⋅ 10=l
. From the hour 10 to 34, the backup heater is switched off 

even if the error is not zero. This is due to the error accuracy, in fact the hardware controller is 

able to read the error with round off number. In Simulink this effect is reproduced by means of 

a relay block (Figure 3-25). 
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Figure 5-20: Comparison of frequency and error between HiL simulation and Simulink simulation 

 

Figure 5-21 shows in the first subplot, the comparison between the controlled temperature in 

the HiL and Simulink simulations and in the second subplot the comparison of the supply air 

temperatures. In the first 1.5 hours the supply air temperature of the HiL is lower than the 

Simulink one, this can be caused by non-steady state conditions in the beginning of the HiL 

experiment. From the hour 1.5 to the hour 10, the HiL supply temperature is higher than the 

Simulink temperature. This is caused by a measurement error in the �r��,l as discussed with 

Figure 5-16. Around the hour 19 the controlled temperature decreases because of the 

windows opening, for this reason the backup heater does some on/off cycles. 

 

In the hour 37.5 the ambient temperature has a peak, so the controlled temperature increase 

and the supply air temperature decrease. In the period between the hours 40 and 55 the 

backup heater is not necessary thanks to the higher ambient temperatures respect to the 

previous period and because the error is already reduced. In the hours 60 the ambient 

temperature has a peak, so the building energy demand decreases and the heat pump is not 

anymore able to reduce its power. In this period the heat pump works with on/off cycles. 
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Figure 5-21: Comparison of the controlled and supply air temperatures between HiL simulation and 

Simulink simulation 

 

Controller behaviour 

The HiL and Simulink frequencies are not constant in the first hours, but they have some steps 

caused by the anti-windup. When the controller output reaches the maximum saturation limit, 

the integrator part is hold. When the error decreases, the integral gain is again free to change 

its value. Figure 5-22 shows the Simulink controller parameters, the first plot shows the supply 

air temperature set point, the second subplot shows the temperature difference over the 

controller saturation block, the third subplot shows the proportional gain and the last subplot 

shows the integral gain. The already described anti-windup behaviour is illustrated here. 

When the temperature difference over the controller saturation block is different from zero, the 

integrator gain is hold and the supply air temperature set point has its maximum value. Than 

the proportional gain decreases with the error and with the controller output, so the integrator 

is again free to increase its value. 
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5.8 

5.8.1

These analysis are carried out in APPENDIX 2.1.

5.8.2

In this section, the results obtained from the HiL simulation are compared with the results 

obtained from the Simulink

results comparable, the same mistake over the supply air mass flow calculation is taken in the 

Simulink model.
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Figure 5-23: Comparison of frequency and error between HiL simulation and Simulink simulation 

 

Figure 5-24 shows in the first subplot the sensitive temperature of the zone 5 for the HiL and 

Simulink simulation and the ambient temperature trend. In the second subplot are present the 

supply air temperatures of the HiL and Simulink simulation. 

 

 
Figure 5-24: Comparison of controlled and the supply air temperatures between HiL simulation and 

Simulink simulation 
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Figure 5-29: Comparison of frequency and error between HiL simulation and Simulink simulation 

Figure 5-30 shows the comparison of the controlled and supply air temperatures between HiL 

simulation and Simulink simulation. 

 

 
Figure 5-30: Comparison of the controlled and supply air temperatures between HiL simulation and 

Simulink simulation 
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Figure 5-31 shows the first hours of simulation, as it can be seen the Simulink and HiL 

simulations deliver close results. In the first instant the supply air temperatures are different 

because the integrator of the Simulink controller starts from zero while the integrator of the 

hardware controller cannot be reset to zero. The controlled temperature reaches the set point 

values almost in the same moment within the HiL and Simulink simulation and the supply air 

temperature has almost no deviation. It can be noticed that in the HiL simulation the de-icing 

interval are slightly longer than in the Simulink simulation this is due to the temperature-time 

control of the de-icing that is actually implemented while in the Simulink model only a time 

control is implemented. 

 
Figure 5-31: Zoom of the first hours of Figure 5-30 
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Figure 5-32 shows the comparison of the de-icing period around the hour 22. As it can be 

seen, the controlled temperature trend and the supply air trend over the de-icing period are 

similar.  

