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1 Introduction
Topological data analysis is a branch of mathematics which combines topology and
statistics in order to analyse datasets by their topological structure. The main idea
hereby is that given a point cloud in euclidean space, one assumes that the data
was drawn from a manifold and by using algebraic topology tries to measure the
persistence of its homology classes, allowing to classify the point cloud geomet-
rically. This approach has been gaining more popularity over the past decade
so its ideas have been extended to more abstract situations like greyscale images.
Furthermore there are already various software packages available in order to com-
pute persistence. We will mainly use the C++ software package DIPHA1 and the
R package TDA2 to compute persistent homology and visualise the calculations
properly.
The objective of this thesis is to accomplish two goals. First of all it gives an

introduction into this modern field of mathematics and secondly we apply the pre-
sented methods to real world data. We therefore start with a short discussion of
algebraic topology, mainly simplicial homology, in Section 1. Subsequently Section
2 presents topological data analysis. We begin with defining persistent homology
goups, followed by proving a main theorem about the decomposition of the per-
sistence module and its calculation. Afterwards we discuss popular methods of
visualising and analysing the persistence module. Persistence diagrams, persis-
tence landscapes and weighted silhouettes will hereby be the main topics. We
finish Section 3 by describing how topological data analysis is applied to greyscale
images. In Section 4 we will use topological data analysis in order to analyse 3D
greyscale images of fibrin nets. Fibrin nets are essential for blood clotting and
therefore their structure has an immense impact on how fast an open wound stops
bleeding. Typically, in a severly injured person, different types of dilutions need
to be administered into the bloodstream of the patient. Those dilutions can have
a distinct effect on coagulation, which can be observed in the structure of fibrin
nets. We will analyse the effect of two such dilutions used on pigs by comparing
the topological structure of their natural fibrin nets and their diluted ones.

1https://github.com/DIPHA/dipha
2https://CRAN.R-project.org/package=TDA

1

https://github.com/DIPHA/dipha
https://CRAN.R-project.org/package=TDA




2 Introduction to Algebraic Topology
Algebraic Topology is a branch of mathematics which studies topological spaces by
means of abstract algebra. Results like the Brouwer fixed point Theorem, Jordan-
Brouwer separation Theorem, the Borsuk-Ulam Theorem or even the birth of
category theory are some classical examples of its achievements. But also mod-
ern mathematics still carries on research in this field. For instance the Poincarè
conjecture has just been proven in 2006. The main algebraic tool we will focus on
is the so-called homological algebra. While there are several homology theories in
algebraic topology like singular, simplicial or cell homology, we mainly make use
of the simplicial homology due to its computability and its applicability on point
cloud data. A nice introduction to those three homologies can be found in [1],
which we will mainly follow during the next pages. But before we start we need
to briefly repeat the notion of affine simplices and define some notation.

2.1 Simplicial Complexes

In the following if (ai)i∈I is a family in a given group, for some arbitrary set
I, we denote by 〈(ai)i∈I〉 its generated subgroup. We use the same notation
for generated submodules or ideals, respectively. Given points p0, p1, . . . , pm ∈
Rn we write [p0, p1, . . . , pm] for the convex set spanned by these points, i. e. the
set of all convex combinations of p0, p1, . . . , pm. Furthermore we call the family
(p0, p1, . . . , pm) affine independent if (p1 − p0, . . . , pm − p0) is linearly independent
in Rn. This is equivalent to the property that each x in the affine set spanned by
{p0, . . . , pm} ∈ Rn, i. e. the set of all affine combinations, has a unique expression
as an affine combination ∑m

i=0 tipi, where ti ∈ R and ∑m
i=0 ti = 1. This shows

in particular that affine independence does not depend on the ordering of the
points. Therefore one calls the unique (m + 1)−tuple (t0, . . . , tm) the barycentric
coordinates of x with respect to (p0, p1, . . . , pm).

Definition 2.1 (Simplex)
Let (p0, p1, . . . , pm) ∈ Rn be affine independent. The convex set s = [p0, . . . , pm] is
called the (affine) m-simplex with vertices Vert(s) = {p0, p1, . . . , pm}. We call m
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2 Introduction to Algebraic Topology

its dimension and define the face opposite to pi as

[p0, . . . , p̂i, . . . , pm] =
{

m∑
j=0

tjpj

∣∣∣∣ ∑ tj = 1, tj ≥ 0, ti = 0
}

for i = 0, . . . ,m. More generally we call a simplex s′ a face of s if Vert(s′) ⊆ Vert(s)
and write s′ ≤ s. If Vert(s′) ( Vert(s) we call s′ a proper face and write s′ < s.

Remark. We call the set

∆n =
{

(x1, x2, . . . , xn+1) ∈ Rn+1
∣∣∣∣xi ≥ 0 and

n+1∑
i=1

xi = 1
}

the standard n-simplex. �

Definition 2.2 (Simplicial Complex)
A simplicial complex K is a finite set of simplices in some euclidean space satisfying
for every s, t ∈ K that

1) every face of s belongs to K,

2) s ∩ t is either empty or a common face of s and t.

Furthermore we define its underlying space |K| as

|K| =
⋃
s∈K

s

and its dimension
dimK = max

s∈K
(dim s) .

Remark. Obviously if K is a simplical complex, then |K| is a compact subspace of
the given euclidean space. �

Example 2.3. The set consisting of the simplices [A,B,C], [D,E, F ], see Figure
1, and all their faces, is not a simplicial complex since the second condition does not
hold, whereas K = {[A,B,D], [A,D,C], [D,C, F ], [C,E, F ] and all their faces} is
a simplicial complex. �

Definition 2.4 (Polyhedron)
LetX be a topological space thenX is called a polyhedron if there exists a simplicial
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2.1 Simplicial Complexes

A C

B

D

E

F

Figure 1: Illustration of Example 2.3

complex K and a homeomorphism ϕ : |K| → X. We say the pair (K, ϕ) is a
triangulation of X.

Example 2.5. Obviously every simplex defines a simplicial complex K where
(K, id) is a triangulation. Hence every simplex is a polyhedron. �

Example 2.6. We define an equivalence relation ∼ on the cartesian product [0, 1]2

by identifying (t, 0) with (t, 1) and identifying (0, t) with (1, t) for every t ∈ [0, 1]
and equip T2 = [0, 1]× [0, 1]/ ∼ with the final topology. Since

ϕ : T2 → S1 × S1 : (s, t) 7→
((

sin(2πs), cos(2πt)
)
,
(

sin(2πt), cos(2πs)
))
,

where (s, t) denotes the class generated by (s, t) and Sn the n-dimensional sphere,
is a well defined homeomorphism, T2 is a torus. Then a triangulation of the torus
is given in Figure 2. �

Figure 2: A triangulation of T2.

Since we will be dealing with more abstract spaces than the euclidean space, we
will also need the definition of an abstract simplicial complex.

Definition 2.7 (Abstract Simplicial Complex)
Let V be a finite set. An abstract simplicial complex K is a family of non-empty
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2 Introduction to Algebraic Topology

subsets of V , called simplices, such that

1) if v ∈ V , then {v} ∈ K,

2) if s ∈ K and t ⊆ s, then t ∈ K.

We call V the vertex set of K and denote it by Vert(K). And again we call a
simplex with n + 1 distinct vertices an n-simplex. A subset of K which is an
abstract simplicial complex itself is called a subcomplex.

Remark. Obviously every simplicial complex defines an abstract simplicial com-
plex. Additionally one can show that all simplicial complexes as well as all ab-
stract simplicial complexes form equivalent categories. Hence we won’t distinguish
between simplicial complexes and abstract simplicial complexes for the rest of this
thesis. �

2.2 Simplicial Homology

Before we start with the rigorous definition of the simplicial homology we will
look at a simple example which will motivate the geometrical ideas of this theory.
Consider the topological space X consisting of the vertices a, b, c and the edges
γ1, γ2, γ3, γ4 given as the graph in Figure 3. We additionally define an orientation
on X as shown by the arrows in Figure 3. Our goal is to calculate the number of

a

b

c

γ2

γ1

γ3γ4

Figure 3: The topological space X.

holes in X. We therefore want to identify closed loops in X. In order to do this
in an algebraically well defined way we define the set of zero-dimensional chains

6



2.2 Simplicial Homology

C0(X) as the free abelian group generated by the vertices a, b and c, i. e. every
x ∈ C0(X) has the form x = αa+ βb+ γc for some α, β, γ ∈ Z. And analogously
we define the set of one-dimensional chains C1(X) to be the free abelian group
generated by γ1, γ2, γ3 and γ4. In order to detect closed loops in X we define the
boundary operator

∂1 : C1(X)→ C0(X)

via

∂1(γ1) = b− a , ∂1(γ2) = c− b , ∂1(γ3) = a− c , ∂1(γ4) = a− c

and extend by linearity. Considering the closed loop γ4 − γ3 it follows that

∂1(γ4 − γ3) = a− c− (a− c) = 0 ,

thus γ4 − γ3 ∈ ker ∂1. We therefore refer to γ4 − γ3 as a 1-cycle and define the
subgroup of simplicial 1-cycles as Z1(X) = ker ∂1. A straightforward calculation
shows

Z1(X) = 〈γ1 + γ2 + γ3, γ1 + γ2 + γ4〉 ,

hence rankZ1(X) = 2 which corresponds to the two holes in the given space X.
Lets consider a slightly different situation by attaching a closed 2-cell3 ζ into the
left hole resulting in a new space Y which is illustrated in Figure 4. Repeating the

a

b

c

γ2

γ1

γ3γ4 ζ

Figure 4: The topological space Y .

