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Abstract 

This paper presents results from experimental asset markets with asymmetric fundamental 

information. We observe leptokurtic returns and a slowly decaying autocorrelation function of 

absolute returns. In contrast to results from heterogeneous agent models (HAM’s) we find that 

noise has no significant influence on the emergence of fat tails. Instead, we observe a 

significantly positive relationship between the degree of heterogeneity of fundamental 

information and absolute returns, which suggests that heterogeneous fundamental information 

is the source of fat tails. With respect to volatility clustering, we discover an intra-periodical 

pattern where absolute returns decrease after the arrival of new asymmetric fundamental 

information. 
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1 Introduction 

In this paper we want to tackle the question of the origins of the leptokurtic distribution 

of returns and the volatility clustering property, the most common cited stylized facts in the 

literature. 

The studies of Mandelbrot (1963a, b) and Mandelbrot/Taylor (1967) were the first to 

show that returns on financial markets are not Gaussian, but exhibit excess kurtosis (‘fat 

tails’). This is supported by more recent work by Bouchaud/Potters (2001), Cont (1997, 

2001), Dacorogna et al. (2001), Mantegna/Stanley (2000), Plerou et al. (1999), Rachev 

(2003), Voit (2003) and others. Mandelbrot suggests that returns in financial markets are non-

Gaussian stable Levy-processes, which was later called Stable Paretian Hypothesis (Rachev 

2003, p. ix). Press (1967) suggests compound Poisson processes for the variance parameter of 

normal distributions as reason for the emergence of fat tails and Clark (1973) claims that 

finite-variance distributions like the lognormal-normal distribution fit data in financial 

markets better than any stable regime. He explains his statement with the different evolution 

of price series on different days due to varying information. Trading may be slow on days 

when no information is available. When new information appears on the market, the price 

process evolves much faster.  

Over the past ten years many different approaches have been developed to reproduce 

these stylized facts in artificial markets with heterogeneous agents, so called HAM’s – 

heterogeneous agent models - (e.g. Arthur 1997, Brock/Hommes 1998, Brock/LeBaron 1996, 

Hommes 2002, Iori 2002, Kirman/Teyssière 2002, LiCalzi/Pellizzari 2003, Lux 1995, Lux 

1998, Lux/Marchesi 1999, 2000, Raberto et al. 2001, and Youssefmir/Huberman 1997). In 

two seminal papers, Lux/Marchesi (1999, 2000) attribute volatility clustering and the 

emergence of fat-tailed returns mainly to the agents’ switching between fundamentalist and 

chartist strategies. Other models (e.g. Youssefmir/Huberman 1997, and Brock/Hommes 1998) 

find similar results. Once a certain threshold value of chartists is exceeded, the system 
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becomes unstable and extreme returns occur. During these regimes prices deviate strongly 

from their fundamental values, creating bubbles or crashes. As a consequence, the 

fundamentalist strategy becomes more profitable, inducing more and more agents to switch 

from a chartist to a fundamentalist strategy. This switching behaviour slowly brings prices 

back towards the fundamental value and is the stabilizing device of the system, causing a slow 

decay in the autocorrelation function of absolute returns. 

Plott/Sunder (1982) were the first one to report excess kurtosis and the lack of 

autocorrelation of returns in price data generated in an experimental market. However, they 

do not deliver an explanation of the observed properties. 

Our experimental asset markets show that noise trading (trading not based on 

fundamentals) does not play a major role for the fat tail property of returns which stands in 

contrast to heterogeneous agent models (HAM’s) that use a chartist/fundamentalist 

framework. Instead, heterogeneity of fundamental information is the driving force for trading, 

volatility, and ultimately the emergence of fat tails. Furthermore, in HAMs the slow decay of 

the autocorrelation function of absolute returns is usually caused by increasing numbers of 

chartists switching back to a fundamentalist strategy. Our results do not corroborate this, but 

we find an intra-periodical pattern of decreasing absolute returns after the arrival of new 

fundamental information. Again, noise does not play a role for the emergence of this stylized 

fact. 

The paper is structured as follows: Section 2 presents the market model. Section 3 

focuses on the empirical properties of the experimental markets. The discussion in section 4 

explains the reasons for the empirical results in the experimental markets, and section 5 

summarizes the main findings of our study. 
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2 Market model and experimental implementation  

2.1 Model description 

The main innovation of our market model is the asymmetric information structure of 

traders. In the above-mentioned agent-based models traders are usually endowed with 

identical fundamental information. In theoretical models with asymmetric fundamental 

information (e.g. Grossman/Stiglitz 1980, Figlewski 1982, Hellwig 1982, Kyle 1985, 1989) 

traders are usually divided into two groups: insiders and uninformed traders. In this paper we 

extend this approach by introducing more than two information levels. Our model includes 

nine (treatment 1) and five (treatment 2) different information levels, ranging from almost 

uninformed traders through average informed traders to insiders.  

Specifically, trader Ij knows the dividend of this and the future (j-1) periods. Thus, a 

trader with information level I1 knows the dividend of the current period; I2 knows the 

dividend of the current and the next period, and so on. At the end of each period the 

respective dividend is paid out and deleted from the screen. At the start of the next period, 

each trader receives dividend information formerly only known to the next best informed. At 

the same time, a new dividend is generated and displayed to the best informed (the “insider”). 

This means, for example, that the former dividend of period (k+1) becomes the dividend of 

period k one period later.  

