Publications
27.
Liebl, S; Gallmetzer, J.M.; Werner, D.; Apaydin, D.H.; Hofer, T.S; Portenkirchner, E. Perylenetetracarboxylic Diimide Composite Electrodes as Organic Cathode Materials for Rechargeable Sodium-Ion Batteries: A Joint Experimental and Theoretical Study. In: ACS Omega 2024 9, 6, 6642–6657. (DOI: 10.1021/acsomega.3c07621)
26.
Thurner, C.W.; Haug, L.; Winkler, D.; Griesser, C.; Leitner, M.; Moser, T.; Werner, D.; Thaler, M.; Scheibel, L.A.; Götsch, T.; Carbonio, E.; Kunze-Liebhäuser, J.; Portenkirchner, E.; Penner, S.; Klötzer, B., Electrocatalytic Enhancement of CO Methanation at the Metal–Electrolyte Interface Studied Using In Situ X-ray Photoelectron Spectroscopy. In: C: Journal of Carbon Research 2023 9, 106. (DOI: 10.3390/c9040106)
25.
Stüwe, T.; Werner, D.; Stock, D.; Thurner, C. W.; Thöny, A.; Grießer, C.; Lörting, T.; Portenkirchner, E., Enhanced Electrochemical Performance of NTP/C with Rutile TiO2 Coating, as Anode Material for Sodium-Ion Batteries. In: Batteries & Supercaps. 2023, 6 10, 10, 065104. (DOI: 10.1002/batt.202300228)
24.
Haug, L.; Griesser, C.; Thurner, C.W.; Winkler, D.; Moser, T.; Thaler, M.; Bartl, P.; Rainer, M.; Portenkirchner, E.; Schumacher, D.; Dierschke, K.; Köpfle, N.; Penner, S.; Beyer, M.K.; Lörting, T.; Kunze-Liebhäuser, J.; Klötzer, B., A laboratory-based multifunctional near ambient pressure X-ray photoelectron spectroscopy system for electrochemical, catalytic, and cryogenic studies. In: Review of Scientific Instruments 2023 94, 065104. (DOI: 10.1063/5.0151755)
23.
Griesser, C.; Winkler, D.; Moser, T.; Haug, L.; Thaler, M.; Portenkirchner, E.; Klötzer, B.; Diaz-Coello, S.; Pastor, E.; Kunze-Liebhäuser, J., Lab-based electrochemical X-ray photoelectron spectroscopy for in-situ probing of redox processes at the electrified solid/liquid interface. In: Electrochemical Science Advances 2023, e2300007. (DOI: 10.1002/elsa.202300007)
22.
Portenkirchner, E., Substantial Na-Ion Storage at High Current Rates: Redox-Pseudocapacitance through Sodium Oxide Formation. In: Nanomaterials. 2022, 12 23, 4264.(DOI: 10.3390/nano12234264)
21.
Winkler, D.; Stüwe, T.; Werner, D.; Griesser, C.; Thurner, C. W.; Stock, D.; Kunze-Liebhäuser, J.; Portenkirchner, E., What is limiting the potential window in aqueous sodium-ion batteries? Online study of the hydrogen-, oxygen- and CO2-evolution reactions at NaTi2(PO4)3 and Na0.44MnO2 electrodes. In: Electrochemical Science Advances 2022, e2200012. (DOI: 10.1002/elsa.202200012)
# | Year | Title |
---|---|---|
21. | 2022 | D. Winkler, T. Stüwe, D. Werner, C. Griesser, C. W. Thurner, D. Stock, J. Kunze-Liebhäuser, E. Portenkirchner. What is limiting the potential window in aqueous sodium-ion batteries? Online study of the hydrogen-, oxygen- and CO2-evolution reactions at NaTi2(PO4)3 and Na0.44MnO2 electrodes. Electrochemical Science Advances. (2022) (DOI: 10.1002/elsa.202200012) |
20. | 2022 | L. Szabados, D. Winkler, D. Stock, A. Thöny, T. Lörting, J. Kunze-Liebhäuser, E. Portenkirchner. Sodium-Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium-Ion and Sodium–Oxygen Batteries. Advanced Energy and Sustainability Research. (2022) (DOI:10.1002/aesr.202200104) |
19. | 2022 | E. Portenkirchner. Substantial Na-Ion Storage at High Current Rates: Redox-Pseudocapacitance through Sodium Oxide Formation. Nanomaterials. (2022) (DOI: 10.3390/nano12234264) |
18. | 2022 | D. Werner, A. Thoeny, D. Winkler, D. Apaydin, T. Loerting, E. Portenkirchner. Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbon-Based Electrodes with Potential Application for Organic Na-Ion Batteries. Israel Journal of Chemistry. (2022) (DOI: 10.1002/ijch.202100082) |
17. | 2022 | C. Schimanofsky, D. Wielend, S. Kröll, S. Lerch, D. Werner, J. M. Gallmetzer, F. Mayr, H. Neugebauer, Mihai Irimia-Vladu, E. Portenkirchner, T. S. Hofer, N. S. Sariciftci. Direct Electrochemical CO2 Capture Using Substituted Anthraquinones in Homogeneous Solutions: A Joint Experimental and Theoretical Study. J. Phys. Chem. C. (2022) (DOI: 10.1021/acs.jpcc.2c03129) |
16. | 2022 | J. M. Gallmetzer, S. Kröll, D. Werner, D. Wielend, M. Irimia-Vladu, E. Portenkirchner, N. Serdar Sariciftci and T. S. Hofer. Anthraquinone and its derivatives as sustainable materials for electrochemical applications – a joint experimental and theoretical investigation of the redox potential in solution. Physical Chemistry Chemical Physics. (2022) (DOI: 10.1039/D2CP01717B) |