3A closed n-cell is a homeomorphic copy of the n-dimensional closed unit ball.
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2 Introduction to Algebraic Topology

above computation in terms of Y now yields the same results as forX implying two
holes. But obviously we do not want the cycle γ4 − γ3 to capture a hole anymore.
Hence we now define C2(Y ) as the free abelian group generated by ζ and another
boundary operator

∂2 : C2(Y )→ C1(Y )

by setting ∂2(ζ) = γ4 − γ3 and extending by linearity. Clearly im ∂2 = 〈γ4 − γ3〉
and since

γ1 + γ2 + γ3 ≡ γ1 + γ2 + γ4 mod im ∂2

it follows
Z1(X)/ im ∂2 = 〈γ1 + γ2 + γ3〉 .

Hence we define the first homology group as H1(Y ) = Z1(Y )/ im(∂2) and showed
that rankH2(Y ) = 1 which corresponds to the one hole in Y . This observation
motivates the following construction of the simplicial homology.

Definition 2.8 (Oriented Simplicial Complex)
A simplicial complex K is called oriented if there is a partial order on Vert(K)
whose restriction to the vertices of any simplex in K is a linear order.

Definition 2.9 (n-Chains)
Let K be an oriented simplicial complex. For n ∈ N we define Cn(K) to be the
abelian group generated by all (n + 1)-tuples (p0, . . . , pn) with pi ∈ Vert(K) for
i = 0, . . . , n such that {p0, . . . , pn} spans a simplex in K and fulfilling the following
properties:

1) (p0, . . . , pn) = 0 if pi = pj for some i 6= j,

2) (p0, . . . , pn) = sign(σ)(pσ(0), . . . , pσ(n)) where σ is a permutation of {0, . . . , n}.

Remark. One can show that Cn(K) is a free abelian group with the basis consisting
of all symbols <p0, . . . , pn>, where p0 < p1 < . . . < pn and {p0, . . . , pn} spans an
n-simplex in K. Hence the above definition corresponds to our construction at the
beginning of this subsection. For an easy proof of this fact see [1, Lemma 7.10,
p. 143]. In particular this means that Cn(K) is a free Z-module. �
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2.2 Simplicial Homology

Definition 2.10 (Boundary Operator)
Let K be an oriented simplicial complex. For every n ∈ N≥1 we define the nth
boundary operator ∂n : Cn(K)→ Cn−1(K) by setting

∂n(<p0, . . . , pn>) =
n∑
i=0

(−1)i <p0, . . . , p̂i, . . . , pn>

and extending by linearity. Furthermore we set ∂0 as the constant zero mapping
on C0(K).

Theorem 2.11
Let K be an oriented simplicial complex of dimension n, then

0→ Cn(K) ∂n−→ . . .
∂2−→ C1(K) ∂1−→ C0(K)→ 0

is a (chain) complex, i. e. ∂k∂k+1 = 0 for all k ∈ Z, which we denote by (C∗, ∂).

Proof. The proof is a tedious calculation similar to [1, Theorem 4.6, p. 65]. �

Remark. Note that the above statement is equivalent to im ∂k+1 ⊆ ker ∂k. �

Definition 2.12 (Simplicial Homology)
Let K be an oriented simplicial complex and n ∈ N. Then we call

Zn(K) = ker ∂n

the group of simplicial n-cycles,

Bn(K) = im ∂n+1

the group of simplicial q-boundaries and

Hn(K) = Zn(K)/Bn(K)

the nth simplicial homology group. Furthermore we define the nth Betti number
as βn = rankHn(K).

Remark. 1) As we have seen in our initial motivational example, the nth Betti

9



2 Introduction to Algebraic Topology

number counts the number of (n + 1)-dimensional holes. For example β0

counts the number of connected components, β1 counts the number of holes
and β2 gives us the number of voids.

2) Since every abelian group is a Z-module and vice versa we will often refer
to Hn(K) as the nth homology module.

3) While we are mainly dealing with simplicial complexes, it is possible to define
the homology for more arbitrary topological spacesX. One therefore changes
the definition of n-chains from formal sums of simplices to formal sums of
continuous mappings

σ : ∆n → X

and adapts the boundary operator accordingly, for the technical details see [1,
Chapter 4]. Then the definition of the homology groups Hn(X) is the same
as in Definition 2.12. It is possible to show that for a simplicial complex K
it holds that

Hn(K) = Hn(|K|)

for every n ≥ 0, see [1, Theorem 7.22, p. 151]. Hence we can compute the
homology of a polyhedron by calculating the simplicial homology groups of
the given triangulation. This additionally shows that the simplicial homology
groups do not depend on the partial order of Vert(K). �

2.3 Calculating Homology Groups

Let K be a simplicial complex. Obviously Hn(K) is finitely generated for every n
and thus is completely classified by its rank and torsion coefficients by the Structure
Theorem.

Theorem 2.13 (Structure Thm. for Finitely Generated Abelian Groups)
Let G be a finitely generated commutative group. Then it holds

1) There exists a free abelian group F of finite rank r ∈ N and a finite group T
such that G ∼= F ⊕ T . We call F the free part and T the torsion part of G.

10



2.3 Calculating Homology Groups

2) There exist cyclic groups C1, . . . , Ck for a unique k ∈ N such that for bi = |Ci|
for i = 1, . . . , k it holds that b1 | b2 | . . . | bk and

T =
k⊕
i=1

Ci .

We call b1, . . . , bk the torsion coefficients of G.

3) Two finitely generated abelian groups are isomorphic if and only if they have
the same rank and the same torsion coefficients.

Proof. See for instance [2, Section 9.1]. �

Remark. Given a principal ideal domain (PID)R and a finitely generatedR-module
M of rankM = r the above theorem takes the following form. There exist non
invertible elements b1, . . . , bk ∈ R with b1 | b2 | . . . | bk such that

M ∼= Rr−k ×R/〈b1〉 × . . .×R/〈bk〉 .

Again k ∈ N is unique and the torsion coefficients b1, . . . , bk are unique up to
multiplication with units of R. �

In order to calculate the above decomposition we use the well known Smith
Normal Form of matrices. We recall that if R is a euclidean ring, for every matrix
A over R there exist invertible matrices P and Q over R such that A = PSQ

where S has the form

S =
 D 0

0 0


andD = diag(b1, . . . , brank(A)) and b1 | b2 | . . . | brank(A). We call S the Smith Normal
Form of A and b1, . . . , brank(A) the elementary divisors of A which are unique up to
multiplication with units of R.

Theorem 2.14 (Computation of Homology Groups)
For any oriented simplicial complex K, there exists an algorithm to compute the
homology groups of K.

Proof. See [3, p. 60]. �

11



2 Introduction to Algebraic Topology

Remark. The algorithm is given in the following way. Every Cn(K) is finitely
generated. Hence each boundary operator ∂n can be identified with a matrix Mn

with entries 0, 1 and -1. Let Sn be the Smith Normal Form of Mn and set rn as
the number of non-zero rows and cn as the number of zero columns of Sn. Then
the elementary divisors of Mn are the torsion coefficients of Hn(K) and it holds

βn = rankHn(K) = cn − rn+1 .

The reason for the latter equality is the following. Since Cn(K) is a free Z-module,
submodules of Cn(K) are also free since Z is a principial ideal domain. Thus Zn
and Bn+1 are free. Hence we can apply the Rank-nullity Theorem on the projection
map Zn → Zn/Bn+1 implying that

rankHn(K) = rankZn − rankBn+1 ,

which corresponds to the above statement. �
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3 Topological Data Analysis
The aim of topological data analysis is to identify the geometric structure within
some finite statistical data points set D. Therefore the idea is to use the given data
points as vertices of a simplicial complex and subdivide this complex into a family
of increasing subcomplexes. This should allow to measure the persistence of certain
topological features with respect to the given subcomplexes and hence gives us the
possibility to classify the data topologically. Since we get finitely many points, this
gives an upper bound of |D|−1 on the dimension of the simplices and additionally
we have an upper limit of

(
|D|
n+1

)
on the number of n-simplices. Therefore we will

assume that in the following all simplicial complexes are finite.

