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Abstract. We aim to extend the understanding of Lie quandles from a math-
ematical perspective, starting with the foundational concepts of Lie groups, Lie
algebras, and quandles. By introducing smooth quandles and extending them
to Lie quandles, we explore the basic properties of these structures, which may
prove useful in further research. Our investigation reveals a close relationship
between Lie quandles and Lie algebras, particularly for Lie quandles associated
to Lie algebras that have a trivial center. We recover Lie algebra structures and
operations within Lie quandles, such as the addition, scalar multiplication, and
the Lie-bracket, and discuss how the vector space properties of Lie algebras ma-
nifest in their associated Lie quandles. Of particular interest is the existence of
inverse elements and commutativity within these structures. Finally, we explore
deeper connections between Lie algebras and their associated Lie quandles by
analyzing homomorphisms in both structures and investigating how these map-
pings correspond to each other. This work provides a foundation for further
exploration of the algebraic structure of observables in physics through the lens
of Lie quandles, offering potential new insights into mathematical structure of
physical theories.
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1 Introduction

1.1 Motivation

Observables play a crucial role in both classical and quantum physics. With
their two roles, on the one hand as being measurable quantities, and on the
other hand as quantities that generate transformation groups, that include the
symmetries and dynamics of certain theories, they form a connection between
physical theories with actual experimental measurements and the correspond-
ing abstract mathematical formulations. This is explained in more detail in
[Baez, 2022]. In this work we focus on the fact that the space of observables
forms a Lie algebra and further that it is enough to consider Lie quandles in-
stead. This is explained in [Fritz, 2024] where also Lie quandles are introduced
originally. For a more physical interpretation and motivation we also refer to
this paper. For our purpose we can think of a Lie quandle as the non-linear gen-
eralizations of a Lie algebra or for better understanding the other way around:
see a Lie algebra as the linearisation of its associated Lie quandle.
The motivation for this work is to get a better understanding of this algebraic
structure from a mathematical perspective. Starting with Lie groups, Lie al-
gebras and quandles we extend the definition of smooth quandles to get to Lie
quandles based on these well-known concepts.
Moreover we will develop basic properties of Lie quandles, which could be handy
in further research. In that context the concepts of Lie quandles and Lie al-
gebras seam to be closely related, so here we focus on Lie quandles associated
to Lie algebras. The idea stems from the observation that because Lie groups
and Lie algebras are well-studied in continuous settings the integration of these
theories can lead to a richer understanding of the newly introduced structure.
Especially for Lie quandles associated to Lie algebras with trivial center i.e.

[A,B] = 0 ∀B =⇒ A = 0

we are able to derive information about the addition, scalar multiplication and
the Lie-bracket from the Lie quandle structure.
Due to the fact that Lie algebras are vector spaces another interesting question
is how the vector space properties manifest themselves in an associated Lie
quandle. Of great interest are here the existence of an inverse element and the
commutativity.
Finally as the main result of this work we search for deeper connections between
Lie algebras and its associated Lie quandles by looking at homomorphisms in
each structure and investigate how they correspond to each other.

1.2 Lie groups and Lie algebras

Now for a detailed discussion we start with a brief introduction in Lie theory
and quandle theory to cover the main background we use to define and prove the
results in this work. For the Lie group and Lie algebra theory we use to develop
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Figure 1: Visualization of the multiplication in the Lie group S1 as in Example
1.2 (1) for elements a = eiφ and b = eiψ.

the results about Lie quandles later we refer to [Hall, 2003] where mostly matrix
Lie groups and its Lie algebras are considered and [Varadarajan, 1974].

Definition 1.1. A Lie group is a smooth manifold G together with a smooth
group product G×G→ G, for which the inverse map g → g−1 is smooth.

Example 1.2. (1) Let S1 ⊆ C ∼= R2 be the unit circle in the complex plane.
Together with the complex multiplication this forms a Lie group. It is
clear that S1 is a smooth manifold. Using Euler’s identity to represent an
element in S1 the multiplication of two elements a, b ∈ S1 with a = eiφ

and b = eiψ is
a · b = eiφ · eiψ = ei(φ+ψ)

as it is visualized in Figure 1. For the inverse mapping we map the angle
φ of an element eiφ to −φ. Both operations are clearly smooth.

