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Welcome

We wish you a warm welcome to Blaubeuren, and we are looking forward to an interesting

Workshop on Operator Semigroups for Numerical Analysis.

Organised by the European consortium “International School on Evolution Equations”, the an-
nual Internet Seminars introduce master-, Ph.D. students and postdocs to varying subjects related
to evolution equations. The 15th Internet Seminar on Evolution Equations is devoted to operator
semigroup methods for numerical analysis.

So far, the course consisted of two phases.

` In Phase 1 (October-February), a weekly lecture was provided via the ISEM website. Based
on the Lax Equivalence Theorem we gave an operator theoretic and functional analytic ap-
proach to the numerical treatment of evolution equations. Our aim was to give a thorough
introduction to the field, at a speed suitable for master’s or Ph.D. students. The weekly lec-
ture was accompanied by exercises, and the participants solved these problems. The lectures
and the solutions to the exercises can be downloaded even now from the ISEM website

https://isem-mathematik.uibk.ac.at.

` In Phase 2 (March-May), the participants formed small international groups to work on
diverse projects which complement the theory of Phase 1 and provide some applications of
it.

Presently, Phase 3 consists of the final one-week workshop at the Heinrich Fabri Institute in
Blaubeuren (Germany). Here the teams will present their projects and additional lectures will
be delivered by leading experts.

We would like to express our sincere thanks to all of you for following the lectures, solving the
exercises, and participating in the lively discussion on the ISEM website. We hope you could also
benefit a lot from elaborating the projects.

We wish you a pleasant and scientific fruitful time in Blaubeuren. If you have any questions, please
do not hesitate to contact us.

András Bátkai, Petra Csomós, Bálint Farkas, and Alexander Ostermann





General Information

The workshop takes place from 3th till 9th June 2012 at the Heinrich Fabri Institute. The address
is

Heinrich-Fabri-Institut

Auf dem Rucken 35
89143 Blaubeuren, Germany

Phone: +49-07344-4529
Fax: +49-07344-21810
Website: http://www.heinrichfabriinstitut.de/

E-mail: info@heinrichfabriinstitut.de

The workshop starts in the evening of 3th June with a dinner and will end on 9th June after break-
fast.

The 200 Euro conference fee includes the accommodation at the Heinrich Fabri Institute and full
board (breakfast, lunch, dinner, coffee breaks).

Scientific Programme

Contributions

The talks will last 60 minutes. The project presentations are scheduled to last 90 minutes, includ-
ing a brief discussion.

The conference language is English.

Equipment

The seminary room is equipped with a blackboard, an overhead projector, and a data projector.
A computer with Acrobat Reader will be provided. Talks can be transferred to the conference
computer through CDs or USB sticks.

Internet

There is a wireless internet access at the Heinrich Fabri Institute. The required password will be
announced on the spot. We kindly ask you, however, not to use your computer during the talks.





Schedule

Monday, June 4, 2012

9.00 – 9.30 Opening

9.30 – 10.30 MARLIS HOCHBRUCK

Exponential integrators

10.30 – 11.00 Coffee break

11.00 – 12.30 EXPONENTIAL SPLITTING METHODS

Coord.: Katharina Schratz
Yegor Dikarev, Leila Jafarian Khaled-Abad, Johannes Winckler

12.30 – 14.30 Lunch break

14.30 – 16.00 NONAUTONOMOUS EQUATIONS AND EVOLUTION FAMILIES

Coord.: Birgit Jacob, Sven-Ake Wegner
Miriam Bombieri, Felix Geyer, Andreas Geyer-Schulz, Katharina Schade

16:00 – 16.30 Coffee break

16.30 – 18.00 INHOMOGENEOUS AND SEMILINEAR EVOLUTION EQUATIONS

Coord.: Roland Schnaubelt
Martin Adler, Renata Łukasiak, David Meffert

18.30 Dinner

Tuesday, June 5, 2012

9.00 – 10.00 WOLFGANG ARENDT

Evolution via forms and approximation

10.00 – 10.30 Coffee break

10.30 – 12.00 SOME POSITIVITY PRESERVING SCHEMES FOR NONLINEAR PROBLEMS

Coord.: Abdelaziz Rhandi
Jonathan Dehaye, Linwen Tan

12.30 – 14.30 Lunch break

14.30 – 15.30 COORDINATOR MEETING

15.30 – 16.30 JOB MARKET

16:00 – 16.30 Coffee break

16.30 – 18.00 GEOMETRIC THEORY OF SEMILINEAR PROBLEMS

Coord.: Alexander Ostermann
Maryna Kachanovska, Hannes Meinlschmidt, Adrian Viorel