3.1 Persistent Homology

We start by constructing the main tool of topological data analysis, the persistent
homology, where we mainly follow the approach in [4]. Given a metric space one
way of defining a simplicial complex K from a point cloud is by using the distances
between the given points. We introduce two popular methods in this setting.

Definition 3.1 (Čech4 and Vietoris5 -Rips6 Complex)
Let ε > 0, (M,d) be a metric space and F ⊂M finite.

i) We define the Čech Complex Cε as the abstract simplicial complex whose
n-simplices are given as unordered (n+1)-tuples of points of F whose closed
ε/2-ball neighborhoods have a point of common intersection.

ii) We define the Vietoris-Rips Complex Rε as the abstract simplicial complex
whose n-simplices are given as unordered (n+ 1)-tuples of points of F which
are pairwise within distance ε.

Example 3.2. Figure 5 illustrates a Čech as wells as a Vietoris-Rips complex
from a point cloud for some fixed ε > 0. �

4Eduard Čech, 1893—1960, Czech mathematician
5Leopold Vietoris, 1891—2002, Austrian mathematician
6Eliyahu Rips, born 1948, Israeli mathematician

13



3 Topological Data Analysis

Cε

Rε

Figure 5: A point cloud in R2 where every point is surrounded by an ε neighbourhood (top) and
its corresponding Čech Complex (middle) and Vietoris-Rips Complex (bottom) for a
fixed ε > 0.
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3.1 Persistent Homology

Definition 3.3 (Filtration)
Given a simplicial complex K, a filtration is a totally ordered set of subcomplexes
Ki of K, for i ∈ N, such that i ≤ j implies Ki ⊆ Kj.

Remark. 1) Assume there is a function f : K → R defined on a simplicial com-
plex such that it is monotonic on faces of K, i. e. whenever s′ ≤ s holds it
follows f(s′) ≤ f(s). This implies that Ka = f−1((−∞, a]) is a subcomplex
K for every a ∈ R. Since we assume that K is finite, f takes finitely many
values. Let a1 < . . . < aN for N ∈ N be the function values of f , then we
get an increasing sequence

∅ = K0 ⊆ K1 ⊆ . . . ⊆ KN = K

where a0 = −∞ and Ki = Kai . We call this sequence the filtration of f .

2) Using the Čech or Vietoris-Rips complex we can generate a filtration by
choosing an increasing sequence (εi)Ni=1. This gives

C0 ⊆ Cε1 ⊆ . . . ⊆ CεN

and
R0 ⊆ Rε1 ⊆ . . . ⊆ RεN ,

respectively. �

Definition 3.4 (Subcomplex)
Let (S∗, ∂) be a complex, then we say that the complex (S ′∗, ∂′) is a subcomplex of
S∗ if the diagram

S ′n S ′n−1

Sn Sn−1

injn

∂′n

injn−1

∂n

where injn is an injection from S ′n into Sn, commutes for every n ∈ Z, i. e. for every
n S ′n is a submodule of Sn and ∂n|S ′n = ∂′n.

Remark. In the following, especially when dealing with subcomplexes, we will omit
certain indices in order to improve readability. Furthermore we sometimes write

15



3 Topological Data Analysis

S∗ instead of (S∗, ∂) for a given complex. �

From now on we assume that K is a simplicial complex equipped with a filtration
(Ki)i∈N. Then every i defines its own chain complex (Ki∗, ∂i) and it’s own homology
module. We therefore write Kin, Zi

k, B
i
n and H i

n for the nth chain, cycle, boundary
and homology module of Ki respectively as well as βin for the corresponding Betti
number. Since for every p > 0 it holds Ki ⊆ Ki+p and we can embed Kin into
Ki+pn . Thus Zi

n is a submodule of Ki+pn . In particular (Ki∗, ∂i) is a subcomplex of
(Ki+p∗ , ∂i+p). This allows us to make the following definition.

Definition 3.5 (Persistent Homology Modules)
Let j ≥ i then we call the modules

H i,j
n = Zi

n/(Bj
n ∩ Zi

n)

the nth persistent homology modules. Additionally we set the corresponding nth
persistent Betti numbers as

βi,jn = rankH i,j
n .

Remark. Instead of measuring holes in Ki which are not generated as boundaries
from an (n + 1)-chain, H i,j

n characterizes the n-cycles in Ki which are not the
boundary of an (n + 1)-chain in the larger complex Kj. So H i,j

n characterises
(n+ 1)-dimensional holes in Kj created in Ki. Note that these holes exist in every
complex K` where i ≤ ` ≤ j. �

Definition 3.6 (Chain Map)
Let (S∗, ∂) and (S ′∗, ∂′) be complexes, then we call a sequence of morphisms
(fn : S ′n → Sn)n∈Z a chain map if the diagram

· · · S ′n−1 S ′n S ′n−1 · · ·

· · · Sn−1 Sn Sn−1 · · ·

fn+1

∂′n+1

fn

∂′n

fn−1

∂n+1 ∂n

commutes for every n ∈ Z and shortly write f = (fn) : (S ′∗, ∂′)→ (S∗, ∂).

In the above situation we see that for two complexes (Ki∗, ∂) and (Ki+1
∗ , ∂) the

16



3.1 Persistent Homology

... ... ...

· · · Kin Ki+1
n Ki+2

n · · ·

· · · Kin−1 Ki+1
n−1 Ki+2

n−1 · · ·

... ... ...

∂in+1 ∂i+1
n+1 ∂i+2

n+1

inj

∂in

inj

∂i+1
n ∂i+2

n

inj

∂in−1

inj

∂i+1
n−1 ∂i+2

n−1

Figure 6: A section of a persistence module.

familiy of injections inji : (Ki∗, ∂) → (Ki+1
∗ , ∂) is a chain map which induces mor-

phisms ηin = injiind : H i
n → H i+1

n on the homology groups. This motivates the
following definitions.

Definition 3.7 (Persistence Complex)
The sequence of complexes and chain maps (Ki∗, inji) is called a persistence complex.

Remark. 1) Figure 6 shows a section of a persistent complex. Each column is a
chain complex.

2) For j ≥ i set
ηi,jn = ηj−1,j

n ◦ . . . ◦ ηi+1,i+2
n ◦ ηi,i+1

n ,

then H i,j
n = im ηi,jn holds. �

Definition 3.8 (Persistence Module)
The nth persistence module Hn is the family of homology modules H i

n and module
morphisms ηin. We call a persistence module of finite type if each module is finitely
generated and there exists an integer m such that for every i ≥ m it holds that ηin
is an isomorphism.

Remark. 1) Since we assumed that all simplicial complexes we are dealing with
are finite, all persistence modules are of finite type.

2) More generally given a function f : X → R defined on some arbitrary topo-

17



3 Topological Data Analysis

logical space X one defines the associated nth persistence module Hn(f) by
Ha
n = Hn(f−1((−∞, a])) for a ∈ R and the corresponding module morphisms

again induced by inclusion. One calls f tame if the associated persistence
module is constant and finite-dimensional for all but finitely many a ∈ R.
Hence in our situation we always assume f is tame. �

3.2 Graded Rings and Modules

Our next goal is to classify the persistence module. We therefore need to shortly
repeat the notion of graded rings and graded modules.

Definition 3.9 (Graded Ring)
A ring R is called Z-graded if for every k ∈ Z there exists an additive subgroup
Rk such that

R =
⊕
k∈Z

Rk

and
Rk ·R` ⊆ Rk+`

for each k, ` ∈ Z. We call an element of a ∈ Rk homogenous of degree k and write
deg(a) = k.

Remark. In the following we simply call a Z-graded ring, graded. �

Example 3.10. Let F be a field. Then the polynomial ring F[t] is a graded ring
by setting

F[t]k = {ctk | c ∈ F}

for k ≥ 0 and F[t]k = {0} for negative k. �

Definition 3.11 (Homogenous Ideal)
Let R be a graded ring, then a two-sided ideal I in R is called homogenous if one
of the following equivalent conditions holds:

1) a = ∑
k∈Z ak ∈ I where ak ∈ Rk implies ak ∈ I for every k,

2) I = ⊕
k∈Z I ∩Rk,

3) I is generated by homogenous elements.

18



3.3 Decomposition of the Persistence Module

Propostion 3.12 (Graduation of the Quotient Ring)
If R is a graded ring and I a homogenous ideal then R/I is a graded ring by
defining

(R/I)k = (Rk + I)/I .

Proof. Assume that ∑
k∈Z

ak = 0 in R/I

for some ak ∈ (Rk + I). Then ∑k∈Z ak ∈ I and since I is homogenous it follows
ak ∈ I for each k. Hence

∑
k∈Z

(R/I)k =
⊕
k∈Z

(R/I)k.