(2) Expanding the first example in n dimensions and further, consider ar-
bitrary reflections and rotations additional to rotations on the unit cir-
cle. This leads to the set of all orthogonal matrices O(n;R) = {M ∈
Rn×n|MTM = In}. Together with the matrix multiplication this set is
a Lie group. It is well known that O(n;R) is a submanifold of GL(n;R)
and so itself a smooth manifold. For the matrix multiplication for some
matrices A,B we have

ci,j =

n∑
k=1

ai,kbk,j
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with components ai,k of A, bk,j of B and ci,j of AB. For every component
of the product AB we get a sum of multiplications, and this is obviously
smooth. The whole map is then clearly smooth, too.
The inverse of a orthogonal matrix M is given by M−1 = MT . The
transposition map is linear and so it is smooth.

Definition 1.3. A Lie algebra is a vector space g over a field K ∈ {R,C},
together with a map [·, ·] : g× g → g with the following properties:

1. [·, ·] is bilinear.

2. [X,Y ] = −[Y,X] for all X,Y ∈ g.

3. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ g.

Example 1.4. The set of all matrices Mn = {M ∈ Rn×n} together with the
commutator operation [A,B] = AB −BA for A,B ∈Mn is a Lie algebra.
The space Mn is a n2 dimensional vector space, so we are left to check the
properties of [·, ·].
The first and second condition are trivial. For the third we write everything out
and get

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] =XY Z︸ ︷︷ ︸
a

−XZY︸ ︷︷ ︸
b

−Y ZX︸ ︷︷ ︸
c

+ZY X︸ ︷︷ ︸
d

+Y ZX︸ ︷︷ ︸
c

−Y XZ︸ ︷︷ ︸
e

−ZXY︸ ︷︷ ︸
f

+XZY︸ ︷︷ ︸
b

+ZXY︸ ︷︷ ︸
f

−ZY X︸ ︷︷ ︸
d

−XY Z︸ ︷︷ ︸
a

+Y XZ︸ ︷︷ ︸
e

=0.

This seems like a trivial example but in fact every finite dimensional Lie
algebra is isomorphic to a subalgebra of the set of all matrices Mn(C) as the
theorem of Ado shows.

Theorem 1.5 (Ado). Every finite-dimensional real Lie algebra is isomorphic to
a subalgebra of Mn(R) for n ∈ N. Every finite-dimensional complex Lie algebra
is isomorphic to a complex subalgebra of Mn(C) for n ∈ N.

You can find the proof in [Varadarajan, 1974].
Looking at the definitions it is not clear that there is a connection between
Lie groups and Lie algebras, but there is. For every Lie group we can find an
associated Lie algebra by taking the tangent space at the identity. That means
that for a Lie group G the elements of its associated Lie algebra g are the
derivatives of smooth paths in G through the identity, evaluated at the identity.
Written as a mathematical statement: Let G be a Lie group and

P := {p0 | p0 : [−1, 1] → G a smooth path inGwith IdG = p0(0)}
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then every element X ∈ g of the associated Lie algebra g can be constructed
with

X =
d

dt

∣∣∣∣
t=0

p0(t) (1)

for all p0 ∈ P . Some of the paths might correspond to the same element in
the Lie algebra. We will collect such paths in one equivalence class and only
consider one representative pX0 for the following computations. The + of two
elements in the Lie algebra X,Y is then defined with the product of two paths
in the Lie group pX0 , p

Y
0 by

X + Y =
d

dt

∣∣∣∣
t=0

pX0 (t)pY0 (t) (2)

Or can be alternatively defined with the sum of tangent vectors at the identity
of the manifold with respect to the group operation. The two definitions are
equivalent. For the recovery of the Lie bracket the connection between the Lie
group homomorphism Ad() and the Lie algebra homomorphism ad() is used.

Definition 1.6. Let G be a Lie group, with Lie algebra g. Then for each A ∈ G
the adjoint mapping is defined as the linear map AdA : g → g by the formula

AdA(X) = AXA−1

We denote the group of all invertible linear mappings of a Lie algebra g
by GL(g). Then the map A 7→ AdA is a Lie group homomorphism from G
to GL(g). Further, for the definition of ad() we need an important result in
Lie theory, that shows an even closer connection between Lie groups and Lie
algebras.

Theorem 1.7. Let G and H be Lie groups, with corresponding Lie algebras g
and h, respectively. For any Lie group homomorphism Φ : G → H then there
exists a unique Lie algebra homomorphism ϕ : g → h with

ϕ(X) =
d

dt

∣∣∣∣
t=0

Φ(pX0 (t))

for all smooth paths pX0 in G.