18.30 Dinner



Wednesday, June 6, 2012

9.00 – 10.00 STIG LARSSON

Finite element approximation of stochastic evolution PDEs

10.00 – 10.30 Coffee break

10.30 – 12.00 THE SEMIGROUP APPROACH TO STOCHASTIC DIFFERENTIAL EQUATIONS

DRIVEN BY NOISE

Coord.: Stig Larsson
Rebekka Burkholz, Dominik Dier, Antti Koskela

12.30 – 14.30 Lunch break

14.30 – 18.30 Excursion

18.30 Dinner

Thursday, June 7, 2012

9.00 – 10.30 RUNGE–KUTTA DISCRETIZATIONS OF PARABOLIC PROBLEMS

Coord.: Christian Lubich
Sándor Kelemen, Samaneh Khodayari-Samghabadi, Balázs Kovács

10.30 – 11.10 Coffee break

11.00 – 12.00 CHRISTIAN LUBICH

Runge–Kutta discretization of parabolic differential equations on
evolving surfaces

12.30 – 14.30 Lunch break

14.30 – 16.00 THE STABILITY AND CONVERGENCE RESULTS OF BRENNER AND THOMÉE

Coord.: Robert Haller-Dintelman
Alexander Grimm, Nikita Moriakov, Felix Schwenninger

16:00 – 16.30 Coffee break

16.30 – 18.00 PERTURBATION THEORY OF c0-SEMIGROUPS (THE MIYADERA THEOREM)
Coord.: Jürgen Voigt
Orif Ibrogimov, Matthias Lang, Chin Pin Wong, Dmitry Polyakov

19.00 Cena Sociale



Friday, June 8, 2012

9.00 – 10.30 APPROXIMATION RESULTS IN PROBABILITY THEORY AND

QUANTUM PHYSICS

Coord.: Markus Haase
Björn Augner, Christoph Schuchmacher, Stefan Manuel Tomaszewski

10.30 – 11.00 Coffee break

11.00 – 12.30 RATIONAL APPROXIMATION OF SEMIGROUPS WITHOUT SCALING AND

SQUARING

Coord.: Frank Neubrander, Koray Özer
Moritz Egert, Peter Kandolf, Alina Karpikova, Leonard J. Konrad

12.30 – 14.30 Lunch break

14.30 – 16.00 CRANK–NICOLSON SCHEME FOR BOUNDED SEMIGROUPS

Coord.: Hans Zwart
Noémi Nagy, Austin Scirratt, Patrick Tolksdorf

16:00 – 16.30 Coffee break

16.30 – 18.00 EXPONENTIAL QUADRATURE

Coord.: Marlis Hochbruck
Ghasem Abbasi, Gábor Csörgő, Hicham El Boujaoui

18.30 Dinner and Farewell Party





Participants

Ghasem Abbasi, Tarbiat Modares University, Iran
ghasemabbasi1066@gmail.com

Martin Adler, University of Tübingen, Germany
maad1988@googlemail.com

Björn Augner, Karlsruhe Institute of Technology, Germany
bjoern.augner@student.kit.edu

András Bátkai, Eötvös Loránd University, Hungary
batka@cs.elte.hu

Miriam Bombieri, University of Tübingen, Germany
mibo@fa.uni-tuebingen.de

Rebekka Burkholz, Technische Universität Darmstadt, Germany
rebekka_burkholz@gmx.de

Petra Csomós, University of Innsbruck, Austria
petra.csomos@uibk.ac.at
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Talks

In alphabetical order





EVOLUTION VIA FORMS AND APPROXIMATION

Wolfgang Arendt

UNIVERSITY OF ULM, GERMANY

This talk is an introduction to form methods for evolution equations. At first we show how to come
from a form to a holomorphic semigroup in Hilbert space.