The remaining conditions are clear since R is graded. �

Definition 3.13 (Graded Module)
A left graded module is a left module M over a graded ring R such that

M =
⊕
k∈Z

Mk

where each Mk is a submodule of M and

Rk ·M` ⊆Mk+`

for all k, ` ∈ Z. Again we call an element of Mk homogenous of degree k. Given
two graded Modules M1 and M2 an R linear bijective map ϕ : M1 →M2 is called
a graded module isomorphism if for every m ∈ M1 homogenous of degree k it
holds ϕ(m) has degree k in M2 for every k. In this situation we call M1 and M2

isomorphic as graded modules.

3.3 Decomposition of the Persistence Module

Now we want to define a structure on Hn such that it becomes a graded module
over the polynomial ring F[t] for some field F. At this point we want to mention,
that one can define the notion of chains, cycles, boundaries and homology classes
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3 Topological Data Analysis

analogously over arbitrary rings or fields instead of Z. We therefore identify in the
following n-chains as formal sums with coefficients in F.
By definition we can identify

Hn =
∞⊕
i=0

H i
n .

For the variable t we now define the multiplication as

t ·
( ∞∑
i=0

ξi
)

=
∞∑
i=0

ηin(ξi)

where ξi ∈ H i
n. Then clearly Hn is a graded module which is also F[t] finitely

generated. Hence our goal will be to again classify the persistence module via the
Structure Theorem. But we additionally want to make use of the graduation of
Hn. Im order to do so we need to shift the graduation of F[t] properly. Choose
a finite generating system γ1, . . . , γr of homogenous elements of the persistence
module with minimal cardinality and let di = deg(γi) for i = 1, . . . , r. We define
a graduation on F[t]r as F[t]-module by

F[t]r =
∞⊕
`=0

(
r⊕

k=1
F[t]`−dk

)
.

Hence we shift the graduation in the components by the degree of the generators
of Hn. Consider the canonical surjection

ϕ : F[t]r →Hn : (p1, . . . , pr) 7→
r∑

k=1
pkγk .

Let (p1, . . . , pr) be homogenous, i. e. there exists an ` ∈ N such that pk ∈ F[t]`−dk
for every k. Thus

ϕ(p1, . . . , pr) =
r∑

k=1
pkγk ∈ H`

n

since pkγk ∈ F[t]`−dkHdk
n ⊆ H`

n. Hence ϕ is a graded homomorphism and thus
U = ker(ϕ) is a homogenous ideal. Since U is a submodule and F[t] is PID, U is
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3.3 Decomposition of the Persistence Module

also finitely generated by homogenous elements, i. e.

U = 〈tc1 , . . . , tcm〉

for some non-negative integers c1, . . . , cm and m ∈ N. Applying the first Isomor-
phism Theorem yields

Hn
∼= F[t]r/U

and since ∞⊕
`=0
F[t]`−d −→ 〈td〉 ⊆

∞⊕
`=0
F[t]` : p 7−→ tdp

is a graded module isomorphism for every d ∈ N, the above yields the following
decomposition.

Theorem 3.14 (Decomposition of the Persistence Module)
In the above situation it holds

Hn
∼=
(

m⊕
i=1
〈tai〉

)
⊕
(

n⊕
j=1
〈tbj〉/〈tcj〉

)

for some unique non-negative integers n,m, ai, bj and cj.

Proof. The existence of this graded module isomorphism was shown above hence
uniqueness remains to be proven. Due to the Structure Theorem it follows that n
and m are unique. Now assume there exist additional non-negative integers ãi, b̃j
and c̃j such that

Hn
∼=
(

m⊕
i=1
〈tãi〉

)
⊕
(

n⊕
j=1
〈tb̃j〉/〈tc̃j〉

)
.

We show uniqueness of the free part. Let ϕ denote the graded module isomorphism

ϕ :
m⊕
i=1
〈tai〉 −→

m⊕
i=1
〈tãi〉 .

Since ϕ is a graded isomorphism it holds ϕ(ta1) = αta1 for some α ∈ F[t]0 = F.
Choose β̃1, . . . , β̃m such that αta1 = ∑m

i=1 β̃it
ãi . Since ta is homogenous for ev-

ery a ∈ N we can assume that every β̃i is homogenous and thus there exist
β1, . . . , βn ∈ F such that β̃i = βit

a1−ãi for i = 1, . . . , n. It follows αta1 = ∑m
i=1 βit

a1
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3 Topological Data Analysis

and since the above sums are direct it follows there exists a j such that a1 = aj,
α = βj and βi = 0 for i 6= j. Using that ϕ is bijective iterating the above argument
implies the claim. �

Remark. We can interpret the above decomposition as follows. Each ai and bj

correspond to a new (n+ 1)-dimensional hole which is born in the simplicial com-
plexes Kai and Kbj , respectively, while cj represents the index of the hole born
in complex Kbj , in which it disappears. Hence the above theorem enables us to
classify the topological features within our data. �

3.4 Computing the Persistence Module

We now quickly discuss a basic algorithm to compute the persistence modules
according to Theorem 3.14. We hereby follow mainly [5, Chapter 7], [6] as well as
[7, Topic 4]. Due to computational sufficiency we now slightly change the definition
of n-chains. Let K be a finite simplicial complex as usual. In the following we
define Cn(K) as the Z/Z2 vector space generated by the n-dimensional simplices of
K, instead of being the generated Z-module. Furthermore we define the boundary
operators by setting ∂n(σ) as the sum of all (n−1)-dimensional faces where σ is an
n-dimensional chain, and extend by linearity. The definitions of cycles, boundaries
and homology groups stay the same.
Assume that a filtration of K is given and that the simplices σ1, . . . , σm of K are
totally ordered such that the faces of a simplex precede the simplex itself and that
the simplices in each complex Ki in the filtration precede the ones in K \ Ki, e. g.
K is generated by a monotonic function f . Now we encode this ordering and hence
the filtration via one matrix ∂ by setting

∂ij =

1, if σi is a codimension one face of σj;

0, otherwise.

Note that the rows and columns of ∂ are ordered like the simplices and that
the boundary of a simplex corresponds to the entries of its column. Due to the
ordering ∂ is obviously upper triangular. For a non-zero column ∂−j we define
low(j) = max{i ∈ {1, . . . ,m} | ∂ij = 1} and call ∂ reduced if low(j1) 6= low(j2)
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3.4 Computing the Persistence Module

whenever j1 6= j2. Algorithm 1 then computes a reduced form of ∂ by adding
columns from left to right. In the worst case this algorithm needs O(m3) op-

Algorithm 1: Reduce Matrix [5]
Data: ∂ Boundary Matrix
Result: R reduced form of ∂

1 R = ∂
2 for j = 1, . . . ,m do
3 while there exists j0 < j with low(j0) = low(j) do
4 R−j ← R−j +R−j0 ;
5 end
6 end
7 return R

erations, see [8]. Since R is computed by adding columns from ∂ we can write
R = ∂ · V where V encodes those elementary operations. Since Algorithm 1 adds
columns only from left to right V is also upper triangular and thus R. While the
matrices R and V are not unique one can show that the lowest non-zero entries do
not depend on the algorithm used in order to compute a reduced form, see [5, p.
183]. R and V now contain all the information we need in order to calculate the
persistent homology modules. Initially we can compute the Betti numbers of the
complex K. We write # Zeron(R) for the number of zero columns and # Lown(R)
for the number of lowest ones in rows of R which correspond to an n-simplex.
Additionally we denote by rn the number of n-simplices of K, i. e. rn = rankCn(K)
and let Dn be the corresponding matrix to ∂n. Since V is invertible the ranks of
∂ and R are the same. Thus it follows

rankBn−1(K) = rankDn = # Lown(R)

which implies
rankZn(K) = rn − rankDn = # Zeron(R)

and therefore
rankHn(K) = # Zeron(R)−# Lown(R) .
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3 Topological Data Analysis

But the decomposition R = ∂ · V stores more information. Foremost we observe
what happens by adding the n-simplex σj ∈ K \ Kj−1 to Kj−1 and assume for
simplicity that Kj = {σj} ∪ Kj−1. Then two situations are possible.

1) Adding σj to Kj−1 creates a new n-cycle since there is no (n + 1)-chain in
Kj where σj is a face. This new cycle cannot be part of the boundary of an
(n+1)-chain and hence a new homology class is born. Furthermore only one
new homology class can be generated. Every newly generated cycle contains
σj. Thus by choosing one new cycle γ and adding it as a new basis element to
a basis of the previos homology module, then each new cycle can be written
as a linear combination of γ and the older basis. Since therefore σj increases
the corresponding Betti number βin we shall henceforth call σj positive.

2) Adding σj does not create a new cycle. Hence the boundary ∂n(σj) was a
non-trivial cycle in Kj−1 and was filled by σj. Again only one homology class
can be killed. Since σj now reduces the Betti number we call it negative.

Now we will see that we can decide which of the cases above occurs by simply
looking at R. Firstly we realise that adding ∂−j1 to ∂−j2 corresponds to the sum
σj1 + σj2 and since Algorithm 1 only adds columns from left to right the column
R−j obtains its final form at the end of the jth iteration of the for loop. Again
there are two situations possible at this point.