Proof. You can find the proof in [Varadarajan, 1974].

Corollary 1.8. Let G be a Lie group, with its Lie algebra g and let Ad: G →
GL(g) be the Lie group homomorphism defined by A 7→ AdA. Then there exists
an unique Lie algebra homomorphism ad : g → gl(g) with

adX =
d

dt

∣∣∣∣
t=0

AdpX0 (t)

Now the Lie bracket is recovered by

[X,Y ] = adX(Y ) =
d

dt

∣∣∣∣
t=0

AdpX0 (t)(Y ) (3)
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Remark 1.9. As shown on the previous pages, every Lie group gives rise to a
Lie algebra by considering the tangent space at the identity.
For finite dimensions the converse is also true and we can find a correspond-
ing simply connected Lie group for every Lie algebra, and it is unique up to
isomorphisms. ([Varadarajan, 1974])

With this knowledge we can construct another example of a Lie algebra.
Considering the unit circle S as in Example 1.2(1), then we can now compute
the Lie algebra associated to this Lie group.

Example 1.10. Let S1 ⊆ C ∼= R2 be the unit circle in the complex plane. A
path in S1 is given by

pX : [−1, 1] → S1, t 7→ eitX

for X ∈ R. With the construction (1) we get that the elements of the associated
Lie algebra S of S1 are defined as

d

dt

∣∣∣∣
t=0

pX(t) =
d

dt

∣∣∣∣
t=0

eitX = iXei·0·X = iX

for every X ∈ R. We see that the elements of S are all elements of the imaginary
axis, which is isomorphic to the vector space R. With similar calculations we
also get that the construction of + in (2) is well-defined for every X,Y ∈ R:

d

dt

∣∣∣∣
t=0

pX(t)pY (t) =
d

dt

∣∣∣∣
t=0

eitXeitY =
d

dt

∣∣∣∣
t=0

eit(X+Y ) = i(X + Y )

It is left to show that the Lie bracket with the definition in (3) fulfills the
properties of the Lie algebra bracket. But in this case the Lie group is already
commutative, which means the Lie bracket [X,Y ] is always 0 for everyX,Y ∈ S:

d

dt

∣∣∣∣
t=0

AdpX(t)(Y ) =
d

dt

∣∣∣∣
t=0

eitXY e−itX = i(XY − Y X) = 0

So there is nothing interesting to observe here and the properties are trivially
fulfilled. Nevertheless, this example is a good way to explicitly show the con-
nection between Lie groups an Lie algebras as visualized in Figure 2.

In addition to Theorem 1.7, under the condition ofG being simply connected,
also the converse of this theorem is true. We will use that in the main theorem
of this thesis.

Theorem 1.11. Let G and H be Lie groups with Lie algebras g and h. Let
ϕ : g → h be a Lie algebra homomorphism. If G is simply connected, then there
exists a unique Lie group homomorphism Φ : G→ H such that

Φ(eX) = eϕ(X)

for all X ∈ g.
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Figure 2: Visualization of the construction of the Lie algebra S associated to
the Lie group S as in Example 1.10.

You can find the proof in [Varadarajan, 1974].
Another important theorem that we will use many times in the following

chapters is the Backer-Campbell-Hausdorff-formula (BCH-formula).

Theorem 1.12 (Backer-Campbell-Hausdorff-formula). Suppose X,Y ∈Mn(C)
and that ||X|| and ||Y || are sufficiently small. Then,

etXetY = etX+tY+ t2

2 [X,Y ]+O(t3)

You can find the proof in [Hall, 2003]. Most of the time in this work we will
use this formula only up to first order. That means this simplifies to

etXetY = etX+tY+O(t2).

Only in the proof of Theorem 2.7 we need the formula up to second order.

1.3 Quandles

In this section we give a brief introduction to quandles to get a better under-
standing for the following definitions and results about Lie quandles. In this
section we refer to [Joyce, 1982], [Yonemura, 2023] and [Takahashi, 2020].

Definition 1.13. A quandle is a set Q equipped with two binary operations
▷ and ▷−1, satisfying the following properties for X,Y, Z ∈ Q:

1. X ▷X = X

8



2. X ▷ (X ▷−1 Y ) = Y = X ▷−1 (X ▷ Y )

3. X ▷ (Y ▷ Z) = (X ▷ Y ) ▷ (X ▷ Z)

Remark 1.14. (1) We can see that condition 2 is equivalent to the fact that
the map X ▷− : Q → Q is the inverse of X ▷−1 − for every X ∈ Q. (2) With
condition 3 it is clear then, that X ▷− : Q → Q is an automorphism for every
X ∈ Q.