Then we look more generally at non-autoonomous evolutionary problems. Forms are most appro-
priate for finite dimensional approximation. This leads to the Galerkin method which is of great
value for theoretical results but also for numerical approximation. Finally we look at a concrete
non-autonomous evolutionary problem on a network.

The interesting fact in this example is the dependance on time of the domains of the operators.
In spite of this complication quite a few things can be said about the equation which go beyond
well-posedness, for example one can prove asymptotic stability of the solutions.

These results were obtained most recently by the Ulm research team on non-autonous evolution,
namely, Dominik Dier, Hafida Laasri, Marjeta Kramar, Delio Mugnolo and the speaker.
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EXPONENTIAL INTEGRATORS

Marlis Hochbruck

KARLSRUHE INSTITUTE OF TECHNOLOGY, GERMANY

In this talk we will give an overview on the construction, analysis, implementation and application
of various exponential integrators. Exponential integrators are time integration schemes, which in-
volve the evaluation or approximation of the exponential (or related) function of a suitable matrix
(e.g. the Jacobian of the differential equation). The matrix exponential of a discretized operator
can be interpreted as an approximation of a semigroup, hence these methods are closely related to
the material of the internet seminar.

Such methods have been proposed about 50 years ago but for a long time have been regarded as
not practical. Significant advances on the approximation of the product of a matrix function with
a vector during the last decade including multiple time stepping approaches have renewed the in-
terest in these integrators. By now it has been shown that such integrators are competitive or even
outperform state of the art standard methods in certain applications.

We will discuss basic ideas to construct such integrators for different applications and we will
explain some convergence results for abstract partial differential equations. Moreover, we con-
sider the approximation of matrix functions and show how these methods can be implemented in
applications.
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FINITE ELEMENT APPROXIMATION OF STOCHASTIC EVOLUTION PDES

Stig Larsson

CHALMERS UNIVERSITY OF TECHNOLOGY, SWEDEN

I will review our work on numerical approximation of stochastic evolution PDEs driven by noise.
The equations are discretized in space by a standard finite element method and Euler’s method in
time. Our work includes the stochastic heat equation, wave equation and Cahn-Hilliard equation.
The equations are set in an abstract framework based on operator semigroups in Hilbert space. We
show strong and weak convergence of the numerical approximations.
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RUNGE–KUTTA TIME DISCRETIZATION OF PARABOLIC DIFFERENTIAL
EQUATIONS ON EVOLVING SURFACES

Christian Lubich

UNIVERSITY OF TÜBINGEN, GERMANY

A linear parabolic differential equation on a moving surface is first discretized in space by evolv-
ing surface finite elements and then in time by an implicit Runge–Kutta method. For algebraically
stable and stiffly accurate Runge–Kutta methods, unconditional stability of the full discretization
is proven and the convergence properties are analysed.

The talk is based on joint work with Gerhard Dziuk and Dhia Mansour.
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APPROXIMATION RESULTS IN PROBABILITY THEORY AND QUANTUM PHYSICS

Markus Haase

BJÖRN AUGNER, CHRISTOPH SCHUCHMACHER, STEFAN MANUEL TOMASZEWSKI

The Trotter–Kato approximation theorems and the Chernoff product formula can be used to give
proofs for some results in probability theory (Central Limit Theorem, Weak Law of Large Num-
bers) and in quantum physics (Feynman Path Formula). These ideas go back to works of Trotter
[6] (in the first case) and Nelson [5] (in the second) and were developed in papers of Goldstein
[3, 2, 4], inspired by [1].

The aim of this project is to give a concise presentation of these results building on Goldstein’s
papers and the ISEM notes as background material.

REFERENCES

[1] P. L. Butzer, W. Dickmeis, L. Hahn, and R. J. Nessel. Lax-type theorems and a unified ap-
proach to some limit theorems in probability theory with rates. Resultate Math., 2(1):30–53,
1979.

[2] Jerome A. Goldstein. Corrigendum on: “Semigroup-theoretic proofs of the central limit theo-
rem and other theorems of analysis” (Semigroup Forum 12 (1976), no. 3, 189-206). Semigroup
Forum, 12(4):388, 1976.

