Publications

.

108.

Griesser, C.; Diaz-Coello, S.; Olgiati, M.; Ferraz do Valle, W.; Moser, T.; Auer, A.; Pastor, E.; Valtiner, M.; Kunze-Liebhäuser, J. , Surface Chemistry of WC Powder Electrocatalysts Probed In Situ with NAP-XPS. In: Angewandte Chemie 2025, e202500965.              (DOI: 10.1002/anie.202500965)

107.

Diaz-Coello, S.; Winkler, D.; Moser, T.; Rodriguez, J.L.;  Kunze-Liebhäuser, J.; Garcia, G.; Pastor, E., Highly Active W2C-Based Composites for the HER in Alkaline Solution: the Role of Surface Oxide Species. In: ACS Applied Materials and Interfaces 2024 16, 17, 21877-21884. (DOI: 10.1021/acsami.4c01612)


106.

Winkler, D.; Leitner, M.; Auer, A.; Kunze-Liebhäuser, J., The Relevance of the Interfacial Water Reactivity for Electrochemical CO Reduction on Copper Single Crystals. In: ACS Catalysis 2024 14, 2, 1098-1106. (DOI: 10.1021/acscatal.3c02700)


105.

Shakibi Nia, N.; Griesser, C.; Mairegger, T.; Wernig, E.-M.; Bernardi, J.; Portenkirchner, E.; Kunze-Liebhäuser, J. Titanium Oxycarbide as Platinum-Free Electrocatalyst for Ethanol Oxidation. In: ACS Catalysis 2024 14, XXX, 324-329. (DOI: 10.1021/acscatal.3c04097)


Ni_Cu_Ysz

104.

Thurner, C.W.; Haug, L.; Winkler, D.; Griesser, C.; Leitner, M.; Moser, T.; Werner, D.; Thaler, M.; Scheibel, L.A.; Götsch, T.; Carbonio, E.; Kunze-Liebhäuser, J.; Portenkirchner, E.; Penner, S.; Klötzer, B., Electrocatalytic Enhancement of CO Methanation at the Metal–Electrolyte Interface Studied Using In Situ X-ray Photoelectron Spectroscopy. In: C: Journal of Carbon Research 2023 9, 106. (DOI: 10.3390/c9040106)


Laboratory apparatus

103.

Haug, L.; Griesser, C.; Thurner, C.W.; Winkler, D.; Moser, T.; Thaler, M.; Bartl, P.; Rainer, M.; Portenkirchner, E.; Schumacher, D.; Dierschke, K.; Köpfle, N.; Penner, S.; Beyer, M.K.; Lörting, T.; Kunze-Liebhäuser, J.; Klötzer, B., A laboratory-based multifunctional near ambient pressure X-ray photoelectron spectroscopy system for electrochemical, catalytic, and cryogenic studies. In: Review of Scientific Instruments 2023 94, 065104. (DOI: 10.1063/5.0151755)


Electrolyte effect in organic electrolytes

102.

Mairegger, T.; Li, H.; Griesser, C.; Winkler, D.; Filser, J.; Hörmann, N.G.; Reuter, K.; Kunze-Liebhäuser, J., Electroreduction of CO2 in a Non-aqueous Electrolyte – The Generic Role of Acetonitrile. In: ACS Catalysis 2023 13 (9), S. 5780–5786. (DOI: 10.1021/acscatal.3c00236)


Electrochemical XPS

101.

Griesser, C.; Winkler, D.; Moser, T.; Haug, L.; Thaler, M.; Portenkirchner, E.; Klötzer, B.; Diaz-Coello, S.; Pastor, E.; Kunze-Liebhäuser, J., Lab-based electrochemical X-ray photoelectron spectroscopy for in-situ probing of redox processes at the electrified solid/liquid interface. In: Electrochemical Science Advances 2023, e2300007. (DOI: 10.1002/elsa.202300007)


de-NOx reactions over perovskites

100.