 
Figure 5-32: Zoom of the de-icing period of Figure 5-30 

Figure 5-33 shows the period around the hour 59 where the heat pump does on/off cycles 

after the de-icing. Here can be noticed that both the hardware controller (used within the HiL 

simulation) and the Simulink controller model start the on/off cycles period almost in the same 

time.  

 
Figure 5-33: Zoom of last hours of Figure 5-30 
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From these results, it is possible to say that the heat pump controller model 

with quite high accuracy the real heat pump behaviour with 

this scenario. 

 5.10.3
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Figure 5-38 shows the comparison of the thermal power delivered by the heat pump and of 

the system frequency. Within the scenario 5, the heat pump delivers higher power. With higher 

humidity content, more condensate is created within the heat exchanger so the exhaust air 

has higher temperature. This means that the evaporator has higher power available and that 

the condenser is able to deliver higher thermal power to the supply airflow. In the previous 

scenarios, the extract air had a relative humidity around 20-25%, so even with low 

temperature it produces only a few amount of condensate. 

In the period from the hour 16 to the hour 34, after the de-icing the system starts with the 

frequency of 150 Hz in the scenario 4 and 5. Within the scenario 5, the heat pump is able to 

deliver more power, so it quickly reaches the set point temperature than the controller lowers 

the set point frequency, while within the scenario 4 the system is kept to 150 Hz during the 

whole period. This effect cannot be simulated with the Simulink controller and heat pump 

model because the implemented lookup tables do not contain information regarding the heat 

pump behaviour with different level of relative humidity in the extract air. This aspect can be 

examined more into detail in further work. 

 

 
Figure 5-38: Comparison of the thermal power delivered by the heat pump and of the frequency 

between the scenarios 4 and 5. 
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Figure 5-39 shows the electric power demand of the heat pump for the scenarios 4 and 5. As 

it can be observed, the electric demand follows the frequency trend, so the power required by 

the heat pump with dry extract air (scenario 4) has different trend compared to the power 

required within the scenario 5. 

The implemented Simulink model cannot predict the electric power required by the heat pump 

when the extract air has high level of relative humidity because the lookup table involved in 

the model does not contain enough information about the heat pump behaviour in these 

conditions. 

 

 
Figure 5-39: Electric power required by the heat pump 

The energy demands of the heat pump for the scenarios 4 and 5, over the considered period 

of time, are listed in tables Table 5-12. 

 

Table 5-12: Energy demand of the heat pump over the considered period for the scenario 4 and 5 
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Scenario 4 7.65 

Scenario 5 7.46 
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6 CONCLUSIONS AND OUTLOOK 

The system controls parameters are determined by studying the open loop dynamic system 

response to an input disturbance. The Chien, Hrones and Reswick formulations are used in 

the determination of the proportional integrative control parameter. These formulations are 

defined for fast responding systems while the building is slow responding, so the PI parameter 

delivered from the Chien, Hrones and Reswick formulations are modified in order to ensure a 

good control. The hallway temperature is the controlled variable for the controller. Further 

investigations can be done in order to examine the case in which the extract air temperature is 

the controlled variable or the case in which the controlled variable is a floating temperature. 

 

An optimization of the minimum runtime is carried out by running yearly simulations with 

different minimum runtimes and by comparing the number of on/off cycles, the number of 

under and over-heating hours, the ¹�\#ùþù and the ¹�\#�ë. 

 

The heating system and controller models are developed in this work. Both are based on the 

lookup tables of the studied system performances. By changing the data of the involved 

system with other data, it is possible to simulate other systems with the same model. From the 

comparison between the HiL and Simulink simulation the controller and heating system model 

are validated.  

 

The performances of the heat pump with different ambient temperatures and fixed room 

temperature are determined by means of measurement within the PASSYS test cell and used 

in the lookup tables involved in the Simulink model. Other measurement can be done in order 

to have a more detailed performances map that involves also different extract air temperatures 

and humidity levels. Anyway, the ice formation on the evaporator cannot be predicted. The 

determination of the performances map is time consuming. In order to reduce the time 

required by this phase, automatic algorithms can be developed. With dry extract air, the 

accuracy of the results is not strictly dependent on the considered number of measured points. 