Example 1.15. Let G be a group. Then G with the operations h ▷ g = hgh−1

and h ▷−1 g = h−1gh for all g, h ∈ G is a quandle, which is called the conjugacy
quandle of G. The first condition is clear. For the second we get

h ▷ (h ▷−1 g) = hh−1ghh−1 = g = h−1hgh−1h = h ▷−1 (h ▷ g)

And if we write everything out again in the third condition we get for f, g, h ∈ G

f ▷ (g ▷ h) = fghg−1f−1 =fgf−1fhf−1fg−1f−1

= fgf−1fhf−1(f−1gf)−1 = (f ▷ g) ▷ (f ▷ h)

Definition 1.16. A smooth quandle is a smooth manifold Q with a smooth
operations ▷ : Q × Q → Q and ▷−1 : Q × Q → Q satisfying the following two
conditions:

1. Q together with ▷ and ▷−1 is a quandle.

2. The map (X ▷−) : Q→ Q is a diffeomorphism for every X ∈ Q.

Example 1.17. Let Sn be the n sphere, that means

Sn = {X ∈ Rn+1| ⟨X,X⟩ = X2
1 +X2

2 · · ·+X2
n+1 = 1}.

Then Sn together with the operation X ▷ Y = 2⟨Y,X⟩X − Y for all X,Y ∈ Sn

is a smooth quandle as it is shown in [Azcan and Fenn, 1994].

1.4 Lie quandles

Now we extend the idea of smooth quandles. If we write ▷1 instead of ▷ and
also rewrite the inverse map ▷−1 as ▷−1 we get a natural extension by adding
another parameter t ∈ R to the definition of the operation by ▷t. That leads to
the definition of Lie quandles as in [Fritz, 2024].

Definition 1.18. A Lie quandle is a smooth manifold Q together with a
smooth operation

▷ : Q× R×Q −→ Q

such that the following equations hold for all X,Y, Z ∈ Q and s, t ∈ R:

1. Self-action:

X ▷s (X ▷t Y ) = X ▷s+t Y, X ▷0 Y = Y

9



2. Self-distributivity:

X ▷s (Y ▷t Z) = (X ▷s Y ) ▷t (X ▷s Z)

3. Idempotency:
X ▷s X = X

Example 1.19. Let Q := {A ∈ Mn(C) |AT = Ā} be the set of hermitian
matrices. Together with the operations X ▷t Y := eitXY e−itX for all X,Y ∈ Q
and t ∈ R this is a Lie quandle. We can see that with the same calculations as
in Theorem 2.1.

More examples are shown in [Fritz, 2024].

2 Lie quandles associated to Lie algebras

By definition (with manifolds) Lie quandles are a finite dimensional structure.
For that reason we only consider finite dimensions in this work. With the
Theorem of Ado we know that every finite dimensional Lie algebra is isomorphic
to a subalgebra of the set of all matrices Mn(C) together with the Lie bracket
[X,Y ] = XY − Y X. If we want to study the connection of Lie algebras and
its associated Lie quandles we can assume w.l.o.g. that the Lie quandles are
subsets of Mn(C) too. This is originally stated in [Fritz, 2024] where one can
find more details. So a Lie quandle Q(g) associated to a Lie algebra g ⊆Mn(C)
is given by the elements of g together with the operations

X ▷t Y := etXY e−tX

for X,Y ∈ Q(g). The proof of the following theorem shows that the Lie quandle
axioms are actually satisfied in that case

Theorem 2.1. Let g ⊆ Mn(C) be a Lie algebra and ▷t defined by X ▷t Y :=
etXY e−tX for X,Y ∈ g and t ∈ R. Then g together with the operation ▷t is a
Lie quandle.

Proof. We have to check if the Lie quandle axioms are satisfied for the operations
▷t. Let X,Y, Z be in g and s, t ∈ R.

1. Self-action:

X ▷s (X ▷t Y ) = esX
(
etXY e−tX

)
e−sX

= e(s+t)XY e−(s+t)X

=X ▷s+t Y

and
X ▷0 Y = e0·XY e0·X = Y

10



2. Self-distributivity:

X ▷s (Y ▷t Z) = esX
(
etY Ze−tY

)
e−sX

=
(
esXetY e−sX

) (
esXZe−sX

) (
esXe−tY e−sX

)
= ete

sXY e−sX (
esXZe−sX

)
e−te

sXY e−sX

=(X ▷s Y ) ▷t (X ▷s Z)

Where we used etAY A
−1

= AetYA−1 for A = esX in the third equation.