[3] Jerome A. Goldstein. Semigroup-theoretic proofs of the central limit theorem and other theo-
rems of analysis. Semigroup Forum, 12(3):189–206, 1976.

[4] Jerome A. Goldstein. A semigroup-theoretic proof of the law of large numbers. Semigroup
Forum, 15(1):89–90, 1977/78.

[5] Edward Nelson. Feynman integrals and the Schrödinger equation. J. Mathematical Phys.,
5:332–343, 1964.

[6] H. F. Trotter. An elementary proof of the central limit theorem. Arch. Math., 10:226–234,
1959.
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THE STABILITY AND CONVERGENCE RESULTS OF BRENNER AND THOMÉE

Robert Haller-Dintelmann

ALEXANDER GRIMM, NIKITA MORIAKOV, FELIX SCHWENNINGER

This project comes back to the promise of the virtual lecturers from Section 14.1 in the Isem lecture
notes, that we will hear more on the stability and convergence theorems of Brenner and Thomée
in the project phase. It invites you to dwelve into the proof of these two theorems.
The proof of both theorems is mainly based on the Hille-Phillips functional calculus. We saw in the
course that functional calculi are a powerful tool to get stability and convergence results for rational
approximation schemes and this was illustrated using the Dunford calculus for analytic semigroups
in Section 13, which is a very natural choice. However, there are many interesting semigroups that
are not analytic, such as shift semigroups or all semigroups that are actually groups.
That is where the Hille-Phillips calculus comes in. As was already pointed out in Section 14.1,
the basic idea is to write a holomorphic function F as the Laplace transform of a bounded Borel
measure µ on [0,∞), i.e.,

F(z) =
∫

∞

0
eszdµ(s) (ℜz≤ 0)

and then to substitute the semigroup esA for the term esz

F(A) =
∫

∞

0
esAdµ(s)

and to hope for the best, i.e. that the resulting integral makes sense and that this procedure gives
rise to a useful functional calculus.
So, for the project there will be two main tasks: First, to build up and explain the Hille-Phillips
functional calculus and then to understand and present the proofs of Theorems 14.1 and 14.2 of
the lecture notes.
The project will be based on the original article of Brenner and Thomée [1] for their results and on
the book of Hille and Phillips [2], as well as the PhD thesis of Mihály Kovács [3] concerning the
Hille-Phillips calculus.

REFERENCES

[1] P. Brenner, V. Thomée: On rational approximations of semigroups, SIAM Journal on Numer-
ical Analysis 16 (1979), no. 4, 683–694.

[2] E. Hille, R.S. Phillips: Functional analysis and semigroups, Colloquium Publications, Amer-
ican Mathematical Society (AMS), 1957.

[3] M. Kovács: On qualitative properties and convergence of time-discretization methods for
semigroups, PhD thesis, Louisiana State University, 2004.
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EXPONENTIAL QUADRATURE

Marlis Hochbruck

GHASEM ABBASI, GÁBOR CSÖRGŐ, HICHAM EL BOUJAOUI

The aim of this project is to study the numerical approximation to solutions of linear abstract
differential equations

u′(t)+Au(t) = f (t), u(t0+) = u0

on a Banach space X by exponential quadrature formulas.
To define such quadrature formulas we choose non-confluent collocation nodes c1, . . . ,cs and de-
fine approximations un ≈ u(tn), where tn = t0 +nh, n = 0,1, . . . via

un+1 = e−hAun +h
s

∑
i=1

bi(−hA) f (tn + cih)

with weights

bi(−hA) =
1
h

∫ h

0
e−(h−τ)A`i(τ)dτ.

Here, ` j is the Lagrange interpolation polynomial

` j(τ) = ∏
m 6= j

τ/h− cm

c j− cm
.