 

The simple building model is implemented within this work and then compared with an already 

calibrated and validated complex model. The simple model is low time consuming and for the 

whole flat delivers energy demand with low deviations with respect to the complex building 

model results. Therefore, it can be used in order to estimate the results before to use the 

complex model. However, the simple model cannot be used when the air temperature 

fluctuations within the zones are studied. The simple model temperatures, change slowly 

because its calculation involves the whole zone capacity while the convective node 

temperature of the complex model responds quickly to the convective power balance 
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variations. For this reason, the complex model is used in the HiL simulations where the 

convective temperatures variations are essential in order to test the controller behaviour.  

 

Hardware controller problems have been detected thanks to the HiL simulations. In the first 

scenario the limits of the conditional integration anti-windup are highlighted. In the fourth 

scenario, the error on the supply air temperature is reduced. This error is caused by the 

constant air volume flow implemented in the building model and the non-constant volume flow 

that actually occurs. Further model improvement can be done in order to ensure a variables 

volume flow. 

 

The deviation of the test room and coldbox temperatures are studied and from the power 

balances can be seen that this deviations are not relevant with respect to the system power. 

The accuracy of the coldbox and test room temperatures is important in order to assure the 

accuracy of the HiL simulations. 

 

In the last scenario, the heat pump behaviour with different air humidity level of the extract air 

is analysed. The condensation occurs inside the heat exchanger with high humidity level of 

the extract air. In this case, the temperature difference of the extract air over the heat 

exchanger is reduced and a higher power is available in the exhaust airflow for the heat pump 

evaporator. After the de-icing, the heat pump power is higher than in the cases without 

condensation. HiL can be used to study systems with high nonlinearities, like the ice formation 

on the evaporator. 
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APPENDIX 1: COMPARISON OF SIMPLE AND 

COMPLEX BUILDING MODEL  

APPENDIX 1.1: INTRODUCTION 

Within this work, both complex (chapter 2.3) and simple (chapter 2.2) building models are 

used. The complex model is based on the CARNOT toolbox and has been developed by 

(Siegele, 2013) and then calibrated and validated by means of comparation with measured 

data for the existing building (Leonardi, 2016). A simplified model has been developed within 

this work. A comparison between the yearly results of the simple and complex building models 

is done in order to test the accuracy of the simple model. This comparison is carried out by 

considering the same boundary conditions, building properties and heating system in both 

models. The heating system used in the comparison is based on ideal radiators. In the 

following section the building energy balances are analysed.  

APPENDIX 1.2: HEATING DEMAND 

Figure A1-1 shows the monthly heating demand differences for each zone for each month. 

These values are calculated for each zone i and for each month j, by doing the differences 

between the monthly energy demand of the complex and the simple model as it is shown in 

the equation (A1.1).  

 $/,� = $/,����ëÕ� − $/,�ùú�ëÕ� (A1.1) 
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Figure A1-1: Monthly heating demand differences for each zone 

The yearly differences for each zone and the total yearly difference for the whole flat are 

shown in Table A1-1. The zone coupling is probably not perfect in the simple model due to the 

required simplifications, but the yearly balance for the whole flat delivers good results. The 

deviation of the simple model is less than 3% with respect to the yearly energy demand of the 

complex model �14.0 CkWh
m2 aD�. 

 

Table A1-1: Yearly energy demand differences 

 

Yearly heating 

demand 

Complex model 

Yearly heating 

demand 

simple model 

Yearly heating 

demand 

differences 

Zone 1 CkWh

m2 A
D 9.42 6.69 2.73 

Zone 2 CkWh

m2 a
D 7.64 8.11 -0.47 

Zone 3 CkWh

m2 a
D 13.0 14.6 -1.65 

Zone 4 CkWh

m2 a
D 25.5 25.9 -0.44 

Zone 5 CkWh

m2 a
D 15.1 15.9 -0.86 

Zone 6 CkWh

m2 a
D 31.4 32.4 -1,.00 

Total CkWh

m2 a
D 14.0 14.5 -0.42 

 

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec
-0.5

0

0.5

1
Heating demand differences

Z1 Z2 Z3 Z4 Z5 Z6
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Table A1-2 shows the monthly heating demands for the whole flat. As it can be observed, the 

differences for the whole flat are small. In April, May and October, the relative deviations are 

high but the absolute values are small. 