3. Idempotency:

X ▷s X = esXXe−sX = XesXe−sX = Xe(s−s)X = X.

This Lie quandle structure can also be characterized in terms of a differential
equation as the next lemma shows

Lemma 2.2. Let g ⊆Mn(C) be a Lie algebra and X,Y elements in g. Then ▷t
defined by X ▷tY := etXY e−tX is the unique solution of the differential equation

d

dt
(X ▷t Y ) = [X,X ▷t Y ] (4)

with initial condition X ▷0 Y = Y .

Proof. We first show that the operation as defined satisfies the differential equa-
tion

d

dt
(X ▷t Y ) =

d

dt
etXY e−tX

=XetXY e−tX − etXY e−tXX

=
[
X, etXY e−tX

]
= [X,X ▷t Y ]

and also the given initial condition

X ▷0 Y = e0·XY e−0·X = Y.

Moreover, the differential equation is clearly linear and of first-order, so we can
use the Uniqueness Theorem for first-order linear ODEs [Delchamps, 1988] to
get that this is the only solution for the equation.

Corollary 2.3. Every Lie quandle Q(g) associated to a Lie algebra g ⊆Mn(C)
can be characterized in terms of the differential equation

d

dt
(X ▷t Y ) = [X,X ▷t Y ]

with initial condition X ▷0 Y = Y .

11



By (4) the Lie bracket can be recovered as

[X,Y ] =
d

dt

∣∣∣∣
t=0

(X ▷t Y ). (5)

If G is any Lie group with Lie algebra g, this Lie quandle structure can also be
written in terms of the exponential map exp: g → G and the adjoint action of
G on g as

X ▷t Y = AdetX (Y )

This is shown in [Hall, 2003].

2.1 Characterization of Lie quandles associated to Lie al-
gebras with trivial center

Let Q be a Lie quandle with the operations ▷t. Now we want to consider cases
in which the map

Q −→ {1-parameter group of maps Q→ Q}
X 7−→ (X ▷t −).

is injective. This is equivalent to the statement

X ▷t Z = Y ▷t Z ∀t ∈ R =⇒ X = Y

for all X,Y, Z ∈ Q. This property follows for example for Lie quandles associ-
ated to Lie algebras with trivial center. I.e. for A,B in the Lie algebra

[A,B] = 0 ∀B =⇒ A = 0

holds. In addition to the equivalence of these two statements, the following
lemma also states that another equivalent formulation by considering

X 7−→ d

dt

∣∣∣∣
t=0

(X ▷t −).

to be injective or equivalently

X ▷t Z = Y ▷t Z to first order in t =⇒ X = Y

is possible.

Lemma 2.4. Let Q(g) be the Lie quandle associated to a Lie algebra g with
operations ▷t. Then the following are equivalent for X,Y, Z ∈ Q(g):

(1) X ▷t Z = Y ▷t Z ∀t ∈ R.

(2) [X − Y,Z] = 0.

(3) X ▷t Z
o(t)
= Y ▷t Z. That means X ▷t Z = Y ▷t Z to first order in t.

12



Proof. (1) ⇒ (2): Let X,Y, Z ∈ Q(g). Then we have

X ▷t Z = Y ▷t Z ∀t ∈ R ⇒ d

dt

∣∣∣∣
t=0

X ▷t Z =
d

dt

∣∣∣∣
t=0

Y ▷t Z

⇔ [X,X ▷0 Z] = [Y, Y ▷0 Z]

bilinearity →⇔ [X − Y,Z] = 0

(2) ⇒ (3): Let X,Y, Z ∈ Q(g). Then the following implications hold:

[X − Y,Z] = 0 ⇒ et(X−Y )Ze−t(X−Y ) = Z

to first order (BCH) →⇔ e−tY etXZe−tXetY
o(t)
= Z

⇔ etXZe−tX
o(t)
= etY Ze−tY

⇔ X ▷t Z
o(t)
= Y ▷t Z

(3) ⇒ (1): In the setting of a Lie quandle Q(g) associated to a Lie algebra g the
operation ▷t is defined as X ▷t Z = etXZe−tX for X,Z ∈ Q(g). This defines
a function that depends exponentially on t. So, by assumption, we have two
functions X ▷t Z and Y ▷t Z that satisfy the same differential equation

d

dt

∣∣∣∣
t=0

X ▷t Z = C =
d

dt

∣∣∣∣
t=0

Y ▷t Z

for some C ∈ Q(g) with the same initial condition

X ▷0 Z = Z = Y ▷0 Z.