Thurner, C. W.; Drexler, X.; Haug, L.; Winkler, D.; Kunze-Liebhäuser, J.; Bernardi, J.; Klötzer, B.; Penner, S., When copper is not enough: Advantages and drawbacks of using copper in de-NOx reactions over lanthanum manganite perovskite structures. In: Applied Catalysis B: Environmental 2023 331, 122693. (DOI:10.1016/j.apcatb.2023.122693)


Limiting potential window

99.

Winkler, D.; Stüwe, T.; Werner, D.; Griesser, C.; Thurner, C. W.; Stock, D.; Kunze-Liebhäuser, J.; Portenkirchner, E., What is limiting the potential window in aqueous sodium-ion batteries? Online study of the hydrogen-, oxygen- and CO2-evolution reactions at NaTi2(PO4)3 and Na0.44MnO2 electrodes. In: Electrochemical Science Advances 2022, e2200012. (DOI: 10.1002/elsa.202200012)


Sodium-Ion and Sodium-Oxygen Batteries

98.

Szabados, L.; Winkler, D.; Stock, D.; Thöny, A.; Lörting, D.; Kunze-Liebhäuser, J.; Portenkirchner, E., Sodium-Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium-Ion and Sodium–Oxygen Batteries. In: Advanced Energy & Sustainability Research 2022, 3 (12), S. 2200104. (DOI:10.1002/aesr.202200104)


Pervasive presence of oxygen

97.

Hauser, D.; Griesser, C.; Wernig, E.-M.; Götsch, T.; Bernardi, J.; Kunze-Liebhäuser, J.; Penner, S., The pervasive presence of oxygen in ZrC. In: Surfaces and Interfaces 2022 34, S. 102373. (DOI: 10.1016/j.surfin.2022.102373)


Mo2C catalyst

96.

Winkler, D.; Dietrich, V.; Griesser, C.; Shakibi-Nia, N.; Wernig, E.-M.; Tollinger, M.; Kunze-Liebhäuser, J., Formic acid reduction and CO2 activation at Mo2C: The important role of surface oxide. In: Electrochemical Science Advances 2022 2 (3), e2100130. (DOI:10.1002/elsa.202100130)


Substrate Dependent Charge Transfer Kinetics

95.

Werner, D.; Thöny, A.; Winkler, D.; Apaydin, D. H.; Lörting; T.; Portenkirchner, E.,  Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbon-Based Electrodes with Potential Application for Organic Na-Ion Batteries. In: Israel Journal of Chemistry 2022, 62 (5-6), e202100082. (DOI: 10.1002/ijch.202100082)


Copper-Mixed Oxide Interfaces

94.

Thurner, C.W.; Bonmassar, N.; Winkler, D.; Haug, L.; Ploner, K.; Kheyrollahi Nezhad, P. D.; Drexler, X.; Mohammadi, A.; van Aken, P. A.; Kunze-Liebhäuser, J.; Niaei, A.; Bernardi, J.; Klötzer, B.; Penner, S., Who Does the Job? How Copper Can Replace Noble Metals in Sustainable Catalysis by the Formation of Copper–Mixed Oxide Interfaces. In: ACS Catalysis 2022 12 (13), S. 7696-7708. (DOI: 10.1021/acscatal.2c01584)


93.

Auer, A.; Kunze-Liebhäuser, J., Structure–activity relations of Cu-based single-crystal model electrocatalysts. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 2022. (DOI: 10.1016/B978-0-323-85669-0.00006-4)


92.

Auer, A.; Sarabia, F.J.; Griesser, C.; Climent, V.; Feliu, J. M.; Kunze-Liebhäuser, J., Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis. In: Electrochimica Acta 2021 396, S. 139222. (DOI:10.1016/j.electacta.2021.139222)


Interfacial Water Structure

91.