The simple model is useful because it takes few minutes to run a yearly simulation, so it can 

be used in order to estimate the results before to runtime-consuming simulation with a 

complex model. 

 

Table A1-2: Monthly balances over the whole flat 

 

Monthly heating 

demand 

complexCkWh

m2 a
D 

Monthly heating 

demand 

simpleCkWh

m2 a
D 

Monthly heating 

demand 

differences CkWh

m2 a
D 

% Deviation 

Jan 3.79 3.88 -0.0862 2.27 
Feb 2.93 2.94 -0.0122 0.416 
Mar 1.68 1.64 +0.0391 2.33 
Apr 0.117 0.153 -0.0359 30 
May 0.0184 0.0217 -0.0033 17.93 
Jun 0 0 0  
July 0 0 0  
Aug 0 0 0  
Sept 0 0 0  
Oct 0.118 0.206 -0.0876 74.3 
Nov 1.97 2.07 -0.101 5.13 
Dec 3.40 3.54 -0.135 3.97 
 

APPENDIX 1.3: STRUCTURES MODEL 

The complex model has been modified within this work. In particular, the structure block has 

been changed with a simplified structure with a fixed number of layers. The number of layers 

and the subdivision of the wall layers are important factors in matter of accuracy. In this 

section, the temperature profiles inside the wall with different wall subdivisions are analysed 

and compared. The wall properties are reported in Table A1-3. The layers 1 and 7 are the 

external and internal plaster, the layer 6 is the brick layer and the layers 2, 3, 4 and 5 are 

insulation layers. 
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Table A1-4 shows the capacities and resistances values for each case. Since the case 4 

involves the higher number of layers, it is the most accurate between the considered cases. 

The accuracy of the results can be increased by considering more wall layers.  

 

Table A1-4: Capacities and resistance values for each case 

Cases 
Capacities 

C J

m2 K
D 

Resistances 

Cm2 K
W

D 
Layers position 

[m] 

1 

�1 = 34348 
�2 = 191850 
�3 = 157500 

-1 = 9.135 
-2 = 0.353 

d1=0.47 

d2=0.25 

2 

�1 = 32337 
�2 = 191850 
�3 = 159510 

-1 = 8.251 
-2 = 1.237 

d1=0.423 

d2=0.297 

3 

�1 = 18393 
�2 = 191850 
�3 = 173460 

-1 = 3.499 
-2 = 5.989 

d1=0.185 

d2=0.5350 

4 

�1 = 13125 
�2 = 23660 
�3 = 18823 
�4 = 9188 
�5 = 2400 

�6 = 152700 
�7 = 157500 

�8 = 6300 

-1 = 0.438 

-2 = 6.122 
-3 = 0.0750 

-4 = 1.50 
-5 = 1.00 

-6 = 0.343 
-7 = 0.01 

d1=0.035 

d2=0.30 

d3=0.015 

d4=0.060 

d5=0.060 

d6=0.240 

d7=0.010 
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The different wall discretization are tested by using an external temperature with a step and a 

constant internal temperature. These boundary conditions are shown in Figure A1-3. The wall 

model is used in the two star model so two internal temperature are present (ϑradiative and 

ϑconvective). 

 
Figure A1-3: Boundary conditions 

Figure A1-4 shows the temperature profiles in the wall for each case before the step. The wall 

is at the steady state so each model has the same heat losses. In fact, the internal and 

external surface temperatures are the same for each model, but the temperature profiles are 

different. As it can be seen in Figure A1-4 the case 1 has the best agreement with the case 4. 

The wall layers are represented by the magenta dotted lines. 

 
Figure A1-4: Temperature profiles in the wall before the step 
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Figure A1-5 shows the temperature profile for each case after 5.83 hours from the step. Since 

the wall is not in the steady state, the heat losses are not the same in each case in fact the 

external surface temperatures are not equal. 

 

 
Figure A1-5: Temperature profiles in the wall after 5.83 hours from the step 

The temperature profiles after 60 days from the step are shown in Figure A1-6, where new 

steady state conditions are reached. 

 

 
Figure A1-6: Temperature profiles after 60 days from the step (new steady state is reached) 

The case 1 has the better agreement with the more accurate case 4 in each time step. 