15. | 2021 | D. Werner, A. Thöny, D. Winkler, D. H. Apaydin, T. Loerting, E. Portenkirchner. Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbon-Based Electrodes with Potential Application for Organic Na-Ion Batteries. Israel Journal of Chemistry. (2021) (DOI: 10.1002/ijch.202100082) |
14. | 2021 | D. Werner, D. H. Apaydin, D. Wielend, K. Geistlinger, W. D. Saputri, U. J. Griesser, E. Drazevic, T. S. Hofer, E. Portenkirchner. Analysis of the ordering effects in antraquinone thin films and its potential application for sodium ion batteries. Physical Chemistry C. (2021) (10.1021/acs.jpcc.0c10778) |
13. | 2021 | E. Portenkirchner, S. Rommel, L. Szabados, C. Griesser, D. Werner, D. Stock, J. Kunze-Liebhäuser. Sodiation mechanism via reversible surface film formation on metal oxides for sodium-ion batteries. Nano Select. (2021) (DOI: 10.1002/nano.202000285) |
12. | 2020 | S. Liebl, D. Werner, D. H. Apaydin, D. Wielend, K. Geistlinger, E. Portenkirchner. Perylentetracarboxylicdiimide (PTCDI) as Diffusion-Less Electrode Material for High Rate Organic Na-Ion Batteries. Chem.-A Eur. J. (2020) (DOI: 10.1002/chem.202003624) |
11. | 2020 | D. Werner, C. Griesser, D. Stock, U. J. Griesser, J. Kunze-Liebhäuser, E. Portenkirchner. Substantially Improved Na Ion Storage Capability by Nanostructured Organic-Inorganic Polyaniline-TiO2 Composite Electrodes. ACS Appl. Energy Mater. (2020) (DOI: 10.1021/acsaem.9b02541) |
10. | 2018 | D. Apaydin, H. Seelajaroen, O. Pengsakul, P. Thamyongkit, N. S. Sariciftci, J. Kunze-Liebhäuser, E. Portenkirchner. Photoelectrocatalytic synthesis of Hydrogen Peroxide by Molecular Copper-Porphyrin Supported on Titanium Dioxide Nanotubes. ChemCatChem (2018) (DOI: 10.1002/cctc.201702055) |
9. | 2018 | E. Portenkirchner, D. Werner, S. Liebl, D. Stock, A. Auer, J. Kunze-Liebhäuser. Self-Improving Na Ion Storage in Oxygen Deficient, Carbon Coated Self-Organized TiO2 Nanotubes. ACS Appl. Energy Mater. (2018) (DOI: 10.1021/acsaem.8b01712) |
8. | 2018 | A. Auer, D. Steiner, E. Portenkirchner, J. Kunze Liebhäuser, Nonequilibrium Phase Transitions in Amorphous and Anatase TiO2 Nanotubes. ACS Appl. Energy Mater. (2018) (DOI: 10.1021/acsaem.7b00319). |
7. | 2018 | D. Steiner, A. Auer, E. Portenkirchner, J. Kunze-Liebhäuser. The role of surface films during lithiation of amorphous and anatase TiO2 Nanotubes. J. Electroanal. Chem. (2018) (DOI: 10.1016/j.jelechem.2017.11.035). |
6. | 2017 | A. Auer, E. Portenkirchner, T. Götsch, C. Valero-Vidal, S. Penner, J. Kunze-Liebhäuser. Preferentially Oriented TiO2 Nanotubes as Anode Material for Li-Ion Batteries: Insight into Li-Ion Storage and Lithiation Kinetics. ACS Appl. Mater. Interfaces (2017) (DOI: 10.1021/acsami.7b11388). |
5. | 2017 | A. Auer, N.S.W. Jonasson, D.H. Apaydin, A,I. Mardare, G Neri, J. Lichtinger, R. Gernhäuser, Julia Kunze-Liebhäuser, E. Portenkirchner. Optimized Design Principles for Silicon Coated Nanostructured Electrode Materials and its Applicability towards High Capacity Li-Ion Battery Anodes. Energy Technol. (2017) (DOI: 10.1002/ente.201700306). |
4. | 2017 | D. Apaydin, M. Gora, E. Portenkirchner, K. Oppelt, H. Neugebauer, M. Jakešová, E. Głowacki, J. Kunze-Liebhäuser, M. Zagorska, J. Mieczkowski, S.N. Sariciftci. Electrochemical Capture and Release of CO2 in Aqueous Electrolytes Using an Organic Semiconductor Electrode. ACS Appl. Mat. & Interfaces (2017) (DOI: 10.1021/acsami.7b01875). |
3. | 2017 | E. Portenkirchner, G. Neri, J. Lichtinger, J. Brumbarov, C. Ruediger, R. Gernhäuser, J. Kunze-Liebhäuser. Tracking Areal Lithium Densities from Neutron Activation – Quantitative Li Determination in self-organized TiO2 Nanotube Anode Materials for Li-ion Batteries. Phys. Chem. Chem. Phys. (2017) (DOI: 10.1039/c7cp00180k). |
2. | 2015 | J. Brumbarov, J.P. Vivek, S. Leonardi, C. Valero-Vidal, E. Portenkirchner, J. Kunze-Liebhäuser. Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li‑ion intercalation. J. Mater. Chem. A (2015) (DOI:10.1039/C5TA03621F) |
1. | 2015 | I. Brand, C. Rüdiger, K. Hingerl, E. Portenkirchner, J. Kunze-Liebhäuser. Compact Titanium Oxycarbide: A New Substrate for Quantitative Analysis of Molecular Films by Means of Infrared Reflection Absorption Spectroscopy. J. Phys. Chem. C (2015) (DOI: 10.1021/acs.jpcc.5b03570) |