For the sake of simplicity we assume that traders know the exact value of future 

dividends and no trader ever gets wrong dividend information. The dividend process is a 

random walk without drift, with kD  representing the dividend in period k. ε is a random term 

with an expected value of zero.1 

 ε+= −1kk DD  (1) 

                                                 
1 See Appendix for plots of the dividend process and the corresponding average price per period for all markets. 
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In addition to future dividends, we provide each trader with the conditional present value 

of the stock (based on his information), which is calculated using Gordon’s formula: 
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( )kjIVE ,|  denotes the conditional expected value of the asset in period k, j represents the 

index for the information level and re is the risk adjusted interest rate.2 We can see from 

equation (2) that the last dividend known to trader j is assumed to remain constant for an 

infinite number of periods. This is a consequence of the random walk dividend process. All 

the other dividends are also discounted using re. Figure 1 shows the resulting paths of the 

conditional expected values in treatment 1 as a function of time (measured in trading 

periods).3 

 

[Figure 1 about here] 

 

Beginning with I9, the functions in Figure 1 are shifted for each information level Ij by  

(9-j) periods to the right. Information on the intrinsic value of the company that trader I9 

                                                 
2 See Table 1 for specific numbers in the two treatments. We provide participants with re, as we are not 

interested in their risk preferences but in trading behaviour and the impact of the sequential arrival of 

fundamental information. 

3 As these conditional expected values are the main fundamental information and are the most important 

benchmark for our analysis, we could have skipped the introduction of dividends and could have directly 

introduced an intrinsic value process that is shifted for each information level Ij by (9-j) or (5-j) to the right. 

We use dividends as a kind of ‘cover story’. Our participants are business students, who are familiar with 

the dividend discount model. So, we ensured that they understood the concept of fundamental value, or in 

this case conditional expected value prior to the experiment. 
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receives in a certain period is seen by trader I8 one period later, and by trader I1 eight periods 

later, giving the better informed an informational advantage of time.4  

This way of modelling the information structure is inspired by market reality, as in real-

world markets relevant fundamental information is first known to insiders. Other major 

groups of investors, e.g. funds managers and large stake holders, have secondary access to 

information. This process of dispersion continues until information finally becomes publicly 

available through newspapers, TV and other media. So, information “trickles down” the 

market from the best informed to the broad public. Basically, all traders receive the same 

information – just at different times. The insider has an advantage of timing. This is supported 

by research on insider trading, which shows that insider information is superior and can 

generate above-average returns (e.g. Lakonishok/Lee 2001, Lin/Howe 1990, 

Krahnen/Rieck/Theissen 1999, and Jeng/Metrick/Zeckhauser 2003). 

The trading mechanism is a continuous double auction with open order book (see trading 

screens in the appendix). In general, there are no limitations to trading, meaning that traders 

are allowed to freely place limit and market orders. However, traders are restricted from 

shorting both stocks and cash. 

 

2.2 Experimental implementation 

In both treatments each trader is initially endowed with 1,600 Taler (experimental 

currency) in cash and 40 stocks of the risky asset. For holding the stocks they get dividends 

and for holding cash they receive the risk-free interest rate, rf, at the end of each period.5 The 

total supply of stocks is fixed (40x9=360 in treatment 1, and 40x20=800 in treatment 2).  

                                                 
4 All other information like price paths, order books, etc. is identical for all traders. 

5 See Table 1 for specific numbers used in the two treatments. 
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During the experiment traders are continuously informed on their cash and stock 

holdings and on their wealth, which is calculated as the sum of the cash holdings and the 

stock holdings (number of shares held multiplied by the current stock price). Prices of all 

previous transactions in the current period are displayed to all traders together with the mean 

prices of all previous periods.  

This paper is based on two treatments: Treatment 1 consists of nine information levels 

and one trader per information level (individual markets are denoted by 9_Mx6). Treatment 2 

involves five information levels and four traders per information level, hence a total of 20 

traders per market (consequently called 20_Mx markets).  

In treatment 1 we set up 30 periods of trading, each period lasting for 100 seconds. In 

treatment 2, each experimental market was randomly terminated between periods 20 and 30 

with equal probability to avoid strategic behaviour of participants in the last period. Trading 

time was again 100 seconds per period. 

At the beginning of each experimental session, traders were briefed with identical written 

instructions that took about 20 minutes to go through.7 Three trial periods in treatment 1 and 

four trial periods in treatment 2 followed to familiarize participants with the trading screen.8  

In treatment 1, traders were paid according to their average wealth in the last period that 

was benchmarked by the average wealth of all traders to ensure that manipulating the price 

                                                 
6 ‘x’ always indicates the number of the market in the corresponding treatment. 

7 See experimental instructions in the appendix. 

8 However, after the experiment we realized that in periods 1 and 2 of some markets of treatment 1, several 

traders were still too unaccustomed in handling the trading surface, which caused some mistakes in trading 

(e.g. selling at a low price when instead buying was intended). To limit this influence on our results we 

excluded the first two periods from the analysis. Due to an improved introduction and four trial periods, we 

observed no such irregularities in treatment 2. 
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towards the end of the last period would be useless.9 In treatment 2 benchmarking was based 

on period-by-period trading success. As a consequence, no manipulation was detected here. 

The experiments were conducted at the University of Innsbruck with business students. Each 

session (market) lasted for about 80 minutes with an average payment of € 18. Treatment 1 

consisted of 6 markets, treatment 2 of 5 markets. In total, the 154 participants initiated 8,563 

trades. This large data set should lead to a high reliability of our results. The experiment was 

programmed and run with z-Tree (Fischbacher (1999)). Table 1 summarizes the differences 

between the two treatments. 

 

[Table 1 about here] 

 

 

3 Empirical properties of the markets 

3.1 Scaling of the distribution of price fluctuations 

We start with some basic statistics of the trading data. The returns presented are 

computed discretely following equation (3):  
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with Rt being the return, t indicating tick and Pt denoting the price at tick t.10  

                                                 
9 Nevertheless, we observed manipulation towards the end of the last period in at least two markets. So, we 

decided to remove the last two periods from our analysis as well. Consequently, all the data presented for 

treatment 1 is from 26 trading periods. 