Figure A1-7 shows the different dynamic behaviour of the four cases. As for the temperature 
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be seen in Figure A1-7. The dynamic behaviour depends on where the capacities are placed 

and which values are given to the resistances. In the case 1, all the insulation is considered in 

the resistance R1 while in the case 2 and 3 a part of insulation is included in the resistance 

R2. For this reason, the cases 2 and 3 have slower response with respect to the cases 1 and 

4. 

 
Figure A1-7: Heat losses (power and energy) through the studied wall 

After this analysis, it is possible to conclude that the discretization used in the case 1 is the 

most suitable for the dynamic simulation. 
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APPENDIX 2: ERROR ANALYSIS OF THE HIL 

SIMULATIONS 

APPENDIX 2.1: SCENARIO 2 

APPENDIX 2.1.1: Test Room Temperature error 

Figure A2-1 shows the comparison between the test room temperature (blue) and the test 

room set point temperature (magenta) that corresponds to the extract air temperature, 

measured in the scenario 1. As it can be observed, the test room temperature has some 

oscillations when the backup heater or the heat pump change quickly their power. This can 

happen when the heat pump and the backup heater are doing on/off cycles or when the heat 

pump in the de-icing period. 

 
Figure A2-1: Comparison of the measured and set point temperature of the test room (scenario 2) 

 

 

 

Table A2-1 shows the maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 

calculated according to the equations (5.7), (5.8) and (5.9). The mean value of $��/¥¥,z0 and 

$�roz �¬/qz,z0 are calculated by considering the absolute values. 
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Table A2-1: Maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 for the balance over the test 
room (scenario 2) 

 $��/¥¥,z0 	W� $�roz �¬/qz,z0 	W� 
Max 10.74 865.91 

Mean 1.49 310.43 

Min -15.48 -136.17 

 

The energy can be obtained by integration of the powers over the considered period, as it is 

shown in the equations (5.10), (5.11) and (5.12), and these values are listed in Table A2-2. 

 

Table A2-2: Energy values of the balance over the test room (scenario 2) 

 $z0 	Wh� 
$roz �¬/qz,z0 21381.1 

$to.,z0 21380.9 

$�/¥¥,z0 0.20 

 

The balance already explained in section 5.5.1 is now applied to the most critical point around 

the hour 12.5. Figure A2-2 shows the zoom of the Figure A2-1 around the hour 12.5.  

 
Figure A2-2: Zoom of Figure 5-15 

With the equations (5.7), (5.8) and (5.9) the power differences are calculated and the results 

are shown in the Table A2-3. The mean value of $��/¥¥,z0 and $�roz �¬/qz,z0 are calculated by 

considering the absolute values. 
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Table A2-3: Maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 for a section of period of 
the scenario 2 

 $��/¥¥,z0 	W� $�roz �¬/qz,z0 	W� 
Max 10.73 720.16 

Mean 4.49 341.00 

Min -12.48 -86.50 

 

The energy values can be obtained by integration of the powers, as shown in the equations 

(5.10), (5.11) and (5.12), and these values are listed in Table A2-4. 

 

Table A2-4: Energy values of the balance over the test room for a section of period of the scenario 2 

 $z0 	Wh� 
$roz �¬/qz,z0 443.79 

$to.r,z0 444.10 

$�/¥¥,z0 -0.31 

 

From these results, it is possible to conclude that the temperature deviations, occur in the test 

room are not significant in the considered case. 
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APPENDIX 2.1.2: Coldbox Temperature Error 

Figure A2-3 shows the measured and the set point coldbox temperatures. 

 
Figure A2-3: Comparison of the measured and set point temperature of the Coldbox for the scenario 2 

Table A2-5 shows the maximum, mean and minimum values of $��/¥¥,�u and $�roz �¬/qz,�u. The 

mean value of $��/¥¥,�u is calculated by considering the absolute values. 

 

Table A2-5: Maximum, mean and minimum value of $��/¥¥,�u and $�roz �¬/qz,�u for the balance over the 
coldbox (scenario 2) 

 $��/¥¥,�u  	W� $�roz �¬/qz,�u  	W� 
Max 0.962 1159.7 

Mean 0.122 473.4 

Min -0.980 0 

 

The energy values can be obtained by integration of the powers, as it is shown in the 

equations (5.16), (5.17) and (5.18), and these values are listed in Table A2-6. 

