
Parallel Implementation of Interactive 
Soft Body Dynamics

Laurin Stecher

Supervisors: Nikolaus Rauch, Marcel Ritter

Interactive Graphics and Simulation Group
Institute of Computer Science



 Soft body simulations for surgical 
training

 Rising demand for realistic and 
interactive simulations

 Interactive in real-time

Motivation

2Laurin Stecher, 14.11.2024

Surgical simulation, from Surega VR



1) Creation of an interactive real-time soft body simulation
 Position Based Dynamics was parallelized
 Includes a cutting tool for user interaction

2) Visualization and modeling of organic tissue
 Enable the usage of arbitrary triangle meshes within the simulation

Main Objectives

3Laurin Stecher, 14.11.2024



Model Descretization

4Initial Presentation – Laurin Stecher, 14.11.2023



PBD – Position Based Dynamics

5Laurin Stecher, 14.11.2024

 Based on particles and constraints
 Uses a Gauss-Seidel linear equation solver for state updates



 Different forms of constraints
 Fixed, Distance, Collision, …

 Act on particle positions

 Categorized into permanent and temporary 
 Permanent are always active
 Temporary are reset every loop iteration

Constraints

6Laurin Stecher, 14.11.2024

Example of a distance constraint



PBD – Position Based Dynamics

7Laurin Stecher, 14.11.2024

PBD algorithm [1]

Predict positions using forces and velocity

Solve all constraints (correction vectors)

Update particle state

Handle collisions



Challenges for Parallelism

8Laurin Stecher, 14.11.2024

 Particles
− Each thread writes to different array entry

 Constraints
− Multiple threads write to the same array entry

p1

p3p4

p2Correction vectors

p1 p2 p3 p4

Buffer containting pi

c1

c2

c3

c4

c5

c5: 
Δp4, Δp2

c1: 
Δp1, Δp4

c2: 
Δp1, Δp2

c3: 
Δp2, Δp3

c4: 
Δp3, Δp4



 Implemented using C++ with OpenGL

 The algorithm is computed in parallel on the GPU using Compute Shaders

 Introduces a weighted Jacobi-like solver to avoid race conditions when 
solving constraints in parallel
 Writes corrections to a buffer for every particle, applies them in a weighted form

 Used GPU buffers to store needed data (particles, constraints, …)
 No data transfer between GPU and CPU

GPU-Implementation

9Laurin Stecher, 14.11.2024



GPU-Implementation – Workflow

10Laurin Stecher, 14.11.2024

Jacobi-like solver 

 Shader invocation
 GPU buffers
 Hash grids



Collision Detection

11Laurin Stecher, 14.11.2024

 Realized by employing hash 
grid-based collision detection
 For particles and faces
 Based on position in space

 Depending on hash cell 
size, only neighboring cells 
are searched



Model Descretization

12Laurin Stecher, 14.11.2024



Model Descretization

13Laurin Stecher, 14.11.2024

1) First a two-stage voxelization process turns loaded models in voxel 
representation
 Essential for volume preservation

2) Then particles are placed in voxels and connected by distance constraints



Cutting Algorithm

14Laurin Stecher, 14.11.2024

Based on ray-casting and intersection testing with distance constraints

1) Track mouse position
2) Cast ray into scene
3) Check for intersections



Cutting Algorithm – Examples

15Laurin Stecher, 14.11.2024



Results

16Laurin Stecher, 14.11.2024



Results Visualization

17Laurin Stecher, 14.11.2024



 [1] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff “Position based dynamics”. Journal of Visual 
Communication and Image Representation 18(2), 2006. 
https://www.sciencedirect.com/science/article/pii/S1047320307000065

 [2] Joeyd de Vries. Learnopengl. (Website). Available online at: https://learnopengl.com

References

18Laurin Stecher, 14.11.2024


	Foliennummer 1
	Motivation
	Main Objectives
	Model Descretization
	PBD – Position Based Dynamics
	Constraints
	PBD – Position Based Dynamics
	Challenges for Parallelism
	GPU-Implementation
	GPU-Implementation – Workflow
	Collision Detection
	Model Descretization
	Model Descretization
	Cutting Algorithm
	Cutting Algorithm – Examples
	Results
	Results Visualization
	References