1) R−j is a zero column. Hence the n-chain given by the sum of simplices
indexed by the row indices of non-zero entries in V−j creates a cycle. Since
σj is a summand this cycle has to be new. Thus σj is positive.

2) R−j is non-zero. Let γ denote the (n−1)-simplex accumulated in R−j. Then
γ is a non-trivial cycle in Kj−1, otherwise R−j could have been written as a
linear combination of the previous columns and hence it would have become
a zero column but in Kj it becomes a boundary. Thus adding σj kills the
homology class γ. Now let k = low(j). Then the cycle γ was generated by
adding σk, since it is the youngest part of γ and since we have a filtration also
the homology class γ was born when adding σk. So putting it all together we
get that adding σj kills the homology class γ which was born at Kk. Hence
σj is negative.
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Figure 7: The filtration described in Example 3.15. Red simplices give birth to new, while blue
ones kill previously existing homology classes.

Example 3.15. Consider for example K to be a simplicial complex consisting of
a triangle and all of its faces, i. e.

K =
{

[v1], [v2], [v3], [v1, v2], [v2, v3], [v1, v3], [v1, v2, v3]
}

where v1, v2, v3 denote distinctive points in some euclidean space. A filtration is
given by initially adding the vertices, then the edges and finally the whole triangle
and numbering them in this order from 1 to 7, see Figure 7. Application of the
above algorithm on the boundary matrix yields the following decomposition
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

1 2 3 4 5 6 7

1 1 0 0 1 1 0 0
2 0 0 0 1 0 0 0
3 0 0 0 0 1 0 0
4 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 1
7 ︸ ︷︷ ︸

R

0 0 0 0 0 0 0


=



1 2 3 4 5 6 7

1 1 1 1 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1

︸ ︷︷ ︸
∂

0 0 0 0 0 0 0





1 2 3 4 5 6 7

1 1 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0

︸ ︷︷ ︸
V

0 0 0 0 0 0 1



The first lowest one is in the first row and column, which corresponds to the
transition from the empty set to K1 consisting of the first vertex. Since adding the
vertices 2 and 3 creates two new 0-cycles, namely [v1] + [v2] and [v1] + [v3], see V−2

and V−3, R2 andR3 are zero-columns. In column four we find the second lowest one.
This signifies that the 0-cycle which was created by adding the vertex 2 is killed
by edge [v1, v2]. Indeed it holds ∂1([v1, v2]) = [v1] + [v2] where ∂1 denotes again the
first boundary operator. Equivalently the 0-cycle born by vertex 3 vanishes due to
edge [v1, v3]. Since column 6 is zero, adding edge [v2, v3] doesn’t kill anything and
generates the first 1-cycle given by the sum of the edges [v1, v2] + [v2, v3] + [v1, v3],
indicated in V−6. This 1-cycle born in K6 is then killed by adding the whole triangle
in the 7th and final part of the filtration. �

Remark. There are already more efficient algorithms available. One variation of
Algorithm 1 which relies on sparse matrix implementations can also be found in
[6]. �

3.5 Persistence Diagrams

Since we are now able to compute the persistence module, we want to visualise
it. One way of achieving this is by means of so-called persistence diagrams. We
hereby follow mainly [9]. Let the filtration of the simplicial complex at hand be
given by sublevel sets of a tame function f , see Subsection 3.1, then we define for
an n-dimensional homology class γ which is born in Kai and vanishes entering Kaj ,
b(γ) = ai, d(γ) = aj and pers(γ) = aj − ai respectively. Hence we can identify
each such class by a multiset of R2. The multiset of all those points together with
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the diagonal ∆ of R2 is called the nth persistence diagram which we denote by
dgmn(f). The technical reason for adding the diagonal is clarified in the next
remark. Intuitively we can interpreted it as representing trivial homology classes
which arise and die in the same simplicial complex. Since pers(γ) ≥ 0 for every γ
all points lie above or on the diagonal. Note that every persistence diagram has
only finitely many points off the diagonal. Since we only consider classes which die
at some point in the filtration, one often therefore chooses a filtration such that
every hole vanishes at some point or one identifies a class which was born in Kai

but never vanishes with the point (ai, aN) where aN = supK f . A metric on the
set of all persistence diagrams is given by the Wasserstein distance.

Definition 3.16 (Wasserstein Distance)
Let p ≥ 1 then the pth Wasserstein distance of two persistence diagrams d1 and
d2 is defined as

Wp(d1, d2) =
(

inf
σ

∑
x∈d1

‖x− σ(x)‖p∞

) 1
p

where σ ranges over all bijections from d1 to d2 and ‖·‖∞ denotes the infinity norm.

Remark. Since we added the diagonal to a persistence diagram the set of all bijec-
tions from d1 to d2 is non-empty. �

For n ∈ N define a persistence diagram dn = {(0, 2−k) | k = 1, . . . , n}∪∆. Then
it holds

Wp(dn, dn+k) ≤
1
2n

and thus (dn)n∈N is a Cauchy sequence. But since the number of points above
the diagonal goes to infinity as n → ∞, the limit is not a persistence diagram
anymore. One therefore adapts the definition of persistence diagrams.

Definition 3.17 (Generalized Persistence Diagram)
A generalized persistence diagram is a countable multiset of points in R2 together
with the diagonal ∆ where each point on the diagonal has multiplicity infinity.

Definition 3.18 (Space of Persistence Diagrams)
Let d∅ = ∆ denote the empty diagram and p ≥ 1 then we call the subset

Dp = {d |Wp(d, d∅) <∞}
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of all generalized persistence diagrams as the space of persistence diagrams.

Remark. With the above adaption it is shown in [9] thatDp is a Polish space, i. e.Dp
is a completely metrisable space. This admits the definition of Fréchet means and
conditional probabilities. Although the Fréchet mean may be not unique in this
setting. Again see [9] for the corresponding constructions and proofs. �

Example 3.19. Figure 8 shows the persistence diagram of the filtration in Ex-
ample 3.15. Blue points represent zero-dimensional homology classes while orange
ones display one-dimensional classes. Since the component created by adding the
first vertice never vanishes, we draw the according homology class as a rectangle
instead of a circle with coordinates (1, 7). �

Example 3.20. Figure 9 shows three Vietoris-Rips complexes created from a
point cloud drawn from a double annulus and the corresponding persistence di-
agram. The upper circle has radius 1 while the circle below has 1/2. As in
Example 3.19 blue points represent zero-dimensional and orange points illustrate
one-dimensional homology classes and since one component never dies, we draw it
as a rectangle. As we can see many components rise, but vanish with increasing
radii. Furthermore the diagram captures the birth and death of two holes. For
the calculation of the persistence diagram the C++ software package DIPHA was
used. �

We finish this subsection by stating a stability theorem from [10]. Let k ∈ R.
We say a topological space X implies bounded degree-k persistence if for every
Lipschitz continuous map f with Lipschitz constant ≤ 1 it holds

∑
γ∈Dgmn(f)

pers(γ)k ≤ CX

for some constant CX ≥ 0 only depending on X.

Theorem 3.21 (Total Persistence Stability Theorem)
Let X be a triangulable, compact metric space that implies bounded degree-k total
persistence for k ≥ 1, and let f, g : X → R be two tame Lipschitz continuous
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Figure 8: Persistence diagram of Example 3.19

functions. Then it holds for all dimensions n ∈ N and p ≥ k that

Wp

(
Dgmn(f),Dgmn(g)

)
≤ C‖f − g‖

1− k
p

∞

where C is some constant depending on X, f, g and k.

3.6 Persistence Landscapes

Another way of analysing and visualising the persistence module is via persistence
landscapes defined in [11]. In the following fix n ∈ N and again assume K is a
simplicial complex equipped with a filtration generated by a function f : K → R.
Recall that for j ≥ i it holds H i,j

n = im ηi,jn and hence βi,jn = dim(im ηi,jn ). In
particular we get for i ≤ k ≤ ` ≤ j that βi,jn ≤ βk,`n since

H i,j
n = im

(
η`,jn ◦ ηk,`n ◦ ηi,kn

)
.
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Figure 9: Three Vietoris-Rips complexes created from a point cloud uniformly drawn from two
circles, only 1-simplices are drawn due to visibility (top). The corresponding persistence
diagram where the radii increasingly vary from 0 to 1 (bottom).
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Let a1, . . . , aN denote the finitely many function values of f . We set βa,bn = dimH i,j
n

where a ∈ [ai, ai+1) and b ∈ [aj, aj+1). Then we define the rank function by

R2 → R : (a, b) 7→

β
a,b
n , if a ≤ b ,

0 , otherwise.

Changing the coordinates by

m = a+ b

2 and h = b− a
2

gives us the rescaled rank function

R2 → R : (a, b) 7→

β
m−h,m+h
n , if h ≥ 0 ,

0 , otherwise.