 

Table A2-6: Energy values of the balance over the coldbox (scenario 2) 

 $�/¥¥,�u  	Wh� 
$roz �¬/qz,�u 33479.4 

$to.r,�u 33479.7 

$�/¥¥,�u -0.30 

 

 /
 [
°C

]



141 

From these results, it is possible to conclude that the coldbox temperatures deviations are not 

significant in the considered case. 

APPENDIX 2.1.3: Total Error 

$�roz �¬/qz, $�to.r and $��/¥¥ are calculated by means of the equations (5.19), (5.20) and (5.21). 

The maximum, minimum and mean value of $��/¥¥ and of $�roz �¬/qz are shown in Table A2-7. 

The mean value of $��/¥¥ is calculated by considering the absolute values. 

 

Table A2-7: Maximum, mean and minimum value of $��/¥¥ and $�roz �¬/qz for the scenario 2 

 $��/¥¥  [W] $�roz �¬/qz  [W] 
Max 15.49 328.51 

Mean 1.50 171.95 

Min -10.99 58.48 

 

The energy values can be obtained by integration of the powers, as it is shown in the 

equations (5.22), (5.23) and (5.24) and these values are listed in Table A2-8. 

 

Table A2-8: Energy values calculated from the whole balance for the scenario 2 

 $�/¥¥  [Wh] 
$roz �¬/qz 12110.5 

$to.r 12111.2 

$�/¥¥ -0.70 

 

The overall error calculated during the three day of the HiL simulations is minor compared with 

the involved powers, so the set point temperatures are reproduced with high accuracy inside 

the coldbox and the test room. 

APPENDIX 2.1.4: Power Deviation 

The comparison between the real power produced by the heating system in the PASSYS test 

cell and the power used in the Simulink model during the HiL simulation is shown in Figure 

A2-4. The powers are calculated with the equations (5.25) and (5.26). 
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The mean power values and the relative deviation are reported in Table A2-9. 

 

Table A2-9: HiL and real power comparison for the scenario 2 

 $�  [W] 

HiL 507.2 (7.4%) 

Real 472.4 

 

 
Figure A2-4: HiL simulation and real heating system powers 

 

APPENDIX 2.2: SCENARIO 4 

APPENDIX 2.1.1: Test Room Temperature error 

Figure A2-5 shows the comparison between the test room temperature (blue) and the test 

room set point temperature (magenta) that corresponds to the extract air temperature, 

measured in the scenario 4.  
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Figure A2-5: Comparison of the measured and set point temperature of the test room (scenario 4) 

Table A2-10 shows the maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 

calculated according to the equations (5.7), (5.8) and (5.9). The mean value of $��/¥¥,z0 and 

$�roz �¬/qz,z0 are calculated by considering the absolute values. 

 

Table A2-10: Maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 for the balance over the 
test room (scenario 4) 

 $��/¥¥,z0  	W� $�roz �¬/qz,z0 	W� 
Max 12.31 894.60 

Mean 2.0911 332.4590 

Min -17.75 -126.39 

 

The energy can be obtained by integration of the powers over the considered period, as it is 

shown in the equations (5.10), (5.11) and (5.12), and these values are listed in Table A2-11. 

 

Table A2-11: Energy values of the balance over the test room (scenario 4) 

 $z0 	Wh� 
$roz �¬/qz,z0 21407.6 

$to.,z0 21408.4 

$�/¥¥,z0 -0.80 

 

 

 



144 

The balance already explained in section 5.5.1 is now applied to the most critical point around 

the hour 12.5. Figure A2-6 shows the zoom of Figure A2-5 around the hour 12.5.  

 
Figure A2-6: Zoom of Figure A2-5 

 

With the equations (5.7), (5.8) and (5.9) the power differences are calculated and the results 

are listed in Table A2-12: Maximum, mean and minimum value of $��/¥¥,z0. The mean value of 

$��/¥¥,z0 and $�roz �¬/qz,z0 are calculated by considering the absolute values. 