Auer, A.; Sarabia, F.J.; Winkler, D.; Griesser, C.; Climent, V.; Feliu, J. M.; Kunze-Liebhäuser, J., Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH)2-Modified Cu(111). In: ACS Catalysis 2021 11 (16), S. 10324-10332. (DOI: 10.1021/acscatal.1c02673)


Reactivity of TM Carbides

90.

Griesser, C.; Li, H.; Wernig, E.-M.; Winkler, D.; Shakibi Nia, N.; Mairegger, T.; Götsch, T.; Schachinger, T.; Steiger-Thirsfeld, A.; Penner, S.; Wielend, D.; Egger, D.; Scheurer, C.; Reuter, K.; Kunze-Liebhäuser, J., True Nature of the Transition-Metal Carbide/Liquid Interface Determines Its Reactivity. In: ACS Catalysis 2021 11 (8), S. 4920-4928. (DOI: 10.1021/acscatal.1c00415)


Potential of zero charge

89.

Auer, A.; Ding, X.; Bandarenka, A.S.; Kunze-Liebhäuser, J., The Potential of Zero Charge and the Electrochemical Interface Structure of Cu(111) in Alkaline Solutions. In: The Journal of Physical Chemistry C 2021 125(9), S. 5020-5028. (DOI: 10.1021/acs.jpcc.0c09289)


Schematic depiction

88.

Watschinger, M.; Ploner, K.; Winkler, D.; Kunze-Liebhäuser, J.; Klötzer, B.; Penner, S., Operando Fourier-transform infrared–mass spectrometry reactor cell setup for heterogeneous catalysis with glovebox transfer process to surface-chemical characterization. In: Review of Scientific Instruments 2021 92, S. 024105. (DOI: 10.1063/5.0041437)


Surface Film Formation

87.

Portenkirchner, E.; Rommel, S.; Szabados, L.; Griesser, C.; Werner, D.; Stock, D.; Kunze-Liebhäuser, J., Sodiation mechanism via reversible surface film formation on metal oxides for sodium-ion batteries. In: Nano Select 2021 2(8), S. 1533-1543. (DOI: 10.1002/nano.202000285)


Self-activation

86.

Auer, A.; Andersen, M.; Wernig, E.-M.; Hörmann, N. G.; Buller, N.; Reuter, K.; Kunze-Liebhäuser, J., Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. In: Nature Catalysis 2020 3 (10), S. 797-803. (DOI: 10.1038/s41929-020-00505-w)


Influence of Alkali Metal Cations on the double-layer

85.

Xue, S.; Garlyyev, B.; Auer, A.; Kunze-Liebhäuser, J.; Bandarenka, A. S., How the Nature of the Alkali Metal Cations Influences the Double-Layer Capacitance of Cu, Au, and Pt Single-Crystal Electrodes. In: The Journal of Physical Chemistry C 2020 124(23), S. 12442-12447. (DOI: 10.1021/acs.jpcc.0c01715)