Definition 3.22 (Persistent Landscape)
The persistent landscape is a sequence (λk : R→ [−∞,∞])k∈N where

λk(t) = sup({m ≥ 0 | βt−m,t+mn ≥ k}) .

Remark. 1) Note that if 0 ≤ m1 ≤ m2 holds, it follows βt−m2,t+m2
n ≤ βt−m1,t+m1

n

for every t ∈ [−∞,∞].

2) One can show that λk is 1-Lipschitz continuous for every k ∈ N. See [11,
Appendix].

3) Every persistence landscape corresponds to exactly one persistence diagram
and vice versa. �

Example 3.23. Figure 10 shows the rank and rescaled rank function correspond-
ing to a persistence diagram along with its persistence landscape. �

Since every persistence landscape is a function λ : N × R → [−∞,∞] we can
define a norm on the set of persistence landscapes by using the p-norm on N×R
induced by the product measure of the counting measure and Lebesgue measure
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Figure 10: A persistence diagram and its corresponding rank function (top), rescaled rank func-
tion (middle) as well as the affiliated persistence landscape (bottom). The values of
the rank functions are given in the specific region.
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on N and R respectively for 1 ≤ p <∞, i. e.

‖λ‖pp =
∞∑
k=1
‖λk‖pp =

∞∑
k=1

∫
R
|λk(t)|p dt

and since Lp(N×R) is a Banach space, this will enable us to apply the theory of
Banach space valued random variables. We therefore will quickly repeat the main
notions of probability in Banach spaces.

Banach Space Valued Random Variables Let B be a real separable Banach
space with norm ‖·‖ and (Ω,F ,P) a probality space. Let X : Ω → B be a Borel
random variable. Then the compositions ‖X‖ : Ω → R as well as f(X) : Ω→ R,
where f ∈ B∗ and B∗ denotes the topological dual, are real-valued random vari-
ables. An element EX ∈ B is called Pettis integral of X if

Ef(X) =
∫

Ω
f
(
X(ω)

)
dP(ω) = f(EX)

holds for every f ∈ B∗. One can show that if E‖X‖ < ∞ then X has a Pettis
integral and ‖EX‖ ≤ E‖X‖. We call the set of expectations

E

[(
f(X)− Ef(X)

)(
g(X)− Eg(X)

)]

for f, g ∈ B∗ the covariance structure of X. Furthermore there exist versions of the
Strong Law of Large Numbers and the Central Limit Theorem for Banach spaces.

Theorem 3.24 (Strong Law of Large Numbers)
Let X1, . . . , Xn be i. i. d. Banach space valued random variables with E‖X1‖ <∞.
Set Sn = ∑

iXi then 1
n
Sn → E(X1) almost surely.

Theorem 3.25 (Central Limit Theorem)
Let X1, . . . , Xn be i. i. d.Lp(N × R) valued random variables for 2 ≤ p < ∞ and
EX1 = 0 as well as E‖X1‖2 < ∞ then 1√

n
Sn converges weakly to a Gaussian

random variable G with the same covariance structure as X, i. e.

lim
n→∞

Eϕ

(
1√
n
Sn

)
= ϕ(G)
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for every ϕ ∈ Lp(N×R)∗.

Proof. See [12]. �

Now lets return to persistence landscapes. Let X denote a random variable on
a probability space (Ω,F ,P) such that X(ω) for ω ∈ Ω is the given data and let
Λ be its corresponding persistence landscape, i. e. Λ: Ω → LP (N × R) such that
Λ(ω) = λ(X(ω)) for every ω ∈ Ω where λ denotes the persistence landscape of the
data X(ω). We shortly write λ for λ(X(ω)) in the following. Let X1, . . . , Xn be
i. i. d. random variables and Λ1, . . . ,Λn their corresponding persistence landscapes.
Then the mean landscape Λn = 1

n

∑n
i=1 Λi is given pointwise, meaning

Λn(ω)(k, t) = λ
n(k, t) = 1

n

n∑
i=0

λi(k, t)

where k ∈ N and t ∈ R. Applying the Strong Law of Large Numbers (SLLN) and
the Central Limit Theorem for Banach space valued random variables now yields.

Theorem 3.26 (SLLN for Persistence Landscapes)
In the above situation it holds Λn → EΛ1 almost surely if EΛ1 <∞.

Theorem 3.27 (Central Limit Theorem for Persistence Landscapes)
In the above situation let p ≥ 2 and E‖Λ1‖ < ∞. Additionally let E‖Λ1‖2 < ∞
then

√
n(Λn−EΛ1) converges weakly to a Gaussian random variable with the same

covariance structure as Λ1.

Corollary 3.28. In the above situation let p ≥ 2 and q such that 1
p

+ 1
q

= 1. For
f ∈ Lq(N×R) set Yi = ‖fΛi‖1 for i = 1, . . . , n. If E‖Λ1‖ <∞ and E‖Λ1‖2 <∞,
then

√
n(Y n − EY1) converges in distribution to a normally distributed random

variable with mean zero and the same variance as Y1.

Proof. Since for Zi = Λi − EΛi for i = 1, . . . , n the Central Limit Theorem holds
in Lp(N×R), for g ∈ Lp(N×R)∗, g(Zi) fulfills the Central Limit Theorem in R
and hence converges in distribution to a normally distributed random variable with
mean zero and variance E(g(Z1)2). Fixing f ∈ Lq(N×R) and setting g(h) = ‖hf‖1

then implies the statement. �
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3.6 Persistence Landscapes

Remark. 1) In the situation of the above corollary we set

S2
n = 1

n− 1

n∑
i=1

(Yi − Y
n)2

then we get for α ∈ (0, 1) the (1− α) confidence interval for EY1 by

Iα(X1, . . . , Xn) =
[
Y
n ± Φ1−α2

Sn√
n

]

where Φ1−α2 denotes the 1− α
2 quantile of the standard normal distribution.

2) Let X1, . . . , Xn be i. i. d. and X ′1, . . . , X
′
n′ be i. i. d. random variables which

satisfy the conditions of Corollary 3.28 and let Yi and Y ′i be accordingly
as above. Setting µ = EY1, µ′ = EY ′1 as well as s2

Y = 1
n−1

∑n
i=1(Yi − Y )2

and s2
Y ′ similarly one can use the two-sample t-test in order to test the

null hypothesis that µ = µ′ since the random variables are asymptotically
normally distributed. The test statistic is hereby given by

T (Y1, . . . , Yn, Y
′

1 , . . . , Y
′
n′) = Y

n − Y ′n√
s2
Y

n
+ s2

Y ′
n′

which is student t distributed with n + n′ − 2 degrees of freedom under the
null hypothesis.

3) Typical choices of a function f in Corollary 3.28 are

f1(k, t) =

1, if t ∈ [−B,B] and k ≤ K ,

0, else

or by setting

f2(k, t) =


1
kr
, if t ∈ [−B,B] and k ≤ K ,

0, else

for some r > 1 if we assume that every given persistence landscape has its
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3 Topological Data Analysis

support in {1, . . . , K} × [−B,B]. The first one yields ‖f1Λ‖1 = ∑K
k=1‖λk‖1

while for the latter it holds ‖f2Λ‖1 = ∑K
k=1

1
kr
‖λk‖1. �

Again we close this subsection with a stability result similar to Theorem 3.21
given in [11, Theorem 16].

Theorem 3.29 (Landscape Stability Theorem)
Let X be a triangulable, compact metric space that implies bounded degree-k total
persistence for k ≥ 1 and let f, g be tame Lipschitz continous functions. Let λf
and λg denote the persistence landscapes associated with the persistence diagram
generated by f and g, respectively. Then for all dimensions n ∈ N and p ≥ k it
holds

‖λf − λg‖p ≤ C‖f − g‖p−k∞

for some constant C ≥ 0 depending on X, f, g and k.

3.7 Weighted Silhouettes

As a last method in order to analyse the topology of the data we discuss weighted
silhouettes given in [13]. Assume a persistence diagram with off diagonal points
(bj, dj)Nj=1 for N ∈ N. Then we set

Λpj(t) =


t− bj, if t ∈

[
bj,

bj+dj
2

]
dj − t, if t ∈

(
bj+dj

2 , dj
]

0, else

where pj = (bj, dj) for j = 1, . . . , N . In Figure 10 the hat functions in the middle
plot correspond to Λp1 ,Λp2 and Λp3 where p1, p2, p3 denote the three points in
the persistence diagram. Using the above functions we can define the persistence
landscapes of the previous subsection also as

λ(k, t) = kmaxi=1,...N Λpi(t)

where kmax is the kth largest value. We want to define a function similar to the
persistence landscape which additionally weighs the persistence of the points in
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3.7 Weighted Silhouettes
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Figure 11: Two power-weighted silhouettes for p = 1 (left) and p = 3 (right) corresponding to
the persistence diagram in Figure 10. The silhouettes were computed using the R
package TDA.

the persistence diagram.