The project involves

• construction of exponential quadrature formulas

• convergence analysis in different Banach spaces (e.g. in Lp) and with different boundary
conditions

• numerical experiments (using Matlab or any other programming language)

REFERENCES

[1] . Hochbruck, A. Ostermann: Exponential Runge–Kutta methods for parabolic problems,
Appl. Numer. Math., vol. 53, no. 2-4, pp. 323-339 (2005)
http://authors.elsevier.com/sd/article/S0168927404001400
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NON-AUTONOMOUS EQUATIONS AND EVOLUTION FAMILIES

Birgit Jacob and Sven-Ake Wegner

MIRIAM BOMBIERI, FELIX GEYER, ANDREAS GEYER-SCHULZ, KATHARINA SCHADE

In this project we study differential equations with time-dependent coefficients, i.e., a non-autonomous
evolution equations of the form

d
dt

u(t) = A(t)u(t), t ≥ s ∈ R, (1)

u(s) = u0,

on a Banach space X . If A(t) ≡ A, then the solution of (1) is given by a strongly continuous
semigroup (T (t))t≥0. In the general situation the semigroup is replaced by a strongly continuous
evolution family (U(t,s))t≥s; this notion we briefly met in Chapter 14.2. A family (U(t,s))t≥s of
linear, bounded operators on a Banach space X is called a (strongly continuous) evolution family if

1. U(t,r)U(r,s) =U(t,s), U(t, t) = I hold for all s≤ r ≤ t ∈ R,

2. The mapping (t,s) 7→U(t,s) from {(τ,σ) ∈ R2 | τ ≥ σ} to L(X) is strongly continuous.

We say that (U(t,s))t≥s solves the Cauchy problem (1) if there exist dense subspaces Ys, s ∈ R, of
X such that the function t 7→U(t,s)x is a solution of the Cauchy problem (1) for s ∈ R and x ∈ Ys.
Clearly, a semigroup (T (t))t≥0 defines an evolution family by U(t,s) := T (t− s).
In the ISEM lecture notes, several characterizations of solvability of the autonomous Cauchy prob-
lem in terms of the operator A are given. Unfortunately, there is no analogous result in the non-
autonomous situation. In this project we will develop several sufficient conditions for solvability
of the Cauchy problem (1) in terms of the operators A(t).

REFERENCES

[1] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations. Graduate
Texts in Mathematics, 194. Springer-Verlag, New York, 2000.

[2] A. Pazy. Semigroups of linear operators and applications to partial differential equations.
Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983
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THE SEMIGROUP APPROACH TO STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS DRIVEN BY NOISE

Stig Larsson

REBEKKA BURKHOLZ, DOMINIK DIER, ANTTI KOSKELA

The stochastic wave equation driven by additive noise,

du̇−∆udt = f (u)dt +dW in D× (0,∞),

u = 0 in ∂D× (0,∞),

u(·,0) = u0, u̇(·,0) = v0 in D ,

can be given a rigorous formulation

X(t) = e−tAX0 +
∫ t

0
e−(t−s)AB f (X1(s))ds+

∫ t

0
e−(t−s)ABdW (s), (2)

where

A =

[
0 −I
Λ 0

]
, B =

[
0
I

]
, X =

[
X1
X2

]
=

[
u
u̇

]
, X0 =

[
X0,1
X0,2

]
=

[
u0
v0

]
.

The article [2] provides a so-called weak convergence analysis for finite element approximations
of linear equations of this kind ( f = 0).
The aim of the project is to extend the analysis in [2] for the linear wave equation to the semilinear
equation (7). Such analysis was done earlier for the semilinear Schrödinger equation in [1] and it
uses the fact that the operator family {e−tA} is a group in order to re-write the equation to a form
which is easier to analyze.

REFERENCES

[1] A. de Bouard and A. Debussche, Weak and strong order of convergence of a semidiscrete
scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim. 54 (2006),
369–399.

[2] M. Kovács, S. Larsson, and F. Lindgren, Weak convergence of finite element approxima-
tions of linear stochastic evolution equations with additive noise, BIT Numer. Math. (2011).
[doi:10.1007/s10543-011-0344-2]
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RUNGE–KUTTA DISCRETIZATIONS OF PARABOLIC PROBLEMS

Christian Lubich

SÁNDOR KELEMEN, SAMANEH KHODAYARI-SAMGHABADI, BALÁZS KOVÁCS

The present project basically relies on the two papers given in the References.