With the uniqueness theorem for first-order linear differential equation we can
conclude that

X ▷t Z = Y ▷t Z

for all t ∈ R.

2.1.1 Reconstruction of +, scalar multiplication and the Lie bracket
in a Lie quandle associated to a Lie algebra with trivial center

Now we want to reconstruct the + in the Lie algebra from the Lie quandle
structure. Let Q be a Lie Quandle associated to a Lie algebra. For X,Y, Z ∈ Q
with the equation (5) we have [X +Y, Z] = d

dt

∣∣
t=0

(X +Y ) ▷t Z. Based on that
we get the following reconstruction of + in the Lie quandle.

Theorem 2.5. Let Q(g) be a Lie quandle with the operation ▷t associated to a
Lie algebra g with trivial center. Then the sum X+Y for elements X,Y ∈ Q(g)
is the only element in Q(g) that satisfies

(X + Y ) ▷t Z
o(t)
= X ▷t (Y ▷t Z)

for all Z ∈ Q(g).
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Proof. Let X,Y, Z be elements of the Lie quandle Q(g) then

(X + Y ) ▷t Z = et(X+Y )Ze−t(X+Y )

= et(X+Y )Ze−t(Y+X)

to first order (BCH) → o(t)
= etXetY Ze−tY e−tX

=X ▷t (Y ▷t Z)

With Lemma 2.4 we get that the assumption of g being a Lie algebra with trivial
center and X 7→ d

dt

∣∣
t=0

X ▷t− being an injective mapping are equivalent. So it
follows that X + Y is determined uniquely in the Lie quandle.

In a similar way we will also reconstruct now the scalar multiplication and
Lie bracket.

Theorem 2.6. Let Q(g) be a Lie quandle with the operation ▷t associated to a
Lie algebra g with trivial center. Then the product λX for X ∈ Q(g) and λ ∈ R
is the only element in Q(g) that satisfies

λX ▷t Z = X ▷λt Z

for all Z ∈ Q(g) and all t ∈ R.

Proof. Let X,Z be elements of the Lie quandle Q(g) then

λX ▷t Z = etλXZe−tλX = X ▷λt Z

With Lemma 2.4 we get that the assumption of g being a Lie algebra with trivial
center and X 7→ X ▷t− being an injective mapping are equivalent. So it follows
that λX is determined uniquely in the Lie quandle.

Theorem 2.7. Let Q(g) be a Lie quandle with the operation ▷t associated to a
Lie algebra g with trivial center. Then the Lie bracket [X,Y ] for X,Y ∈ Q(g)
is the only element in Q(g) that satisfies

[X,Y ] ▷t Z
o(t)
= X ▷√t (Y ▷√t (X ▷−

√
t (Y ▷−

√
t Z)))

for all Z ∈ Q(g).

Proof. Let X,Y, Z be elements of the Lie quandle Q(g). From Theorem 1.12 we
know that

etXetY = et(X+Y )+ t2

2 [X,Y ]+O(t3).

This motivates the following equation that holds to second order

d2

dt2

∣∣∣∣
t=0

etXetY e−tXe−tY = 2[X,Y ] =
d2

dt2

∣∣∣∣
t=0

et
2[X,Y ]

or simpler in our o(t)-notation

etXetY e−tXe−tY
o(t2)
= et

2[X,Y ].
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One can check this by simply computing the second derivative on both sides
and plugging in t = 0. Doing that we can see that as long as X and Y terms
are alternating, the order of the terms on the left hand side does not matter.
Further, we know that the equations hold for all t ∈ R, so for

√
t, too. That

means

e
√
tXe

√
tY e−

√
tXe−

√
tY o(t)

= et[X,Y ].

also holds. Now by first using the definition of ▷t and then plugging in the
equation above we get

[X,Y ] ▷t Z = et[X,Y ]Ze−t[X,Y ]

o(t)
= e

√
tXe

√
tY e−

√
tXe−

√
tY Ze

√
tY e

√
tXe−

√
tY e−

√
tX

=X ▷√t (Y ▷√t (X ▷−
√
t (Y ▷−

√
t Z)))

With Lemma 2.4 we get that the assumption of g being a Lie algebra with trivial
center and X 7→ X ▷t− being an injective mapping are equivalent. So it follows
that [X,Y ] is determined uniquely in the Lie quandle.