Definition 3.30 (Power-Weighted Silhouette)
Let 0 < p <∞ then we define in the above situation the power-weighted silhouette
as

φ(p)(t) =
∑N
j=1|dj − bj|

pΛpj(t)∑N
j=1|dj − bj|

p

for t ∈ R.

Remark. 1) The parameter p weighs the persistence of each point. When p is
small the silhouette puts more emphasis on points with lower lifespan while
a larger p gives more attention to points with higher persistence.

2) One can show stronger stochastical convergence results like in the previous
section holding for weighted silhouettes as well as persistence landscapes.
For the details see [13]. �

Example 3.31. In Figure 11 we see two power-weighted silhouettes corresponding
to the persistence diagram in Figure 10 computed with the R package TDA version
3.4.1. As we can see the right silhouette puts more focus on the features with higher
persistence since the value of p is higher. �
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3 Topological Data Analysis

3.8 Topological Data Analysis for Image Data

We now want to apply topological data analysis on greyscale images or their higher-
dimensional analogs like 3D scans. Due to the structure of such an image one
adapts the definition of homology groups in order to increase performance. This
yields the definition of cubical cell homology. We hereby briefly discuss [14]. A
detailed construction of the cubical homology can be found in [15, Chapter 2].
For k ∈ Z we call the unit interval [k, k + 1] a non-degenerate elementary interval
and [k, k] a degenerate interval. Let d ∈ N. A cube in Rd is a product of d
elementary intervals. Its dimension is defined as the number of non-degenerate
intervals in the product. One calls 0, 1, 2 and 3-dimensional cubes as vertices,
edges, squares and voxels, respectively. Given two cubes C1 and C2 we call C2

a face of C1 if C2 ⊆ C1. The boundary of a d-dimensional cube is the set of
all (d − 1)-dimensional faces and again the dth boundary operator of a cube is
defined as the modulo 2 sum of its boundary elements. A collection of cubes
of dimension at most d which is closed under taking faces and intersections is
called a d-dimensional cubical complex. One now uses cubical complexes in order
to describe the given image data which consequently allows to circumvent the
triangulation and therefore reduces the size of the complex drastically. A filtration
is created by using sublevel sets of the function f which assigns each pixel of the
given image its corresponding grey value. These grey values are interpreted as
the values of vertices of a complex. Now we extended f on edges, squares and so
on, by defining its value as the maximum grey value of its faces, where an edge is
defined as two adjacent pixels, a square consists of four neighbouring pixels, etc.
This ensures that each cube is added to the filtration after all of its faces. Hence
this construction yields a filtration

K0 ⊆ K1 ⊆ . . . ⊆ K255

where Kn = f−1((−∞, n]) = f−1([0, n]). This filtration is called the lower-star
filtration of f . After sorting the complex in ascending order of its function val-
ues one again creates a sorted boundary matrix and uses reduction to compute
the persistence homology, see Subsection 3.4. Again we can interpret the Betti
numbers as the number of components, holes, voids and so on in the data.
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3.8 Topological Data Analysis for Image Data

Example 3.32. In Figure 12 we see an example of the above construction applied
on a greyscale image of an annulus, 12a. By subsequently increasing the greyscale
value of the sublevel sets of f , more and more pixels are added to the complex,
as we can see in 12b–12d, where the added pixels are colored green if there grey
levels are smaller or equal than 20, 35 and 57 respectively. As we can see in the
corresponding persistence diagram of the 1-dimensional features 12e, a lot of holes
arise in this process. But due to their low persistence we can interpret most of
them as noise. While clearly the homology class born at 57 and vanishing at 255
sticks out of the others. This class represents the hole of the annulus which we can
see in 12d arises at a level of 57 and dies at the very end of the filtration by adding
the white pixels with a value 255 to the cubical complex. Thus our geometrical
interpretation of the Betti numbers is still reasonable. The diagram was computed
with the C++ software package DIPHA. �
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3 Topological Data Analysis

(a) Greyscale image of an annulus.

(b) The annulus for which each pixel where f ≤ 20 holds, is colored green.

(c) The annulus for which each pixel where f ≤ 35 holds, is colored green.

40



3.8 Topological Data Analysis for Image Data

(d) The annulus for which each pixel where f ≤ 57 holds, is colored green.

(e) Persistence diagram of the lower-star filtration of the annulus.
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Figure 12: Visualisation of a part of the lower-star filtration and the corresponding persistence
diagram of the greyscale image of an annulus 12a.
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4 Application to Fibrin Nets

4.1 Fibrin Nets

Fibrin is a protein which is created from Fibrinogen. Its main task is to cause blood
clotting in order to stop bleeding. Therefore, given a severly injured patient who
needs volume replacement, it is important to maintain a natural fibrin net struc-
ture to enhance chances of survival. A more sophisticated and brief explanation
is given in [16]: "Fibrinogen is a large protein synthesized by the liver that makes
up some 5% of total plasma protein. Various stimuli, including injury, activate a
sequence of clotting factors that cause soluble fibrinogen to be converted enzymi-
cally to fibrin, an insoluble polymer matrix that is the structural component of
blood clots. Raised fibrinogen levels indicate an increased risk of ischemic heart
disease and stroke. It is uncertain whether fibrinogen is a risk factor that causes
cardiovascular disease (CVD) or a marker of developing disease. Fibrinogen is an
acute-phase reactant, and the circulating level increases in response to infection,
chronic inflammation, smoking, and other environmental stressors."

4.2 Approach and Results

We now want to apply topological data analysis to 3D greyscale images of fibrin
nets in order to find out how two different dilutions effect the topology of the
nets. To do so, we observe 3D greyscale images of fibrin nets of four different pigs
indexed by 12, 14, 19 and 24. For each pig we provide an image of its natural
fibrin net, called the baseline, and one of its diluted net. The blood of the pigs
12 and 19 were diluted with Hextend by Biotime7 whereas pigs number 14 and 24
were treated with Gelofusin by Braun8.
First of all, image processing was conducted in MATLAB Version R2017a by

applying 3D box filtering for noise reduction followed by histogram equalization to
improve contrast and guided filtering to perform edge-preserving smoothing, see
Figure 13. Afterwards the persistence diagrams were computed as described in
3.8 using the C++ software package DIPHA. The characteristics of the topological

7http://www.biotimeinc.com
8http://www.bbraun.com
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4 Application to Fibrin Nets

Figure 13: Left: The original image of a fibrin net. Right: The same image but denoised.

features are depicted by weighted silhouettes for p = 20 computed using the TDA
package in R version 3.4.1. Those silhouettes give a summary of how distinct the
most distinguished features are; the larger the area under the silhouette (AUC),
the more distinct features are present. Therefore, we provide the relative change
in AUC from baseline in the silhouette plots. In addition, given the persistence
diagrams of the baseline and diluted net, we provide the percentage of the 0.05%
most persistent features of both diagrams together compared to the baseline to
assess the change in the topological features. This index will be called Feature and
will be added to the plot of the silhouettes as well.
In Figure 16 we see the baseline of pig 12 and its Hextend diluted net. Figure

15 shows the corresponding persistence diagrams where again blue and orange
points represent components and holes, respectively, while yellow points depict
voids. Figure 16 shows the corresponding weighted silhouettes, where the black
line represents the baseline and the red one corresponds to the dilution. Just
by looking at the images of the nets we note quite some differences. While the
baseline consists of a vast amount of thin filaments, the structure under dilution
is distinctively coarser. The number of strings has drastically reduced, while their
thickness increased considerably which can be interpreted as as more stiff and
unflexible net than the natural one. Let us therefore observe whether the diagrams
in Figure 15 and the weighted silhouettes in Figure 16 capture those differences.
First we observe that looking at the diagrams both seem to have a similar structure
within their components. This seems to be true when observing the most persistent
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4.2 Approach and Results

components represented by the feature rate. A feature rate of 59.56% shows that
the number of high persistent components is quite balanced. However the area
under the the silhouettes ascends by approximately 150%. Hence the diluted
fibrin network contains more components with lower persistence. Looking at the
one-dimensional features we see in the diagram that the high persistence homology
classes from the dilution outnumber the classes of the baseline. This is emphasized
by a higher feature rate of nearly 71%. However observing the silhouettes and the
AUC change, we realise that there is only a small difference. But this again can
be interpreted properly. While the holes in the diluted net have a much higher
persistence, which could be due to their greater size, the holes in the natural
blood sample have a shorter lifespan but due to the fine structure of the net,
considerably more classes are born implying larger values of the silhouette. As
final characteristic we investigate the voids encapsulated within the nets. While in
the persistence diagram we don’t recognise a significant difference, keep in mind
that the plotted diagram does not visualise the multiplicity of the points, we note
that the silhouttes vary significantly from one another. The area under curve
increases by about 270% and ancillary the feature rate is nearly 97%. This high
rate of long persisting features also explains why the AUC change is so enormous.
The reason for the sudden change of existing and persisting voids can again be
explained by the thickness of the filaments. Those thick strings encapsulate voids
within while the thin threads in the baseline don’t have room for such voids. Due
to the drastic differences in the voids, it looks like especially those two-dimensional
features correlated with the rigidy of a fibrin net.
Up next we evaluate the results concerning pig number 14, where Gelofusin

was administered. Its nets are given in Figure 17, the corresponding persistence
diagram in Figure 18 and the related silhouettes can be seen in Figure 19. Looking
at the nets they both seem quite similar except for the big cluster in the left centre
of the dilution. This cluster probably is a relict due to damaged plasma in the
test specimen. The hope is therefore that this relict does not have a strong impact
on our analysis, since the remaining structure of the nets looks nearly identical
at least on the pictures. This similarity is visualised in the persistence diagram.
Although there are more holes with higher persistence in the diluted net than in
the baseline, one would say they look alike. However, observing the feature rates,
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4 Application to Fibrin Nets

(a) Baseline of pig 12.