[1] ABSTRACT: We study the approximation properties of Runge–Kutta time discretizations of
linear and semilinear parabolic equations, including incompressible Navier–Stokes equations. We
derive asymptotically sharp error bounds and relate the temporal order of convergence, which is
generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies
on an interpretation of Runge-Kutta methods as convolution quadratures. In a different context,
these can be used as efficient computational methods for the approximation of convolution integrals
and integral equations. They use the Laplace transform of the convolution kernel via a discrete
operational calculus.

[2] ABSTRACT: We study the convergence properties of implicit Runge-Kutta methods applied to
time discretization of parabolic equations with time- or solution-dependent operator. Error bounds
are derived in the energy norm. The convergence analysis uses two different approaches. The
first, technically simpler approach relies on energy estimates and requires algebraic stability of the
Runge–Kutta method. The second one is based on estimates for linear time-invariant equations
and uses Fourier and perturbation techniques. It applies to A(Θ)-stable Runge–Kutta methods and
yields the precise temporal order of convergence. This order is noninteger in general and depends
on the type of boundary conditions.

REFERENCES

[1] Ch. Lubich, A. Ostermann, Runge-Kutta methods for parabolic equations and convolution
quadrature. Math. Comp. 60, 105-131 (1993). DOI: 10.1090/S0025-5718-1993-1153166-7

[2] Ch. Lubich, A. Ostermann, Runge-Kutta approximation of quasilinear parabolic equations.
Math. Comp. 64, 601-627 (1995). DOI: 10.1090/S0025-5718-1995-1284670-0
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RATIONAL APPROXIMATIONS OF SEMIGROUPS WITHOUT SCALING AND
SQUARING

Frank Neubrander, Koray Özer

MORITZ EGERT, PETER KANDOLF, ALINA KARPIKOVA, LEONARD J. KONRAD

In this project we will discuss how to find for all q ≥ 1 distinct complex numbers bi and λi with
1≤ i≤ q and Re(λi)> 0 such that for any generator (A,D(A)) of a bounded, strongly continuous
semigroup T (t) on Banach space X with resolvent R(λ ,A) := (λ I−A)−1 the expression

b1
t R
(

λ1
t ,A

)
+ b2

t R
(

λ2
t ,A

)
+ · · ·+ bq

t R
(λq

t ,A
)

provides an excellent approximation of the semigroup T (t) on D(A2q−1).

REFERENCES

[1] F. Neubrander, K. Özer, T. Sandmaier, Rational Approximations of Semigroups without Scal-
ing and Squaring, preprint, submitted, 2011.
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GEOMETRIC THEORY OF SEMILINEAR PROBLEMS

Alexander Ostermann

MARYNA KACHANOVSKA, HANNES MEINLSCHMIDT, ADRIAN VIOREL

This project is concerned with the geometric theory of semilinear parabolic equations

u′(t) = Au(t)+g(u(t)) (3)

and their numerical discretisations. Geometric theory is concerned with the qualitative behaviour
of solutions, the geometry of the flow and stability questions. A good introduction into this field is
the book by Dan Henry [2]. The simplest objects to be studied are asymptotically stable equilibria
of (3). Such a study was partially carried out in our last ISEM lecture.

A hyperbolic equilibrium (saddle-point) is more involved as it possesses in its neighbourhood a
stable and an unstable invariant manifold which generalise the concepts of stable and unstable sub-
spaces for the linear problem. Numerical discretisations posses discrete counterparts thereof. The
largest part of the project is concerned with the construction of these invariant sets.

Possible extensions cover periodic orbits (see [1] and [4]), and Hopf bifurcations (see [3]). The
latter require the construction of an invariant centre manifold in which the bifurcation takes place.

REFERENCES
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Applied Numerical Math. 22 (1996) 279-292
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SOME POSITIVITY PRESERVING SCHEMES FOR SEMILINEAR PROBLEMS

Abdelaziz Rhandi

JONATHAN DEHAYE, IMRE FEKETE, LINWEN TAN

The aim of this project is to study the convergence and positivity properties of second-order ex-
ponential Runge–Kutta and Strang splitting methods applied to inhomogeneous and semilinear
parabolic problems.

It is known that in many applications, such as e.g. population dynamics, mathematical finance,
reaction kinetic..., the positivity is an important feature. Looking for numerical schemes that pre-
serve positivity and study their convergence is not a trivial task. However, it was shown by Bolley
and Crouzeix [1] that the order of an unconditionally positive Runge–Kutta method for an inho-
mogeneous linear parabolic problem can not exceed one.