10 As we have a multi-period model, inter-period returns are included in the data we use for our analyses. 

However, to examine any possible influence of inter-period returns we repeated our analyses and tests by 

excluding these returns. The results were practically unchanged. As an example we include the data for 
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Table 2 indicates that all markets exhibit excess kurtosis, similar to real financial 

markets. Column “T” shows the number of return observations, calculated from (T+1) 

transactions per market.  

 

[Table 2 about here] 

 

To help distinguish the excess kurtosis stemming from the market design from that 

caused by other factors discussed later, we computed a ‘benchmark excess kurtosis’. For each 

individual transaction that took place in the market we calculated a ‘fundamental price’ 

(average of the conditional expected values (see equation (2) of the two participating traders) 

and calculated returns as if transactions took place at these prices. From the resulting returns 

we calculated the ‘benchmark excess kurtosis’ presented in the sixth column of Table 2. This 

would have been the excess kurtosis if all traders had traded on their fundamental information 

provided. The actual kurtosis resulting from real transaction prices is higher than this 

‘benchmark excess kurtosis’ in ten of eleven markets.  

Computing the Kolmogorov-Smirnov test statistics on gaussianity, we had to reject the 

null hypothesis in all eleven markets (p<0.001). As an example, Figure 2 shows the 

cumulative distribution function (CDF) of absolute returns |Rt| for market 9_M1 and for the 

NYSE composite index with daily data from January 1st 1997 to December 31st 2000 (n=1009 

trading days). This demonstrates that our markets show properties similar to real financial 

markets.11  

 

[Figure 2 about here] 

                                                                                                                                                         
excess kurtosis without inter-period returns in the seventh column of Table 2. In further analyses we only 

present data including inter-period returns. 
11 Note that the other ten markets show very similar properties. 
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However, kurtosis is an ambiguous concept for measuring the fat tail characteristic. As a 

complement, exponents of empirical power laws have been proposed as measures for the 

‘fatness’ of tails. Using an estimator suggested by Hill (1975), the Pareto exponent of the tails 

can be computed. In the applied economics literature, it is common practice to calculate the 

exponent for the 10%, 5% and 2.5% tail. To do this the elements of a return series have to be 

put in descending order and the last x% are selected as the “x% tail”. Equation (4) presents the 

formula for computing the Hill estimator with m being the number of observations located in 

the corresponding tail of the distribution and n representing the total number of returns. 
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As can be seen in Table 3, the medians of both treatments exhibit similar tails as real 

world markets, where Hill estimators range from approximately 2 to 6 with lower values 

denoting fatter tails (Voit 2003).  

 

[Table 3 about here] 

 

 

3.2 Volatility clustering 

Volatility clustering is another well-known stylized fact in financial markets (e.g., 

Bouchaud/Potters 2001, Cont 1997, 2001, Mantegna/Stanley 2000, Plerou et al. 1999, Voit 

2003). In simple terms, volatility clustering manifests itself as periods of tranquillity 

interrupted by periods of turbulence. The change between these two extreme regimes is a slow 

process so that large returns slowly decline until a relatively tranquil state is reached. Figure 3 
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illustrates this typical pattern for market 20_M3. Turbulent phases with large price changes 

alternate with relatively silent phases of small price activity. 

 

[Figure 3 about here] 

 

By the same token it is well-known that price movements do not exhibit any significant 

autocorrelation. Thus, we see a rapid decay of the autocorrelation function of price changes. 

There is also agreement that the absence of autocorrelation in returns does not imply the 

independence of the increments. Simple nonlinear functions of returns, such as squared 

returns or absolute returns, show significant positive autocorrelation. Figure 4 compares the 

autocorrelation function of returns with the autocorrelation function of absolute returns, which 

shows strong persistence. Especially in the larger and more competitive markets of treatment 

2, this long-range dependence is much more pronounced due to higher trading activity.12 

 

[Figure 4 about here] 

 

 

4 Causes for fat tails and volatility clustering 

4.1 Scaling of the distribution of price fluctuations 

Plott/Sunder (1982) were the first to report the emergence of fat tails and a lack of 

autocorrelations in returns in experimental markets but do not deliver an explanation. Their 

suspicion that fat tails emerged especially when prices are far from equilibrium, was not 

supported by their experimental data. 

                                                 
12 See appendix for plots of the autocorrelation function of returns and absolute returns for all markets. 
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Our data does not allow us to differentiate among various mathematical explanations 

proposed in the 1960s and 1970s (e.g. Clark 1973, Mandelbrot 1963a, b, Mandelbrot/Taylor 

1967, and Press 1967). 

However, we can contribute to a strand of literature driven by different heterogeneous 

agent models. Several researchers (e.g. Brock/Hommes 1998, Cont/Bouchaud 2000, 

Gaunersdorfer/Hommes 2000, Levy/Levy/Solomon 2000, LiCalzi/Pellizzari 2003, Lux 1998, 

Lux/Marchesi 1999, 2000, Raberto et al. 2001) propose artificial markets with agents that use 

very simple trading strategies. These markets have the advantage of being simple enough to 

allow an analysis of the relation between trading behaviour and market properties. Especially 

the models of Brock/Hommes (1998), Gaunersdorfer/Hommes (2000), Lux (1998), 

Lux/Marchesi (1999, 2000), and Youssefmir/Huberman (1997) have similar origins for the 

occurrence of fat tails and volatility clustering. As long as their markets are near equilibrium, 

meaning that prices are close to the fundamental values, only small price deviations occur. 

But due to herding behaviour of the computerized agents, sometimes a burst of activity occurs 

and large price deviations result. In a first step we will test whether the fat tail property in our 

model roots in the same cause, or whether we have to look for other explanations.  

 

Conjecture 1: The fraction of trades conforming to the fundamental strategy is negatively 

related to absolute returns. 

