
Parallel Implementation of Interactive 
Soft Body Dynamics

Laurin Stecher

Supervisors: Nikolaus Rauch, Marcel Ritter

Interactive Graphics and Simulation Group
Institute of Computer Science



 Soft body simulations for surgical 
training

 Rising demand for realistic and 
interactive simulations

 Interactive in real-time

Motivation

2Laurin Stecher, 14.11.2024

Surgical simulation, from Surega VR



1) Creation of an interactive real-time soft body simulation
 Position Based Dynamics was parallelized
 Includes a cutting tool for user interaction

2) Visualization and modeling of organic tissue
 Enable the usage of arbitrary triangle meshes within the simulation

Main Objectives

3Laurin Stecher, 14.11.2024



Model Descretization

4Initial Presentation – Laurin Stecher, 14.11.2023



PBD – Position Based Dynamics

5Laurin Stecher, 14.11.2024

 Based on particles and constraints
 Uses a Gauss-Seidel linear equation solver for state updates



 Different forms of constraints
 Fixed, Distance, Collision, …

 Act on particle positions

 Categorized into permanent and temporary 
 Permanent are always active
 Temporary are reset every loop iteration

Constraints

6Laurin Stecher, 14.11.2024

Example of a distance constraint



PBD – Position Based Dynamics

7Laurin Stecher, 14.11.2024

PBD algorithm [1]

Predict positions using forces and velocity

Solve all constraints (correction vectors)

Update particle state

Handle collisions



Challenges for Parallelism

8Laurin Stecher, 14.11.2024

 Particles
− Each thread writes to different array entry

 Constraints
− Multiple threads write to the same array entry

p1

p3p4

p2Correction vectors

p1 p2 p3 p4

Buffer containting pi

c1

c2

c3

c4

c5

c5: 
Δp4, Δp2

c1: 
Δp1, Δp4

c2: 
Δp1, Δp2

c3: 
Δp2, Δp3

c4: 
Δp3, Δp4



 Implemented using C++ with OpenGL

 The algorithm is computed in parallel on the GPU using Compute Shaders

 Introduces a weighted Jacobi-like solver to avoid race conditions when 
solving constraints in parallel
 Writes corrections to a buffer for every particle, applies them in a weighted form

 Used GPU buffers to store needed data (particles, constraints, …)
 No data transfer between GPU and CPU

GPU-Implementation

9Laurin Stecher, 14.11.2024



GPU-Implementation – Workflow

10Laurin Stecher, 14.11.2024

Jacobi-like solver 

 Shader invocation
 GPU buffers
 Hash grids



Collision Detection

11Laurin Stecher, 14.11.2024

 Realized by employing hash 
grid-based collision detection
 For particles and faces
 Based on position in space

 Depending on hash cell 
size, only neighboring cells 
are searched



Model Descretization

12Laurin Stecher, 14.11.2024



Model Descretization

13Laurin Stecher, 14.11.2024

1) First a two-stage voxelization process turns loaded models in voxel 
representation
 Essential for volume preservation

2) Then particles are placed in voxels and connected by distance constraints



Cutting Algorithm

14Laurin Stecher, 14.11.2024

Based on ray-casting and intersection testing with distance constraints

1) Track mouse position
2) Cast ray into scene
3) Check for intersections



Cutting Algorithm – Examples

15Laurin Stecher, 14.11.2024



Results

16Laurin Stecher, 14.11.2024



Results Visualization

17Laurin Stecher, 14.11.2024



 [1] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff “Position based dynamics”. Journal of Visual 
Communication and Image Representation 18(2), 2006. 
https://www.sciencedirect.com/science/article/pii/S1047320307000065

 [2] Joeyd de Vries. Learnopengl. (Website). Available online at: https://learnopengl.com

References

18Laurin Stecher, 14.11.2024


	Foliennummer 1
	Motivation
	Main Objectives
	Model Descretization
	PBD – Position Based Dynamics
	Constraints
	PBD – Position Based Dynamics
	Challenges for Parallelism
	GPU-Implementation
	GPU-Implementation – Workflow
	Collision Detection
	Model Descretization
	Model Descretization
	Cutting Algorithm
	Cutting Algorithm – Examples
	Results
	Results Visualization
	References