As we will see in this project, the use of exponential integrators permit to preserve positivity and
improve the convergence. The project is divided into two parts. The first one deals with the
second-order exponential Runge-Kutta method applied to the inhomogeneous Cauchy problem

u′(t) = Au(t)+ f (t), u(0) = u0. (4)

We propose to show that the second-order exponential Runge-Kutta method preserves positivity in
(4).

In the second part we are interested in applying the Strang splitting to the semilinear problem

u′(t) = Au(t)+ f (u(t)), u(0) = u0. (5)

Here we study consistency and convergence of the Strang splitting applied to (5). Finally, we de-
duce that the Strang splitting preserves positivity. Here A with domain D(A) generates a positive
C0-semigroup on a Banach lattice X and f satisfies appropriate assumptions.

The first part is mainly contained in [4] and the second one in [2]. For the theory of positive
semigroups we refer to [5] and for problems of type (4) and (5) we refer to [3].

REFERENCES
[1] C. Bolley, M. Crouzeix, Conservation de la positivité lors de la discrétisation des problémes

d’évolution paraboliques, RAIRO Anal. Numér. 12 (1978), 237–245.

[2] E. Hansen, F. Kramer, A. Ostermann, A second-order positivity preserving scheme for semi-
linear parabolic problems, to appear in Appl. Numer. Math.

[3] L. Lorenzi, A. Lunardi, G. Metafune, D. Pallara, Analytic Semigroups and Reaction-
Diffusion Problems, Internet Seminar 2004-2005, 127 pages.

[4] A. Ostermann, M. van Daele, Positivity of exponential Runge-Kutta methods, BIT Numerical
Mathematics 47, (2007), 419–426

[5] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Lectute Notes in Math.
1184, Springer-Verlag 1986.
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INHOMOGENEOUS AND SEMILINEAR EVOLUTION EQUATIONS

Roland Schnaubelt

MARTIN ADLER, RENATA LUKASIAK, DAVID MEFFERT

In the Internet Seminar we have treated linear Cauchy problems governed by a generator A on a
Banach space X . If one adds to such a system an external ’force’ (or control) f ∈C(R+,X), then
one obtains the inhomogeneous evolution equation

u′(t) = Au(t)+ f (t), t ≥ 0, u(0) = u0.

If this problem has a classical solution u in C1 sense, it is easy to see that it is given by Duhamel’s
formula

u(t) = T (t)u0 +
∫ t

0
T (t− s) f (s)ds, t ≥ 0,

where T (·) is generated by A. One can define this mild solution u for any f ∈ L1(R+,X), but then
u does not need to be differentiable. The first aim of the project is to give conditions ensuring that
the mild solution is in fact a classical one.

Many problems in the sciences are nonlinear, leading to a lot of new and interesting challenges.
Here we restrict ourselves to semilinear problems which can be treated based on results about
inhomogeneous evolution linear equations. Given a generator A on X and a locally Lipschitz map
F : X → X we consider

u′(t) = Au(t)+F(u(t)), t ≥ 0, u(0) = u0.

As a an example, think of a reaction diffusion equation given by, say, A = d2/dx2 with boundary
conditions and F(v) = v(1− v) on X =C([0,1]). In view of the above remarks, the solution of the
semilinear problem should satisfy the fixed point problem

u(t) = T (t)u0 +
∫ t

0
T (t− s)F(u(s))ds, t ≥ 0,

and this is actually the starting point to construct a (unique) solution.

The project is based on Sections 4.2 and 6.1 of [1], where may simplify a few points and add more
material concerning examples.