To operationalize the terms ‘fundamentalist strategy’ or ‘fundamental trading’, we use 

the fundamentalist/chartist framework of Lux (1998) and Lux/Marchesi (1999, 2000), who 

state that “the fundamentalist strategy […] implies buying (selling) when prices are below 

(above) the fundamental value”, Lux (1998, p. 151). In the models of Lux (1998) and 

Lux/Marchesi (1999, 2000) (100% minus percentage of ‘fundamentalist strategy’) equals a 

chartist strategy. In the markets presented here (100% minus percentage of ‘fundamentalist 

strategy’) equals noise trading, thus trading not based on fundamentals. So, due to the 
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impossibility to measure Chartism in experimental asset markets exactly, we replaced the 

terminus ‘Chartism’ by the terminus ‘Noise’, which means trading not based on 

fundamentals.  

For every transaction we computed whether each trader acted according to her 

fundamental information or not by comparing her action to the action conforming to 

fundamental trading. In the case of a buy the following condition must be satisfied to label a 

transaction “fundamentalist”: 

 ( ) tkj PIVE >,|  (5) 

In case of selling, however, we must have that: 

 ( ) tkj PIVE <,|  (6) 

We calculate the fraction of fundamentalist trades in the whole market as well as in the “tails” 

of the cumulative distribution (for 10%, 5% and 2.5% of extreme values). Table 4 shows that 

on average about 60% to 75% of all transactions are fundamentalist. 

 

[Table 4 about here] 

 

Qualitatively, we can see that there is no clear trend concerning the relationship of the 

fraction of fundamentalist trades and absolute returns. In markets 9_M1, 9_M2, 20_M3 and 

20_M4 large absolute returns are negatively related to the degree of fundamental trading. 

Therefore, they coincide with a higher degree of noise. However, even when large absolute 

returns occur, more than half of the trades are fundamentalist. Thus, we cannot call this a 

noisy regime. In all other markets we cannot find the relationship proposed by Lux/Marchesi 

(1999, 2000). In some markets, like 9_M6 and 20_M1, the relationship is clearly positive, 

which indicates that large absolute returns occur while fundamental trading is the 

predominant strategy. 
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To test conjecture 1, we run a correlation analysis using the Spearman-Rho test statistics, 

which does not require gaussianity. First we computed the average absolute returns per period 

according to equation (7): 
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nk represents the number of observations in period k and |Ri,k| indicates the absolute return 

at tick i of period k. Secondly, we calculated the fraction of fundamentalist trades for each 

period by classifying transactions according to equations (5) and (6).  

 

[Table 5 about here] 

 

Table 5 shows Spearman’s correlation coefficient for each market with its 

corresponding significance level. We see that only five of eleven markets are in line with 

conjecture 1, stating that the relationship of the degree of fundamental strategy and absolute 

returns is negative. Only market 9_M1 yields a significant result. On the other hand, the 

correlation coefficients of six markets are positive, four of them significant at the 1 or 5 

percent level. In these markets the “tail” of the cumulative distribution function of absolute 

returns is characterized by an above-average fraction of fundamentalist trades, which is in 

strong contradiction to the findings of Lux/Marchesi (1999, 2000).  

To obtain more reliable results, we pooled the data and found no significant correlation 

for treatment 1. However, we observe a significant positive relationship in the pooled data of 

treatment 2. We conclude that noise trading is not positively connected to the fat tail property 

of returns in our markets. Actually, a negative relationship of noise and large returns can be 

observed in treatment 2. 

As already mentioned, our experimental asset markets are different to the ones cited 

above because of asymmetric fundamental information. In a next step, we will test whether 
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this heterogeneity is the source of fat tails. This may be possible, as Wang (1993) finds a 

positive relationship between heterogeneity of information and price volatility which leads to 

higher returns when heterogeneity increases.  

 

Conjecture 2: Average absolute returns per period are positively correlated with the 

degree of heterogeneity in fundamental information. 

As dividends following a random walk fluctuate sometimes widely and remain rather 

stable at other times, periods alternate between relatively heterogeneous (e.g. periods 8 to 15 

in treatment 1) and homogeneous beliefs (e.g. period 20 to 30 in treatment 1). During phases 

with relatively stable dividends a longer prediction horizon of better informed traders does not 

yield significantly different estimates of the asset value. In contrast, in periods with strongly 

fluctuating dividends, traders’ estimations of asset value vary strongly. Especially in these 

periods we expect large returns due to the heterogeneity of fundamental information. 

We operationalize the criterion “heterogeneity in fundamental information” by the 

standard deviation of conditional expected values E(V|Ij,k) with k denoting period and j 

indicating information level: 
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Large values of kσ  indicate periods with relatively heterogeneous fundamental 

information, while small kσ  denote relatively homogeneous periods. Additionally, we 

calculate the average absolute returns per period using equation (7). This provides us with a 

pair of data for each period consisting of the measure of heterogeneity of fundamental 

information and the corresponding average absolute returns of this period.  

To test conjecture 2 without assuming gaussianity of the data, we compute the Spearman-

Rho test statistics for each market and for the pooled data set per treatment. 
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[Table 6 about here] 

 

Table 6 shows that the correlation coefficient of markets 9_M1, 20_M3, and 9_M5 is 

significantly positive at the 1% and 5% level, respectively. More importantly, the analysis of 

the pooled data set of treatment 1 demonstrates a positive relationship significant at the 5% 

level, as does the analysis of the pooled data set of treatment 2. We conclude that 

heterogeneous fundamental information is a major source for the emergence of fat tails in our 

experimental markets. In fact it is evident that a higher degree of heterogeneity in the 

conditional expected values causes larger price deviations. 

