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Language Models
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Reasoning in Language Models
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Temporal Commonsense Reasoning
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“Barack Obama is the President of the United States of America”

Duration
4 years

Frequency
4 years

Validity
2008-2016



Temporal Commonsense Reasoning
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“Barack Obama is the President of the United States of America”

Duration
4 years

Frequency
4 years

“He took office two years ago”

Validity
2 years

(from sentence creation)



Temporal Commonsense Reasoning
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“Barack Obama is the President of the United States of America”

Duration
4 years

Frequency
4 years

Validity
1 year

(from observation)

“He took office two years ago”
(Posted one year ago)



Use Cases of Temporal Validity
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Information Retrieval

…

…

Tracking Contemporaneity Content Prioritization



Temporal Validity Change Prediction (TVCP)
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Sampling Temporal Statements

Dataset Creation
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Filter & 
Rank

Crowdsourcing Context

0.23

0.82

0.93

153.178 Tweets 

58.082 Tweets

1.685 Temporal Target Statements

5.055 Data Points (3 x Target Statements)



Qualitative Analysis of Dataset
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Evaluated Language Models

Georg Wenzel Page 1114.11.2024

• (Likely) billions of parameters
• Pre-trained, generalized model
• Prompted via API
• Receive a textual response
• Parse class from the response

• Millions of parameters
• Fine-tuned, specialized model
• Calculate output neurons for input
• Receive a numeric output (vector)
• Neurons correspond to classes

Fine-tuned (LM)
(BERT, RoBERTa, SelfExplain)

Few-shot prompted (LLM)
(Mixtral-8x7B, Llama 2, GPT-3.5, GPT-4)



Fine-Tuned Models Outperform LLMs
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GPT-3.5 SelfExplain

EM: 31.1%
Few-shot prompted Fine-tuned

EM: 69.8%

<



LLM Performance Stagnates
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GPT-4 GPT-3.5

<
EM: 30.4% EM: 31.1%

$10.00 / 1M tokens $0.50 / 1M tokens



Prompt Engineering Improves LLMs
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GPT-3.5 (Thesis) GPT-3.5 (ACL)

EM: 29.3%

• Does not know the underlying class hierarchy
• Limited chain-of-thought reasoning
• Three few-shot samples (one per class)

• Knows and predicts the underlying class hierarchy
• Longer chain-of-thought reasoning process
• Nine perturbed few-shot samples (three per class)

EM: 31.1%

<



Multitask Learning Improves Fine-Tuned Models
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SelfExplain SelfExplain-MultiTask

EM: 69.8%

• Only trained on ternary output label classification • Trained on ternary output label classification 
and related temporal validity tasks

EM: 72.6%

<
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