Frühere Publikationen

84.2020P. Schröder, N. Aguiló-Aguayo, A. Auer, C. Griesser, J. Kunze-Liebhäuser, Y. Ma, M. Hummel, D. Obendorf, T. Bechtold. Activation of carbon tow electrodes for use in iron aqueous redox systems for electrochemical applications. Journal of Materials Chemistry C. (2020) (DOI:  10.1039/D0TC00594K)
83.2020D. Werner, C. Griesser, D. Stock, U. J. Griesser, J. Kunze-Liebhäuser, E. Portenkirchner. Substantially Improved Na Ion Storage Capability by Nanostructured Organic-Inorganic Polyaniline-TiO2 Composite Electrodes. ACS Appl. Energy Mater. (2020) (DOI: 10.1021/acsaem.9b02541)
82.2020W. Knoll, O. Azzaroni, H. Duran, J. Kunze-Liebhäuser, K. Hang Aaron Lau, E. Reimhult, B. Yameen. Nanoporous thin films in optical waveguide spectroscopy for chemical analytics. Analytical and Bioanalytical Chemistry (2020) (DOI: 10.1007/s00216-020-02452-8)
81.2020N. Shakibi Nia, O. Guillén-Villafuerte, C. Griesser, G. Manning, J. Kunze-Liebhäuser, C. Árevalo, E. Pastor, G. García. W2C-supported PtAuSn–a catalyst with the earliest ethanol oxidation onset potential and the highest ethanol conversion efficiency to CO2 known to date. ACS Catalysis (2020) (DOI: 10.1021/acscatal.9b04348)
80.2019N. Shakibi Nia, D. Hauser, L. Schlicker, A. Gili, A. Doran, A. Gurlo, S. Penner, J. Kunze-Liebhäuser. Zirconium oxycarbide – a highly stable catalyst material for electrochemical energy conversion. ChemPhysChem (2019) (DOI: 10.1002/cphc.201900539)
79. 2019N. Shakibi Nia, A. Martucci, G. Granozzi, G. García, E. Pastor, S. Penner, J. Bernardi, N. Alonso-Vante, J. Kunze-Liebhäuser. DEMS studies of the ethanol electro-oxidation on TiOC supported Pt catalysts - support effects for higher CO2 efficiency.  Electrochimica Acta  (2019) (DOI: 10.1016/j.electacta.2019.02.089)
78.2019T. Götsch, E. Wernig, B. Klötzer, T. Schachinger, J. Kunze-Liebhäuser, S. Penner. An ultra-flexible modular high vacuum setup for thin film deposition. Review of Scientific Instruments  (2019) (DOI: 10.1063/1.5065786)
77.2019J. Kunze-Liebhäuser, C. Rüdiger. Titanium Oxycarbides: Formation, Properties and Application in Electrocatalysis. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. (2019) (DOI: 10.1016/B978-0-12-409547-2.14136-8)
76.2019D. Hauser, A. Auer, J. Kunze-Liebhäuser, S. Schwarz, J. Bernardi, S. Penner. Hybrid synthesis of zirconium oxycarbide nanopowders with defined and controlled composition. RSC Adv. (2019) (DOI: 10.1039/C8RA09584A)
75.2018A. Auer, J. Kunze-Liebhäuser. A universal quasi-reference electrode for in situ EC-STM. Electrochemistry Communications (2018) (DOI: 10.1016/j.elecom.2018.11.015)
74.2018D. Apaydin, H. Seelajaroen, O. Pengsakul, P. Thamyongkit, N. S. Sariciftci, J. Kunze-Liebhäuser, E. Portenkirchner. Photoelectrocatalytic synthesis of Hydrogen Peroxide by Molecular Copper-Porphyrin Supported on Titanium Dioxide Nanotubes. ChemCatChem (2018) (DOI: 10.1002/cctc.201702055)
73. 2018E. Portenkirchner, D. Werner, S. Liebl, D. Stock, A. Auer, J. Kunze-Liebhäuser. Self-Improving Na Ion Storage in Oxygen Deficient, Carbon Coated Self-Organized TiO2 Nanotubes. ACS Appl. Energy Mater. (2018) (DOI: 10.1021/acsaem.8b01712)
72. 2018A. Auer, J. Kunze-Liebhäuser (invited). Recent progress in understanding ion-storage in self-organized anodic TiO2 nanotubes. Small Methods (2018) (DOI: 10.1002/smtd.201800385)