 

 

4.2 Volatility clustering 

As outlined above, the main sign of the appearance of clustered volatility is the long 

lasting positive autocorrelation of absolute returns as shown in Figure 4. In HAMs this 

phenomenon is often attributed to traders’ switching between chartist and fundamentalist 

strategies. However, building on the results above, we opt for another explanation. If 

heterogeneous information is the main source of fat tails and volatility, and if we assume that 

traders learn from observed prices (e.g. Smith 1982), we should see higher volatility after the 

arrival of new information, i.e. at the beginning of each period. At this time heterogeneity of 

expectations is highest and large returns should result. In the course of each period (absolute) 

returns should decline as traders learn from prices and orders. As a consequence, the market 

moves towards a partial equilibrium until new fundamental information is injected into the 

market at the start of the next period. Then, the same patterns should start again. In 

accordance with our suggestion we formulate the following hypothesis: 
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Conjecture 3: Absolute Returns are negatively correlated to time within one period.  

To operationalize this, we divide each period into ten sub-periods of ten seconds each and 

compute the average absolute return for each of the ten fractions according to equation (9). l 

denotes time fraction {1,…,10} within a period. 
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Fraction 1 comprises seconds 1 to 10 within each period, fraction 2 seconds 11 to 20, etc. 

nl denotes the number of observations within a time fraction l across all periods. 

Figure 5 plots the average absolute returns lR  as a function of time fraction l for all 

markets for both treatments. We can see that average absolute returns decrease with 

increasing l. At the beginning of each period large returns occur. Subsequently, they decline 

rapidly up to time fraction 5 and then stabilize at a relatively low level.  

 

[Figure 5 about here] 

 

To test conjecture 3, we correlate average absolute returns lR  with time fraction l 

according to the Spearman-Rho test statistics. We obtain results that strongly support our 

hypothesis. 

 

[Table 7 about here] 

 

Table 7 indicates that the correlation coefficients of all but three markets are significantly or 

highly significantly negative. Only market 9_M3 yields a positive but not significant 

correlation. As a result, the autocorrelation function of absolute returns of this specific market 
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shows a fast decay towards zero (see plot in the appendix). Analyzing pooled data sets for 

both treatments confirms a negative correlation which is significant at the 1% level.  

In the model of Lux/Marchesi (1999, 2000), switching to the fundamentalist strategy is a 

stabilizing device. In our model it is not the switching between strategies that leads to the 

slow decay of the autocorrelation function of absolute returns. Instead, an intra-periodical 

pattern of learning that lowers absolute returns in the course of each period seems to be the 

source of the volatility clustering property. Again noise does not play a role for producing this 

stylized fact. 

 

 

5 Conclusion 

In this paper we tested experimental asset markets with asymmetric fundamental 

information for empirically observed properties of financial markets, known as stylized facts. 

We focused on the fat-tail property of returns and on the phenomenon of volatility clustering. 

Although each of the experimental markets consisted of only nine or twenty traders and 

trading lasted for less than one hour, we found similar properties as in real financial markets. 

We discovered excess kurtosis of returns, fast decay of the autocorrelation function of returns, 

and slow decay of the autocorrelation function of absolute returns.  

A limitation of our study is that we do not have the data to differentiate among various 

mathematical explanations proposed in the 1960s and 1970s to explain the emergence of fat 

tails. Our data do not allow differentiation between stable and non-stable processes as the 

sources of the known stylized facts. However, we can compare our results with popular 

heterogeneous agent models. In contradiction to literature on these models noise does not play 

a major role for the emergence of fat tails in our markets. Instead, we found a significant 

positive relationship between the degree of heterogeneity of fundamental information and 
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absolute returns in both treatments. In our markets, heterogeneity of fundamental information 

is the main driving force for trading activity, volatility and ultimately the emergence of fat 

tails.  

With respect to volatility clustering we discovered an intra-periodical pattern of 

decreasing absolute returns, which yields a long-lasting positive autocorrelation of absolute 

returns in both treatments. At the beginning of each period, new asymmetric fundamental 

information is injected into the market and large amplitudes of price changes occur. In the 

course of each period these turbulences decrease as traders learn from past prices and the 

order book. This leads to relatively stable prices until new information is injected again.  
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Appendix 
A1: Experimental instructions for treatment 1 (the following instructions are translated 
from German) 
 

 

Dear Participant! We welcome you to this experimental session and we kindly 
ask you to refrain from talking to each other for the duration of the experiment. 
 
 
Background of the experiment 
This experiment is designed to replicate asset markets where 9 participants in a 
market can trade the stocks of an imaginary company for 30 consecutive periods 
(months). You can increase your wealth by trading, and at the end you will receive a 
cash payment depending on your wealth. 
 
 
Characteristics of the market 
Each trader is endowed with 1600 Taler (experimental currency) and with 40 stocks 
worth 40 at the beginning of the experiment. The only fundamental information you 
receive is the dividend of the stock (monthly dividend equals monthly profit). Changes 
of the dividend per period have an expected value of zero and will fluctuate randomly 
at maximum +/- 50%. The market is characterized by an asymmetric information 
distribution. Worst informed traders are informed only about the dividend of the 
current period, while better informed ones know the dividend of the company a few 
months ahead. The best informed trader knows the dividend of the current period 
and the dividends of the coming 8 periods. 
At the end of each period (which lasts 100 seconds) you will receive the current 
dividend for each stock you own. A risk free interest rate of 0.1% is paid for the cash 
holdings in each period. The risk adjusted interest rate for evaluation of the stock 
equals 0.5%. 
 
 
Trading 
The trading mechanism is implemented as a double auction. This means that each 
trader can buy or sell stocks freely. Therefore you can enter as many bids and asks 
as you wish within the range of 0 and 200 (with at maximum one decimal place). 
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Chronological 
history of prices of 
the current period. 

History Box: „Average price“ 
denotes the average price of 

the past periods. 

Calculator Overview of own 
transactions in the 

current period. 