2.2 Manifestation of the vector space properties in Lie
quandles associated to Lie algebras

Now we look at the properties of a vector space and find out how these properties
manifest themselves in the ▷t operations. Again we get the motivation out of the
properties in the Lie bracket and use (5) to formulate it in the Lie quandle. Note
that the following calculations only hold for Lie quandles that are associated to
Lie algebras.

Theorem 2.8. Let Q(g) be a Lie quandle with operations ▷t associated to a Lie
algebra g. Then the following equations hold for X,Y, Z ∈ Q(g) and s, t ∈ R:

1. X ▷t (Y ▷t Z)
o(t)
= Y ▷t (X ▷t Z)

2. (−X) ▷t Y = X ▷−t Y

If further g has trivial center.

3. There exists a unique element −X ∈ Q(g) to every X ∈ Q(g), such that
the following equations hold

−X ▷t (X ▷t Y ) = Y = X ▷t (−X ▷t Y )

Proof. In this proof X,Y, Z are in Q(g) and s, t ∈ R.

(1) If we write the definition out and use the BCH-formula we get

X ▷t (Y ▷t Z) = etXetY Ze−tY e−tX

o(t)
= et(X+Y )Ze−t(Y+X)

= et(Y+X)Ze−t(X+Y )

= etY etXZe−tXe−tY = Y ▷t (X ▷t Z)
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to first order.

(2) We can show that again by simply using the definition of the operations
▷t.

(−X) ▷t Y = et(−X)Y e−t(−X) = e(−t)XY e−(−t)X = X ▷−t Y

(3) Because −X is the additive inverse for X in the Lie algebra, it is clear that
it exists in the Lie quandle. We now show the uniqueness of the inverse
−X in the sense of Lie quandles for a given element X ∈ Q(g). Let Y be
an arbitrary element in Q(g) and t ∈ R then with 2. in the first equation
and the definition of a Lie quandle in the second we get

(−X) ▷t (X ▷t Y ) = X ▷−t (X ▷t Y ) = X ▷0 Y = Y.

With Lemma 2.4 we get that the assumption of g being a Lie algebra with
trivial center and X 7→ X ▷t− being an injective mapping are equivalent.
So it follows that −X is determined uniquely in the Lie quandle.
The second equation follows the same way with

X ▷t ((−X) ▷t Y ) = X ▷t (X ▷−t Y ) = X ▷0 Y = Y.

2.3 Lie algebra and Lie quandle homomorphisms

We already saw some connections between Lie algebras and Lie quandles, espe-
cially if the Lie algebra has trivial center. The next step now is to look at Lie
algebra homomorphisms and check if they are homomorphisms in sense of Lie
quandles too. And further if that holds, is the converse also true? The following
theorem shows how closely related these two structures are.

Theorem 2.9. Let g, h be Lie algebras. Let further Q(g), Q(h) be the associated
Lie quandles, respectively. Then ϕ : Q(g) → Q(h) is a Lie quandle homomor-
phism if ϕ : g → h is a Lie algebra homomorphism.

Proof. Let ϕ : g → h be a Lie algebra homomorphism and X,Y ∈ g (or Q(g)
because these two structures have the same set of elements) and t ∈ R. We
want to show ϕ(X ▷t Y ) = ϕ(X) ▷t ϕ(Y ). Plugging in the definition on the left
hand side we get

ϕ(X ▷t Y ) = ϕ(etXY e−tX)

Because we are in finite dimensions g and h have corresponding simply connected
Lie group G and H, respectively. With Theorem 1.11 we then know that there
exists a unique Lie group homomorphism Φ : G → H for which we can use its
properties in the first equation

ϕ(etX︸︷︷︸
A∈G

Y e−tX︸ ︷︷ ︸
A−1∈G

) =Φ(etX)ϕ(Y )Φ(e−tX)

= etϕ(X)ϕ(Y )e−tϕ(X)

=ϕ(X) ▷t ϕ(Y )
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For the converse we do not need any assumptions on a corresponding Lie
group to the Lie algebras, but instead we need that the Lie algebras have trivial
center.