71.2018C. Rüdiger, J. Kunze-Liebhäuser (invited). Titanium oxycarbides -formation, properties and application in electrocatalysis. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (2018)
70.2018A. Auer, D. Steiner, E. Portenkirchner, J. Kunze Liebhäuser, Nonequilibrium Phase Transitions in Amorphous and Anatase TiO2 Nanotubes. ACS Appl. Energy Mater. (2018) (DOI: 10.1021/acsaem.7b00319).
69.2018D. Steiner, A. Auer, E. Portenkirchner, J. Kunze-Liebhäuser. The role of surface films during lithiation of amorphous and anatase TiO2 Nanotubes. J. Electroanal. Chem. (2018) (DOI: 10.1016/j.jelechem.2017.11.035).
68.2017J. Kunze-Liebhäuser (invited paper). Electrochemical scanning tunneling microscopy studies of copper oxide formation – a review. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Interfacial Chemistry - Surface Science and Electrochemistry (2018) (DOI: 10.1016/B978-0-12-409547-2.14135-6).
67.2017A. Auer, E. Portenkirchner, T. Götsch, C. Valero-Vidal, S. Penner, J. Kunze-Liebhäuser. Preferentially Oriented TiO2 Nanotubes as Anode Material for Li-Ion Batteries: Insight into Li-Ion Storage and Lithiation Kinetics. ACS Appl. Mater. Interfaces (2017) (DOI: 10.1021/acsami.7b11388).
66.2017C. Rüdiger, C. Valero-Vidal, M. Favaro, S. Agnoli, G. Granozzi, J. Kunze-Liebhäuser. The effect of air-aging on the electrochemical characteristics of TiOxCy films for electrocatalysis applications. ChemElectroChem (2017) (DOI: 10.1 002/celc.201700912).
65.2017A. Auer, N.S.W. Jonasson, D.H. Apaydin, A,I. Mardare, G Neri, J. Lichtinger, R. Gernhäuser, Julia Kunze-Liebhäuser, E. Portenkirchner. Optimized Design Principles for Silicon Coated Nanostructured Electrode Materials and its Applicability towards High Capacity Li-Ion Battery Anodes. Energy Technol. (2017) (DOI: 10.1002/ente.201700306).
64.2017S. Oberparleiter, G. Laus, T. Gelbrich, K. Wurst, J. Kunze-Liebhäuser, H. Schottenberger. Hexaethylguanidinium tetrakis(trimethylsilylethynyl) borate diethyl ether monosolvate. IUCrData (2017) (DOI: 10.1107/S2414314617007246).
63.2017D. Apaydin, M. Gora, E. Portenkirchner, K. Oppelt, H. Neugebauer, M. Jakešová, E. Głowacki, J. Kunze-Liebhäuser, M. Zagorska, J. Mieczkowski, S.N. Sariciftci. Electrochemical Capture and Release of CO2 in Aqueous Electrolytes Using an Organic Semiconductor Electrode. ACS Appl. Mat. & Interfaces (2017) (DOI: 10.1021/acsami.7b01875).
62.2017E. Portenkirchner, G. Neri, J. Lichtinger, J. Brumbarov, C. Ruediger, R. Gernhäuser, J. Kunze-Liebhäuser. Tracking Areal Lithium Densities from Neutron Activation – Quantitative Li Determination in self-organized TiO2 Nanotube Anode Materials for Li-ion Batteries. Phys. Chem. Chem. Phys. (2017) (DOI: 10.1039/c7cp00180k).
61.2017C. Rüdiger, M. Favaro, C. Valero-Vidal, L. Calvillo, N. Bozzolo, S. Jacomet, J. Hein, L. Gregoratti, S. Agnoli, G. Granozzi, J. Kunze-Liebhäuser. Substrate Grain-Dependent Chemistry of Carburized Planar Anodic TiO2 on Polycrystalline Ti. ACS Omega (2017) (DOI: 10.1021/acsomega.6b00472)
60.2016C. Traunsteiner, S. Sek, Veronika Huber, Carlos Valero-Vidal, and J. Kunze-Liebhäuser. Laccase immobilized on a mixed thiol monolayer on Au(111) – structure-dependent activity towards oxygen reduction. Electrochim. Acta (2016) (DOI: 10.1016/j.electacta.2016.07.111)
Nach oben scrollen