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 Soft body simulations for surgical 
training

 Rising demand for realistic and 
interactive simulations

 Interactive in real-time

Motivation
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Surgical simulation, from Surega VR



1) Creation of an interactive real-time soft body simulation
 Position Based Dynamics was parallelized
 Includes a cutting tool for user interaction

2) Visualization and modeling of organic tissue
 Enable the usage of arbitrary triangle meshes within the simulation

Main Objectives
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Model Descretization
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PBD – Position Based Dynamics
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 Based on particles and constraints
 Uses a Gauss-Seidel linear equation solver for state updates



 Different forms of constraints
 Fixed, Distance, Collision, …

 Act on particle positions

 Categorized into permanent and temporary 
 Permanent are always active
 Temporary are reset every loop iteration

Constraints
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Example of a distance constraint



PBD – Position Based Dynamics
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PBD algorithm [1]

Predict positions using forces and velocity

Solve all constraints (correction vectors)

Update particle state

Handle collisions



Challenges for Parallelism
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 Particles
− Each thread writes to different array entry

 Constraints
− Multiple threads write to the same array entry
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 Implemented using C++ with OpenGL

 The algorithm is computed in parallel on the GPU using Compute Shaders

 Introduces a weighted Jacobi-like solver to avoid race conditions when 
solving constraints in parallel
 Writes corrections to a buffer for every particle, applies them in a weighted form

 Used GPU buffers to store needed data (particles, constraints, …)
 No data transfer between GPU and CPU

GPU-Implementation
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GPU-Implementation – Workflow

10Laurin Stecher, 14.11.2024

Jacobi-like solver 

 Shader invocation
 GPU buffers
 Hash grids



Collision Detection
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 Realized by employing hash 
grid-based collision detection
 For particles and faces
 Based on position in space

 Depending on hash cell 
size, only neighboring cells 
are searched



Model Descretization
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Model Descretization
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1) First a two-stage voxelization process turns loaded models in voxel 
representation
 Essential for volume preservation

2) Then particles are placed in voxels and connected by distance constraints



Cutting Algorithm
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Based on ray-casting and intersection testing with distance constraints

1) Track mouse position
2) Cast ray into scene
3) Check for intersections



Cutting Algorithm – Examples
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Results
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Results Visualization
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