 

Table A2-12: Maximum, mean and minimum value of $��/¥¥,z0 for a section of period of the scenario 4 

 $��/¥¥,z0 	W� $�roz �¬/qz,z0  	W� 
Max 12.30 369.70 

Mean 4.40 322.11 

Min -12.24 279.70 

 

The energy values can be obtained by integration of the powers, as shown in the equations 

(5.10), (5.11) and (5.12), and these values are listed in Table A2-13. 

 

Table A2-13: Energy of the balance over the test room for a section of period of the scenario 4 

 $z0 	Wh� 
$roz �¬/qz,z0 424.07 

$to.r,z0 423.82 

$�/¥¥,z0 0.25 
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From these results, it is possible to conclude that the temperatures deviations which occur in 

the test room are not significant in the considered case. 

 

APPENDIX 2.2.2: Coldbox Temperature Error 

Figure A2-7 shows the measured and the set point coldbox temperatures. 

 
Figure A2-7: Comparison of the measured and set point temperature of the Coldbox for the scenario 4 

 

Table A2-14 shows the maximum, mean and minimum values of $��/¥¥,�u and $�roz �¬/qz,�u. The 

mean value of $��/¥¥,�u is calculated by considering the absolute values. 

 

Table A2-14: Maximum, mean and minimum value of $��/¥¥,�u and $�roz �¬/qz,�u for the balance over the 
coldbox (scenario 4) 

 $��/¥¥,�u 	W� $�roz �¬/qz,�u 	W� 
Max 0.939 1159.9 

Mean 0.108 506.4 

Min -0.8207 0 
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The energy values can be obtained by integration of the powers, as it is shown in the 

equations (5.16), (5.17) and (5.18), and these values are listed in Table A2-15. 

 

Table A2-15: Energy values of the balance over the coldbox (scenario 4) 

 $�/¥¥,�u  	Wh� 
$roz �¬/qz,�u 33240.5 

$to.r,�u 33239.6 

$�/¥¥,�u 0.90 

 

As for the other scenarios it is possible to conclude that the coldbox temperatures deviations 

are not significant in the considered case. 

 

APPENDIX 2.2.3: Total Error 

$�roz �¬/qz, $�to.r and $��/¥¥ are calculated by means of the equations (5.19), (5.20) and (5.21). 

The maximum, minimum and mean value of $��/¥¥ and of $�roz �¬/qz are shown in Table A2-16. 

 

Table A2-16: Maximum, mean and minimum value of $��/¥¥ and $�roz �¬/qz the scenario 4 

 $��/¥¥  [W] $�roz �¬/qz  [W] 
Max 17.74 358.62 

Mean 2.13 180.23 

Min -12.43 59.09 

 

The energy values can be obtained by integration of the powers, as it is shown in the 

equations (5.22), (5.23) and (5.24) and these values are listed Table A2-17. 

 

Table A2-17: Energy values calculated from the whole balance for the scenario 4 

 $�/¥¥,�u  [Wh] 
$roz �¬/qz 11830.0 

$to.r 11828.2 

$�/¥¥ 1.8 

 

The overall error calculated during the three day of the HiL simulation is minor compared to 

the involved powers, so the set point temperatures are reproduced with high accuracy inside 

the cold box and the test room. 
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APPENDIX 2.3: SCENARIO 5 

APPENDIX 2.3.1: Test Room Temperature error 

Figure A2-8 shows the comparison between the test room temperature (blue) and the test 

room set point temperature (magenta) that corresponds to the extract air temperature, 

measured in the scenario 5.  

 
Figure A2-8: Comparison of the measured and set point temperature of the test room (scenario 5) 

 

Table A2-18 shows the maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 

calculated according to the equations (5.7), (5.8) and (5.9). The mean value of $��/¥¥,z0 and 

$�roz �¬/qz,z0 are calculated by considering the absolute values. 

 

Table A2-18: Maximum, mean and minimum value of $��/¥¥,z0 and $�roz �¬/qz,z0 for the balance over the 
test room (scenario 5) 

 $��/¥¥,z0 	W� $�roz �¬/qz,z0 	W� 
Max 12.72 1029.70 

Mean 2.51 405.15 

Min -15.02 -174.84 
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The energy can be obtained by integration of the powers over the considered period, as it is 

shown in the equations (5.10), (5.11) and (5.12), and these values are listed in Table A2-19. 