Overview of stock and 
cash holdings; Wealth = 
money + [stock*current 

price] 

BUYING AREA 
You can either insert 
your own bids and 
confirm them with 

clicking on the „BID“ 
button or accept an 
open ask of another 

trader with clicking on 
the “BUY” button. All 
asks are sorted from 

the highest to the 
lowest.

SELLIING AREA 
You can either insert 
your own asks and 
confirm them with 

clicking on the „ASK“ 
button or accept an 
open bid of another 

trader with clicking on 
the “SELL” button. All 

bids are sorted from the 
lowest to the highest. 

Conditional 
expected value of 

the stock. 

Your dividend 
information for this 

period with „t“ 
denoting the current 
period and “-1.000” 

standing for no 
information. 
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Calculation of the conditional expected value (present value, PV) 
Generally, it is up to you on what kind of information you will trade and how you will 
evaluate the stock. If you use your fundamental information, you can see the present 
value (PV) of all future dividends (of course only those you can estimate on the basis 
of your information level) on the bottom left side of the trading screen. Your PV is 
derived using Gordon’s well-known formula, discounting the known dividends and 
using the last one as a continuous, infinite stream which was also discounted as a 
company is basically designed for infinity. 
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PV   with n denoting the last period 

 
Example: The dividends of this and the next 2 periods are 0.191; 0.214; 0.202. So, the PV on basis of 
this information level is calculated as follows: 0.191 + 0.214/1.005 + 0.202/0.005/1.005 = 40.40. This 
PV is shown on the bottom left side of the trading screen. 
 
 
Wealth 
Your wealth is the sum of your cash holdings and the product of your stock holdings 
multiplied with the current price. If you buy a stock, your cash holdings are reduced 
by the price you paid and at the same time your stock holdings are increased by one 
share. Generally, the current price on the market is used for evaluation of your 
wealth, so your wealth will change even if you have not participated in the last 
transaction. After expiration of each trading period (month) an interest rate of 0.1% 
per month is paid for the current cash holdings, and the dividends for your stocks are 
added to your cash. 
 
Example: If you own 1600 in cash and 40 stocks with a price of 40 and the dividend equals 0.215 at 
the end of a period, your wealth increases from 3200 to 3210.2 (Hence, the increase in wealth 
consists of +1.6 for interest earnings (= 1600*0.001) +8.6 for dividend earnings (= 40*0.215)). 
 
 
Important details 

• Per period you can trade as much as you wish (of course, only within the 
boundaries of your cash and stock holdings). Negative cash holdings are not 
possible. 

• Trading time per period is 100 seconds, the remaining time is displayed at the 
top right side of the trading screen. 

• Your payment at the end of the experiment depends on your wealth in the last 
period. 
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A2: Experimental instructions for treatment 2 (the following instructions are translated 
from German) 
 
Dear Participant! We welcome you to this experimental session and we kindly 
ask you to refrain from talking to each other for the duration of the experiment. 
 
 
Background of the experiment 
This experiment is designed to replicate asset markets where participants in a market 
can trade the stocks of an imaginary company for k consecutive period.  
 
Characteristics of the market 
Each trader is initially endowed with 1600 Taler (experimental currency) and 40 
stocks. The only fundamental information you receive is the dividend of the stock 
(quarterly dividend equals quarterly profit of the company) which follows a random 
walk process without drift: 

ε+= −1kk DD  
Dk denotes the dividend of period k and ε  represents a normally distributed random 
variable with an expected value of zero and a standard deviation of 15 percent. This 
period’s dividend is therefore the best estimate for next period’s dividend. The market 
is characterized by asymmetric information. The worst informed trader knows only 
the dividend of the current period, while better informed traders can estimate the 
dividends of the companies a few periods into the future. At the end of each period 
(after 100 seconds), you will receive the current dividend for each stock you own. A 
risk-free interest rate of 0.5% is paid for the cash holdings in each period. The risk-
adjusted interest rate for valuation of the stock equals 2.0% per period. 
 
Calculation of the conditional expected value (present value, PV) 
Generally it is up to you on what kind of information you trade and how you evaluate 
the stock. If you want to use your fundamental information (expected future 
dividends) you can see the present value (PV) of all future dividends (of course only 
those you can estimate on the basis of your information level) on the bottom left side 
of the trading screen. Your PV is derived using Gordon’s well-known formula, 
discounting the dividends you know with the risk adjusted interest rate of 2.0% and 
assuming the last one as a continuous, infinite stream which is also discounted. If 
you follow this information it makes sense to buy at a price that is lower than your PV 
and sell at a price that is higher than your PV. 
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Example: The dividends of this (k=0) and the next 2 periods are 0.791; 0.814; 0.802. The PV on the 
basis of this information level is calculated as follows: 0.791 + 0.814/1.02 + 0.802/0.02/1.02 = 40.23. 
This PV on the basis of your information level is shown on the bottom left side of the trading screen. 
 
Trading 
The trading mechanism is implemented as a double auction. This means that each 
trader can buy or sell stocks. You can enter as many bids and asks within the price 
range of 0 and 200 (with a precision of one decimal place) as you wish. Additionally, 
you have to insert the quantity you want to trade (1 to 10 shares). A new offer to buy 
is only accepted if the sum of this and all your outstanding offers to buy (price 
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multiplied by the corresponding quantity) is not higher than your current cash holding. 
Otherwise a message box appears to inform you that the offer is not valid.  
 
This check is made to avoid that your cash holdings drop below zero. A new offer to 
sell will be accepted if the sum of this and all your outstanding offers to sell is lower 
than your current stock holding. Otherwise a message box appears. This check is 
made to avoid that your stock holdings drop below zero. 
 
Example: Your current cash holdings equal 600 Taler. Your outstanding offers to buy equal 532.5 
Taler, containing one offer of 10 stocks at a price of 35 Taler and another offer of 5 stocks at a price of 
36.5 Taler. So, the product of your new offer to buy (price multiplied with stocks) should not exceed 
67.5 Taler. 
 