REFERENCES

[1] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, 1983.
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EXPONENTIAL SPLITTING METHODS FOR DIMENSION SPLITTING

Katharina Schratz

YEGOR DIKAREV, LEILA JAFARIAN KHALED-ABAD, JOHANNES WINCKLER

PDEs are made by God, the boundary conditions by the Devil! 1

This project is concerned with the convergence order of splitting methods applied as a numerical
time integration method to partial differential equations, where

∂tw(t,x,y) = L (∂x,∂y)w(t,x,y), (x,y) ∈Ω = (0,1)2, t ∈]0,T ]
w(0,x,y) = w0(x,y)
w(t, ·, ·)|∂Ω = 0 for all t ∈ [0,T ]

(6)

with a strongly elliptic differential operator L (∂x,∂y) = ∂x
(
a(x,y)∂x

)
+∂y

(
b(x,y)∂y

)
and smooth,

positive coefficients a,b. The splitting ansatz is the so-called dimension-splitting, where the dif-
ferential operator L (∂x,∂y) is split along its dimensions, i.e.

L (∂x,∂y) = A (∂x)+B(∂y) with

A (∂x) = ∂x
(
a(x,y)∂x

)
, B(∂y) = ∂y

(
b(x,y)∂y

)
.

Full-order convergence of resolvent splitting methods applied to (6) was already discussed in the
lecture notes, see Section 11.1. In this project we will analyze exponential splitting methods ap-
plied to our model problem (6). In particular we will discuss the convergence order of the expo-
nential Lie and Strang splitting.

REFERENCES

[1] E. Hansen, A. Ostermann, Exponential splitting for unbounded operators. Math. comp. 78
(2009), 1485-1496

[2] W. Hundsdorfer, J.G. Verwer Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations, Springer (2003)
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PERTURBATION THEORY OF C0-SEMIGROUPS (THE MIYADERA THEOREM)

Jürgen Voigt

ORIF IBROGIMOV, MATTHIAS LANG, CHIN PIN WONG, DMITRY POLYAKOV

The objects of this project are the Miyadera perturbation theorem and applications. If T is a C0-
semigoups with generator A, and B is an operator then (along with suitable technical conditions)
the condition that ∫

α

0
‖BT (t)x‖dt ≤ γ‖x‖

for suitable α > 0, γ < 1 and all x ∈D(A) implies that A+B is a generator. One part of the project
is to understand the proof of this theorem.

The application to ‘Schrödinger semigroups’ (alias heat equation with absorption) yields the re-
lation between Miyadera perturbations and the ‘Kato class’ of potentials. Another application of
interest is the ‘substochastic perturbation’ of substochastic semigroups on L1-spaces, a general
version of Kolmogorov’s differential equations. A third application could be the perturbation the-
ory of delay equations, but I do not intend to include this topic in the project.

For the Miyadera perturbation theorem I refer to [4], [5], [7], [2, III.3.c], but I suggest to follow the
presentation in [11, Section 3]. For the application to Schrödinger semigroups I refer to [8] (and
possibly [10]). For the application to substochastic semigroups on L1-spaces I refer to [3], [9] (and
to [6] for a generalisation). A standard reference for the application to delay equations is [1].

The papers by Kato and Miyadera as well as my papers quoted below can be obtained under
http://www.math.tu-dresden.de/∼voigt/isem11/proj-mpt.
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CRANK–NICOLSON SCHEME FOR BOUNDED SEMIGROUPS

Hans Zwart

NOÉMI NAGY, AUSTIN SCIRRATT, PATRICK TOLKSDORF

In the lecture notes we have encountered the Crank-Nicolson scheme (or method) at several occa-
sions. This scheme replaces the differential equation

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0 (7)

by the difference equation

xd(n+1) =
(
I + hA

2

)(
I− hA

2

)−1xd(n), n ∈ N, xd(0) = x0. (8)

In Theorem 13.12 it is shown if A generates a bounded analytic semigroup, then ‖An
d‖ is uniformly

bounded, where Ad = (I + hA
2 )(I− hA

2 )−1.

In this project we want to investigate this property when A is just the infinitesimal generator of a
bounded C0-semigroup. Hence not necessarily analytic. It turns out that the estimate

‖An
d‖ ≤M

√
n

is the best estimate possible for general Banach spaces, but for Hilbert spaces we can get uniform
boundedness for several cases:

• A generates a contraction semigroup,

• A generates an analytic semigroup,

• A and A−1 generate a bounded semigroup.

The aim of this project is understand these results and to apply it to some p.d.e.’s. A possible
extension is to look at the best estimates if A is a matrix. These estimates will depend on the size
of the matrix.
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