 

Table A2-19: Energy values of the balance over the test room (scenario 5) 

 $z0 	Wh� 
$roz �¬/qz,z0 17131.6 

$to.,z0 17128.8 

$�/¥¥,z0 2.8 

 

The balance already explained in section 5.5.1 is now applied to the most critical point around 

the hour 12.5. Figure A2-9 shows the zoom of the Figure A2-8 around the hour 12.5.  

 
Figure A2-9: Zoom of Figure A2-5 

 

With the equations (5.7), (5.8) and (5.9) the power differences are calculated and the results 

are shown in Table A2-20. The mean values of $��/¥¥,z0 and $�roz �¬/qz,z0 are calculated by 

considering the absolute values. 

 

Table A2-20: Maximum, mean and minimum value of $��/¥¥,z0 for a section of period of the scenario 5 

 $��/¥¥,z0 	W� $�roz �¬/qz,z0  	W� 
Max 11.06 692.83 

Mean 4.37 399.84 

Min -12.71 -98.22 
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The energy values can be obtained by integration of the powers, as shown in the equations 

(5.10), (5.11) and (5.12), and these values are listed in Table A2-21. 

 

Table A2-21: Energy values of the balance over the test room for a section of period of the scenario 5 

 $z0 	Wh� 
$roz �¬/qz,z0 522.9 

$to.r,z0 525.0 

$�/¥¥,z0 -2.1 

 

From these results, it is possible to conclude that the temperatures deviations which take 

places in the test room are not significant in the considered case. 

 

APPENDIX 2.3.2: Coldbox Temperature Error 

Figure A2-10 shows the measured and the set point coldbox temperatures. 

 
Figure A2-10: Measured and set point coldbox temperatures for the scenario 5 

 

 

 

 

 

 

 

 

0 5 10 15 20 25 30 35 40

time / [h]

-6

-5

-4

-3

-2

-1

0

1

 /
 [
°C

]

Coldbox

Set point



150 

Table A2-22 shows the maximum, mean and minimum values of $��/¥¥,�u and $�roz �¬/qz,�u. The 

mean value of $��/¥¥,�u is calculated by considering the absolute values. 

 

Table A2-22: Maximum, mean and minimum value of $��/¥¥,�u and $�roz �¬/qz,�u for the balance over the 
coldbox (scenario 5) 

 $��/¥¥,�u  	W� $�roz �¬/qz,�u  	W� 
Max 0.6764 1277.4 

Mean 0.0795 606.46 

Min -0.7388 0 

 

The energy values can be obtained by integration of the powers, as it is shown in the 

equations (5.16), (5.17) and (5.18), and these values are listed in Table A2-23. 

 

Table A2-23: Energy values of the balance over the coldbox (scenario 5) 

 $�/¥¥,�u  	Wh� 
$roz �¬/qz,�u 25968.3 

$to.r,�u 25968.7 

$�/¥¥,�u 0.4 

 

As for the other scenarios, it is possible to conclude that the coldbox temperatures deviations 

are not significant in the considered case. 

 

APPENDIX 2.3.3: Total Error 

$�roz �¬/qz, $�to.r and $��/¥¥ are calculated by means of the equations (5.19), (5.20) and (5.21). 

The maximum, minimum and mean value of $��/¥¥ and of $�roz �¬/qz are shown in Table A2-24. 

 

Table A2-24: Maximum, mean and minimum value of $��/¥¥ and $�roz �¬/qz  for the scenario 5 

 $��/¥¥  	W� $�roz �¬/qz  	W� 
Max 15.0167 375.5919 

Mean 2.5100 206.3801 

Min -12.7084 97.6939 
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The energy values can be obtained by integration of the powers, as it is shown in the 

equations (5.22), (5.23) and (5.24) and these values are listed Table A2-25. 

 

Table A2-25: Energy values calculated from the whole balance for the scenario 5 

 $�/¥¥,�u  	Wh� 
$roz �¬/qz 8836.7 

$to.r 8839.9 

$�/¥¥ -3.2 

 

The overall error calculated during the three days of the HiL simulation is minor compared with 

the involved powers, so the set point temperatures are reproduced with high accuracy inside 

the coldbox and the test room. 
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