Wealth 
Your wealth is the sum of your cash holdings and the product of your stock holdings 
multiplied by the current price. If you buy a stock your cash holdings are reduced and 
at the same time your stock position increases by the quantity you traded. Generally, 
for evaluation of your wealth the current price on the market is used (marking-to-
market), so your wealth will change even if you have not participated in the last 
transaction. After expiration of each trading period (quarter) for the current cash 
holdings an interest rate of 0.5% per quarter is paid and the dividends for your stocks 
are added to your cash. 
 
Example: If you own 1600 in cash and 35 stocks with a price of 50 that pays a dividend of 0.815 at the 
end of a period, your wealth increases from 3350 to 3386.53 (+8.0 interest earnings (1600x0.005), 
+28.53 dividend earnings (35x0.815)). 
 
Important details 

• The experiment will be randomly terminated between period 20 and 30 with 
equal probability for each period. 

• Your pay-off at the end of the experiment depends on your relative 
performance in the market. Your wealth at the end of each period will be 
compared with the average wealth in the market at the same time. This 
relation is summed up across all periods. Generally, your pay-off will be above 
average if you can manage to ‘outperform’ the market. Note that depending on 
your information level, your pay-off will be calibrated. 
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Chronological 
history of prices of 
the current period 

History Box: „Average price“ 
denotes the average 

transaction price of the 
corresponding period 

Calculator Overview of own 
sales and own 

purchases within the 
current period 

Overview of stock and 
cash holdings; Wealth = 
money + [stock*current 

price] 

BUYING AREA 
You can either insert 
your own bids and 
accept them while 

clicking on the „BID“ 
button or accept an 
open ask of another 

trader with clicking on 
the “BUY” button. All 
asks are sorted from 

the highest to the 
lowest.

SELLIING AREA 
You can either insert 
your own asks and 
accept them while 

clicking on the „ASK“ 
button or accept an 
open bid of another 

trader with clicking on 
the “SELL” button. All 

bids are sorted from the 
lowest to the highest. 

Conditional 
expected value of 

the stock 

Your dividend 
information of this 

period 
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A3: Plots 

A3.1. Average prices (black solid line) and dividends (grey line with asterisks) as a 
function of time 
 

Treatment 1 
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Treatment 2 
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A3.2. Autocorrelation function of absolute returns (solid line with asterisks) and 
autocorrelation function of returns (solid line). The dashed lines represent the 95% 
confidence level 

Treatment 113 

 

 

                                                 
13 Due to a ‚shorter’ memory in the absolute returns based on fewer traders and so much lower market activity, 

we plotted 40 lags compared to 100 lags in treatment 2. 
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Treatment 2 
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Tables and Figures 

 

 

Figure 1. Conditional expected values as a function of period of the uneven information levels 

in treatment 114 

 

                                                 
14 We only plotted the uneven information levels for better visibility. 
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Table 1. Differences in experimental setting between the two treatments 

 Treatment 1 Treatment 2 
Number of information 
levels per market 
 

9 5 

Number of traders per 
market 
 

9 20 

Number of traders per 
information level 

1 4 

Number of markets 
 

6 5 
Risk free interest rate per 
period 
 

0.1% 0.5% 

Risk adjusted interest rate 
per period 
 

0.5%15 2.0%16 

Number of shares tradeable 
per transaction 
 

1 up to 10 

Trial periods before each 
experimental session 
 

3 4 

Relevant trading periods 26 per market Random termination 
between period 20 and 30 
with equal probability 
 

Dividend process Random-Walk without drift 
which was held constant 
across all 6 markets. D1=0.2; 
σ =0.02 
 

Random-Walk without drift. 
For each market a different 
process has been generated 
randomly. D1=0.8; σ =0.12 

Pay-out at the end of each 
experimental session 

Traders were paid according 
to their average wealth in the 
last period which was 
benchmarked by the average 
wealth of all traders 

The benchmarking of 
treatment 1 was done at the 
end of each period and 
summed up 

 

                                                 
15 If we assume the periods to represent months the respective risk free and risk adjusted interest rates were 1.21 

and 6.17 percent p.a. These are quite realistic numbers for real markets after adjusting for inflation. 

16 With this parameterization one period in our model can be interpreted as one quarter of a year in real world 

financial markets. The respective annual returns are 2.02 percent p.a. risk free and 8.24 percent p.a. for the 

risky asset. 
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Table 2. Elementary statistics. 

Treatment 
1 

Mean  
 

Standard 
deviation 

Excess 
kurtosis 

T “Benchmark 
excess kurtosis” 

Excess 
kurtosis* 

T* 

9_M1 0.005 0.112 67.10 827 3.93 73.52 802 

9_M2 0.001 0.039 7.85 505 2.25 8.33 480 

9_M3 0.001 0.050 14.15 275 1.66 13.86 250 

9_M4 0.003 0.082 116.42 870 4.35 126.20 845 

9_M5 0.004 0.090 7.03 717 2.07 7.41 693 

9_M6 0.002 0.062 20.63 898 6.39 21.48 874 

 
* excluding inter-period returns 

 
Treatment 

2 
Mean  

 
Standard 
deviation 

Excess 
kurtosis 

T “Benchmark 
excess kurtosis” 

Excess 
kurtosis* 

T* 

20_M1 0.001 0.040   1.58 353 6.83 1.68 329 

20_M2 0.004 0.086 10.23 651 4.86 10.36 627 

20_M3 0.003 0.079 17.44 1066 5.08 18.21 1043 

20_M4 0.003 0.082 10.15 1223 1.09 10.61 1198 

20_M5 0.001 0.046 11.75 1167 1.87 12.19 1141 

 
* excluding inter-period returns 
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Figure 2. Log-Log-Plot of the empirical cumulative distribution function (dots) of absolute 

returns of market 9_M1 (left panel) and of NYSE composite index, daily data, from January 

1st 1997 to December 31st 2000 (right panel). The horizontal axis shows absolute returns, the 

vertical axis its cumulative density. The solid line represents the gaussian regime with same 

mean and standard deviation. The probability of large absolute returns is much higher than 

would be expected by the gaussian distribution. 
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Table 3. Hill Estimator for the 10%, 5%, 2.5% tail of the cumulative distribution function of 

absolute returns. 