Theorem 2.10. Let g, h be Lie algebras with h having trivial center. Let further
Q(g), Q(h) be the associated Lie quandles, respectively. Then ϕ : Q(g) → Q(h)
is a Lie algebra homomorphism if ϕ : g → h is a surjective Lie quandle homo-
morphism.

Proof. We start with a surjective Lie quandle homomorphism ϕ : Q(g) → Q(h)
and X,Y ∈ g. The proof includes three steps.

1. to show ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all X,Y ∈ g.
Let Z be in g and t ∈ R then by using that ϕ is a Lie quandle homomor-
phism in the first line

ϕ(X + Y ) ▷t ϕ(Z) =ϕ((X + Y ) ▷t Z)

=ϕ(et(X+Y )Ze−t(X+Y ))

BCH-Formula → o(t)
= ϕ(etXetY Ze−tY e−tX)

=ϕ(X ▷t (Y ▷t Z))

Lie quandle homom. →=ϕ(X) ▷t (ϕ(Y ) ▷t ϕ(Z))

Theorem 2.5 → o(t)
= (ϕ(X) + ϕ(Y )) ▷t ϕ(Z)

Using Lemma 2.4 we get that this is equivalent to

[ϕ(X + Y )− (ϕ(X) + ϕ(Y )), ϕ(Z)] = 0 ∀Z ∈ Q(g).

We assumed that ϕ is a surjective mapping, so this does not only hold for
all elements Z ∈ Q(g), but for all elements in Q(h) i.e.

[ϕ(X + Y )− (ϕ(X) + ϕ(Y )),W ] = 0 ∀W ∈ Q(h).

Further h has trivial center, this implies ϕ(X + Y ) = ϕ(X) + ϕ(Y ).

2. to show ϕ(λX) = λϕ(X) for all X ∈ g and all λ ∈ R.
Let Z be in g and t ∈ R then by using that ϕ is a Lie quandle homomor-
phism in the first line

ϕ(λX) ▷t ϕ(Z) =ϕ(λX ▷t Z)

=ϕ(etλXZe−tλX)

=ϕ(X ▷tλ Z)

Lie quandle homom. →=ϕ(X) ▷tλ ϕ(Z)

Theorem 2.6 →=λϕ(X) ▷t ϕ(Z)
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Again by using Lemma 2.4 we get that this is equivalent to

[ϕ(λX)− λϕ(X), ϕ(Z)] = 0 ∀Z ∈ Q(g).

And in the same way as in 1. by using that ϕ is a surjective mapping and
that h has trivial center, this implies ϕ(λX) = λϕ(X).

3. to show ϕ([X,Y ]) = [ϕ(X), ϕ(Y )] for all X,Y ∈ g.
Let t be in R. In step 1 and 2 we showed that ϕ is linear as a function
of the Lie algebra. We use that now to put the derivative out of ϕ in the
second equation.

ϕ([X,Y ]) =ϕ

(
d

dt

∣∣∣∣
t=0

X ▷t Y

)
=

d

dt

∣∣∣∣
t=0

ϕ(X ▷t Y )

Lie quandle homom. →=
d

dt

∣∣∣∣
t=0

ϕ(X) ▷t ϕ(Y )

= [ϕ(X), ϕ(Y )]

In all other steps we used the recovery of the Lie bracket as in equation (5).

A beautiful outcome of this theorem is, that the equation f(X ▷t Y ) =
f(X) ▷t f(Y ) combines three equations of the Lie algebra homomorphism in
one.

3 Conclusion

In summary, we studied the concept of Lie quandles, extending the framework
of smooth quandles by adding a real parameter t. This extension led to the
definition of Lie quandles, which satisfy specific self-action, self-distributivity,
and idempotency conditions. We explored the connection between Lie quandles
and Lie algebras, showing that in a Lie quandle associated with a Lie algebra
with trivial center, the reconstruction of the addition, scalar multiplication and
the Lie bracket are consistent with the algebraic structure of the Lie algebra.
Moreover, we discussed how the vector space properties manifest in the Lie
quandle for Lie quandles associated to Lie algebras with trivial center and gen-
eral Lie algebras.
Finally, we showed how homomorphisms in Lie algebras and Lie quandles corre-
spond to each other. Although we had to require surjectivity for the Lie quandle
homomorphism in Theorem 2.10, this theorem has the beautiful result of com-
bining three equations of a Lie algebra homomorphism in one. Maybe it could
be the topic of future works to prove this results in a more elegant way to avoid
need of this assumption.
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