(b) Hextend diluted net of pig 12.

Figure 14: Fibrin nets of pig 12.
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(a) Persistence diagram of the baseline of pig 12.
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(b) Persistence diagram of the Hextend diluted net of pig 12.

Figure 15: Persistence diagrams of pig 12.
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12 Components

Feature 59.56%
AUC change 152.14%

12 Holes

Feature 70.94%
AUC change −10.38%

12 Voids

Feature 96.83%
AUC change 271.96%

Figure 16: Weighted silhouettes corresponding to pig 12. The black line corresponds to the
baseline while the red one indicates the diluted sample.

we note that tose seem to be quite little. But despite the low feature rates the AUC
is relatively small and also the silhouettes themselves are comparable. We suspect
that the low feature rates appear because of the cluster in the diluted net. This
presumable relict obviously decreases the number of components and holes. And
while the thickness of the strings within the cluster will surely encapsulate voids,
wee see that the net has such a dense and fine structure outside of the cluster, even
finer than the baseline of pig number 12, that also those fragile filaments probably
enclose hollow spaces and therefore this cluster reduces the overall number of
homology classes in each dimension. So putting those observations in contrast to
the results of pig number 12, the net diluted by Gelofusin is more comparable to
the baseline than the net under a Hextend dilution.
Lets move on to swine 19. As number 12 this pig has been treated with Hextend.

Its nets are depicted in Figure 20, the persistence diagrams are plotted in Figure
21 and the affiliated silhouettes are shown in Figure 22. Looking at the images
of the fibrin nets it again looks like Hextend changes the geometrical structure.
While in the baseline the strings seem to be fragile and floating around separately,
the dilution has thicker strings which appear to form circles. While the persistence
diagrams show little difference, the silhouettes and feature rates encode enormous
differences. For every dimension the feature rate is highly above 50%. In particular
the feature rate regarding components lies at 98.18%. Hence the long persistent
features appear with such a high multiplicity that they outnumber the ones in the
baseline by far. Again this is not surprising. Surely also the baseline contains
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4.2 Approach and Results

(a) Baseline of pig 14.

(b) Gelofusin diluted net of pig 14.

Figure 17: Fibrin nets of pig 14.
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(a) Persistence diagram of the baseline of pig 14.

(b) Persistence diagram of the Gelofusin diluted net of pig 14.

Figure 18: Persistence diagrams of pig 14.
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14 Components

Feature 8.53%
AUC change 10.58%

14 Holes

Feature 28.01%
AUC change −19.01%

14 Voids

Feature 22.67%
AUC change −19.74%

Figure 19: Weighted silhouettes corresponding to pig 14. The black line corresponds to the
baseline while the red one indicates the diluted sample.

many components with high persistence due to its fine structure. But the thick
pattern in the dilution generates even more long living components, also causing
a high change in the area under the curve. Another tremendous discrepancy can
be observed for one-dimensional classes. While the high persistent features of the
Hextend diluted net exceed the ones of the baseline by far the AUC changes by
nearly 1500%. So the quantity as well as the lifespans of holes in the dilution
surpass the ones in the baseline dramatically, which can be again explained by
the coarser structure which appears after adding Hextend. Additionally we also
see the same changes, although not as enormous, for voids within the nets, i. e. a
feature rate of 72.37% and a AUC change of 41.43%.
As final observation we take a look at pig number 24. This pig was treated

with Gelofusin and once more we note that the corresponding fibrin nets look
quite similar, see Figure 23. Also the persistence diagram in Figure 24 seem to
resemble each other. Looking at the silhouettes, Figure 25, we note that the
silhouettes of the components and holes also are similar. Therefore the AUC of
the silhouettes corresponding to components only changes by approximately 25%
despite the marginal feature rate of 2.59%. Observing the feature rate of the
holes it follows that the number of high persistent one-dimensional features is
nearly balanced and that the area below the curves changes by moderate 17%.
Nevertheless the weighted silhouettes corresponding to voids differ substantially,
although the feature rate is again relatively modest. Hence the high AUC change
arises due to a higher number of voids within the diluted net. But despite the
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(a) Baseline of pig 19.

(b) Hextend diluted net of pig 19.

Figure 20: Fibrin nets of pig 19.
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(a) Persistence diagram of the baseline of pig 19.

(b) Persistence diagram of the Hextend diluted net of pig 19.

Figure 21: Persistence diagrams of pig 19.
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19 Components

Feature 98.18%
AUC change 135.09%

19 Holes

Feature 78.26%
AUC change 1474.02%

19 Voids

Feature 72.37%
AUC change 41.43%

Figure 22: Weighted silhouettes corresponding to pig 19. The black line corresponds to the
baseline while the red one indicates the diluted sample.

difference in this silhouette, comparing the overall results of pig 24 with the ones
of pig 12 and 19, this still shows that the baseline and the dilution are more similar
to each other than in the cases where Hextend was used.
Let us summarize our results. Applying topological data analysis to the fib-

rin networks of the four pigs yields a trend towards Gelofusin inducing a more
natural fibrin net than Hextend. While Gelofusin delutions provide similar silhou-
ettes, Hextend yields vast differences between the silhouettes, causing higher AUC
change rates. Also the balance of high persistent one- and two-dimensional fea-
tures and therefore most characteristic holes and voids seem to be shifted towards
the diluted nets when using Hextend in comparison to pig number 24, for which
the rate has been more ore less balanced. Surely pig number 14 which was treated
with Gelofusin also provided unbalanced feature rates which clearly were tending
towards the baseline, it is likely that this imbalance is caused by the relict of the
blood plasma captured in the 3D image of the natural net.
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(a) Baseline of pig 24.

(b) Gelofusin diluted net of pig 24.

Figure 23: Fibrin nets of pig 24.
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(a) Persistence diagram of the baseline of pig 24.

(b) Persistence diagram of the Gelofusin diluted net of pig 24.

Figure 24: Persistence diagrams of pig 24.
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24 Components

Feature 2.56%
AUC change −25.29%

24 Holes

Feature 46.42%
AUC change 17.02%

24 Voids

Feature 64%
AUC change 92.62%

Figure 25: Weighted silhouettes corresponding to pig 24. The black line corresponds to the
baseline while the red one indicates the diluted sample.
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5 Conclusion
The aim of this thesis was to provide an introduction to the modern field of topo-
logical data analysis as well as applying this theory to real world data, namely
3D greyscale images of fibrin nets, which play an important role in blood clotting
and henceforth are, for instance, important when it comes to severly wounded
patients. We therefore gave a short introduction into algebraic topology and sub-
sequently discussed the theoretical background of topological data analysis, that is
persistent homology. Also an algorithm which computes the persistent homology
groups was presented. Additionally we discussed established methods which are
used to analyse the calculated results. This subsequently also lead us to stochas-
tical convergence results which allow the computation of confidence intervals and
hypothesis testing. We then showed how this theory is adapted in order to anal-
yse high-dimensional greyscale images, which is achieved by applying the so-called
lower-star filtration on the sublevel sets of the greyscale values of each pixel. Af-
terwards we started to use the previous techniques in order to analyse the effects
of two dilutions on the geometrical structure of fibrin nets. We therefore ana-
lyzed fibrin nets caputred from blood samples of four pigs. Each providing a 3D
greyscale image of its natural fibrin net and one of its diluted net. Using weighted
silhouettes and the two cofficients Feature and AUC Change we stated the hy-
pothesis that diluting with Gelofusin causes a more natural fibrin net while the
second dilution Hextend causes a more rigid fibrin net. However since our sample
size is so small, we cannot test our hypothesis. Hopefully this can be addressed in
the future.
Overall this thesis shows that topological data analysis seems to be a promising
method in modern data analysis. Despite the abstract algebraic methods it is
built on, its geometrically motivated ideas allow to classify data in terms of their
topological shape. Thus maybe enabling new perspectives when it comes to ob-
serving given data statistically. As Professor Gunnar Carlsson, one of the pioneers
of topological data analysis, famously stated,

"Data has shape, and shape has meaning."
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