Treatment 1 10 % tail 5 % tail 2.5 % tail 

9_M1 4.16 5.09 4.09 

9_M2 5.26 5.69 6.95 

9_M3 5.49 6.88 5.28 

9_M4 5.05 5.68 6.35 

9_M5 4.76 12.05 11.98 

9_M6 3.38 3.81 5.92 

Median 4.91 5.69 6.14 

 
Treatment 2 10 % tail 5 % tail 2.5 % tail 

20_M1 7.96 9.79 20.28 

20_M2 4.79 8.07 8.34 

20_M3 4.74 5.80 8.23 

20_M4 4.81 6.62 11.23 

20_M5 4.61 6.52 7.03 

Median 4.79 6.62 8.34 
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Figure 3. Volatility Clustering: Returns Rt as a function of tick of market 20_M3 (left panel) 

and of NYSE composite index, daily data, from January 1st 1997 to December 31st 2000 (right 

panel). 
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Figure 4. Autocorrelation function of returns Rt (solid line) and absolute returns |Rt| (solid 

line with asterisks) of market 20_M2 (left panel) and of NYSE composite index, daily data, 

from January 1st 1997 to December 31st 2000 (right panel). The 95% confidence interval is 

represented by the dashed lines. The persistence in autocorrelation of absolute returns is a 

sign of volatility clustering.  
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Table 4. Fraction of trades conforming to fundamental strategy in the whole market (all 

returns) and in the “tails” of the CDF (for 10%, 5% and 2.5% of extreme values).  

Treatment 1 All Returns 10% Hill 5% Hill 2.5% Hill 

9_M1 80.8 65.5 66.7 68.2 

9_M2 77.0 73.5 73.1 60.7 

9_M3 71.8 73.2 73.3 68.8 

9_M4 59.6 61.4 60.2 60.9 

9_M5 75.3 76.0 78.4 71.1 

9_M6 79.8 84.0 89.1 89.1 

Median 74.1 72.3 73.5 69.8 

 
Treatment 2 All Returns 10% Hill 5% Hill 2.5% Hill 

20_M1 57.9 66.7 68.4 80.0 

20_M2 71.6 69.7 75.0 75.0 

20_M3 64.8 56.0 51.9 51.8 

20_M4 61.5 59.8 57.3 56.3 

20_M5 59.9 61.5 60.2 61.7 

Median 63.1 62.7 62.6 65.0 
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Table 5. Spearman correlation coefficients of absolute returns per period and the percentage 

of fundamentalist strategy per period. 

Treatment 1 Spearman 
Rho 

Significance 
(one sided) 

n 

9_M1 -0.354** 0.038 26 

9_M2 0.100** 0.481 26 

9_M3 -0.042** 0.418 26 

9_M4 0.372** 0.031 26 

9_M5 0.416** 0.017 26 

9_M6 0.398** 0.022 26 

Pooled Data 0.004** 0.481 156 

** significant at a 1% level; * significant at a 5% level 

 
Treatment 2 Spearman 

Rho 
Significance 
(one sided) 

n 

20_M1 0.724** 0.000 25 

20_M2 0.067** 0.375 25 

20_M3 -0.108** 0.308 24 

20_M4 -0.220** 0.140 26 

20_M5 -0.044** 0.414 27 

Pooled Data 0.193** 0.015 127 

** significant at a 1% level; * significant at a 5% level 
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Table 6. Spearman correlation coefficients of the standard deviation of conditional expected 

values and average absolute returns. 

Treatment 1 Spearman 
Rho 

Significance 
(one sided) 

n 

9_M1 0.379** 0.028 26 

9_M2 0.108** 0.300 26 

9_M3 0.013** 0.474 26 

9_M4 -0.035** 0.434 26 

9_M5 0.644** 0.000 26 

9_M6 0.161** 0.216 26 

Pooled Data 0.184** 0.011 156 

** significant at a 1% level; * significant at a 5% level 

 
Treatment 2 Spearman 

Rho 
Significance 
(one sided) 

n 

20_M1 -0.165** 0.216 25 

20_M2 0.205** 0.162 25 

20_M3 0.466** 0.011 24 

20_M4 -0.095** 0.323 26 

20_M5 0.226** 0.128 27 

Pooled Data 0.157** 0.039 127 

** significant at a 1% level; * significant at a 5% level 
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Figure 5. Average absolute return as a function of time fraction l of treatment 1 (left panel) 

and treatment 2 (right panel). 
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Table 7. Spearman correlation coefficients of average absolute returns and time fraction l for 

both treatments. 

 
Treatment 1 Spearman 

Rho 
Significance 
(one sided) 

n 

9_M1 -0.737** 0.008 10 

9_M2 -0.782** 0.004 10 

9_M3 0.321** 0.183 10 

9_M4 -0.782** 0.004 10 

9_M5 -0.806** 0.002 10 

9_M6 -0.648** 0.021 10 

Pooled Data -0.509** 0.000 60 

** significant at a 1% level; * significant at a 5% level 

 
Treatment 2 Spearman 

Rho 
Significance 
(one sided) 

n 

20_M1 -0.855** 0.001 10 

20_M2 -0.855** 0.001 10 

20_M3 -0.455** 0.093 10 

20_M4 -0.539** 0.054 10 

20_M5 -0.855** 0.001 10 

Pooled Data -0.547** 0.000 50 

** significant at a 1% level; * significant at a 5% level 

 


