
Lecture 7

Complex Powers of Closed Operators

Having finished with the theoretical questions on well-posedness of evolution equations, we now
turn our attention on technical matters which will be extremely important in proving convergence
rates for various discretisation procedures. Note that in Lectures 3 and 4 the existence of Banach
space Y invariant under some given semigroup T was of enormous importance. Our aim in this
lecture is to arm you with important examples for such spaces. As a warm up, let us first summarise
the results of Exercise 4.1.

Proposition 7.1. Let A be the generator of a semigroup of type (M,ω) in the Banach space X,
and consider the space Xn = D(An) with the graph norm which we denote by ‖ · ‖An.

a) For n ∈ N and f ∈ D(An) define ‖|f‖|n := ‖f‖+ ‖Af‖+ · · ·+ ‖Anf‖. Then ‖| · ‖|n and ‖ · ‖An

are equivalent norms.

b) The spaces Xn are Banach spaces and are invariant under the semigroup T . If we set Tn(t) :=
T (t)|Xn, then Tn is a semigroup of type (M,ω) on Xn.

For applications these spaces are quite often too small and some intermediate spaces are needed.
The purpose of this lecture is to find some possible candidates for such invariant subspaces that fit
well in the scale of D(An), n = 1, 2, . . . .

To motivate this a bit further, let us consider the next example:

Example 7.2. Recall from Lecture 1 the multiplication operator M on ℓ2 by the sequence −n2,
which corresponds to the Dirichlet Laplacian on [0, π] after diagonalisation (more precisely after
applying the spectral theorem for selfadjoint operators)

D(M) =
{

(xn) ∈ ℓ2 : (n2xn) ∈ ℓ2
}

and M(xn) = (−n2xn).

For α ≥ 0 define

D((−M)α) =
{

(xn) ∈ ℓ2 : (n2αxn) ∈ ℓ2
}

and (−M)α(xn) = (n2αxn).

(The minus sign here is only a matter of convention.) It is not hard to see that (−M)α is a closed
operator, hence D((−M)α) is a Banach space with the graph norm. Equally easy is to see that
(−M)k is indeed the kth power of (−M) for k ∈ N, and that the semigroup T defined by

T (t)(xn) = (e−n
2txn) ∈ ℓ2

leaves this space invariant (much more(!) is true). Hence the spaces D((−M)α) fulfill the require-
ments formulated above.

Thus we set out for the quest for fractional powers of closed operators. For the purposes of this
lecture we shall leave semigroups (almost completely) behind, and develop some beautiful operator
theoretic notions.
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74 Lecture 7: Complex Powers of Closed Operators

7.1 Complex powers with negative real part

We want to define complex powers of operators A, i.e., we want to plug in A into the function
F (x) = xz where z ∈ C is fixed. This means that we want to develop a functional calculus for
this particular function F and for some reasonable class of operators. To be able to do that we
shall need the complex power functions defined on the complex plane. Let log : C \ (−∞, 0] → C

be the principal branch of the logarithm, i.e., log(λ) = log |λ| + i arg(λ), where we have fixed
the function arg with values in (−π, π). Since log is holomorphic, we can define the holomorphic
function λ 7→ λz = ez log(λ) on C \ (−∞, 0] for any given z ∈ C. Now the basic idea comes from
Cauchy’s integral theorem for this particular situation:

az =

∮

λz

λ− a
dλ

where we integrate along a curve that passes around a 6∈ (−∞, 0] in the positive direction and avoids
the negative real axis. Therefore, by analogy, or motivated by multiplication operators (cf. Exercise
2) we have to give meaning to expressions like

∮

λzR(λ,A) dλ.

Of course the curve that we are integrating over has to lie in the resolvent set of A and pass
around the spectrum of σ(A) in the positive direction. Two difficulties arise here immediately: the
spectrum may be unbounded, hence the integration curve has to be unbounded (and anyway the
term “passing around” does not make sense any more), and convergence issues for the integral have
to be taken care of. This section includes a fair amount of technicalities, but the single idea has
been explained above. The next assumption tackles both mentioned difficulties as we shall shortly
see.

Assumption 7.3. Suppose for A : D(A)→ X one has (−∞, 0] ⊆ ρ(A) and

‖R(λ,A)‖ ≤
M

1 + |λ|
for all λ ≤ 0 and some M ≥ 0.

All operators1 A occurring in this section will be assumed to have the property above. The next
is an important example for such operators, leading back for a moment to semigroups.

Example 7.4. If A generates a strongly continuous semigroup of type (M ′, ω) with ω < 0, then,
as consequence of (2.2) in Proposition 2.26, we see that for λ > 0

‖R(λ,A)‖ ≤
M

λ− ω
≤

M ′

λ+ 1
.

Hence −A satisfies the above estimate in Assumption 7.3 for some M ′.

The next fundamental result shows that although only (−∞, 0] ⊆ ρ(A) was assumed, one gains
a sector around the negative real axis, where the resolvent can be estimated satisfactorily well.

1Some authors use the names sectorial operator or positive operator for objects having this property. We decided

not to give them a name.
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Proposition 7.5. Suppose A is as in Assumption 7.3. Then there is θ0 ∈ (π2 , π) and r0 > 0 such
that the set

Λ :=
{

z ∈ C : | arg(z)| ∈ (θ0, π]
}

∪
{

z ∈ C : |z| ≤ r0
}

⊆ ρ(A)

belongs to the resolvent set of A. Moreover, there is M0 ≥ 0 so that for every λ ∈ Λ one has

‖R(λ,A)‖ ≤
M0

1 + |λ|
. (7.1)

θ0

r0

Λ

ρ(A)

Figure 7.1: The resolvent set of A and the set Λ

Proof. First of all note that for some r0 > 0 the closed ball B(0, r0) is contained in ρ(A), since ρ(A)
is open. So on this ball the resolvent is bounded. On the other hand, we have µ ∈ ρ(A) and

R(µ,A) =

∞
∑

k=0

(λ− µ)kR(λ,A)k+1

whenever |µ− λ| < ‖R(λ,A)‖−1, i.e., the open ball B(λ,− λ
M
) is contained in ρ(A). From this the

first assertion follows for θ0 = π − arctan( 1
M
). If | arg λ| ∈ (θ0, π], then

‖R(µ,A)‖ ≤

∞
∑

k=0

|Reµ− µ|k
Mk

(1 + |Reµ|)k+1
=

∞
∑

k=0

| Imµ|k
Mk

(1 + |Reµ|)k+1

≤
M1

1 + |Reµ|
≤

M0

1 + |µ|
. �

Remark 7.6. The next two estimates will be crucial for proving convergence of some integrals and
for estimating them:

1. By the proposition above we have

‖R(λ,A)‖ ≤
M0

|λ|
for all λ ∈ Λ, |λ| > r0 > 0,

and

‖R(λ,A)‖ ≤M1 for all λ ∈ Λ, |λ| ≤ r0.
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2. For λ ∈ C \ (−∞, 0] we have
∣

∣λz
∣

∣ = |λ|Re ze− Im z·arg(λ) ≤ |λ|Re zeπ| Im z| = M2|λ|
Re z

for every fixed z. In particular for Re z < 0, we have a decay as |λ| → ∞.

We shall often use these estimates without further mentioning. Next we turn our attention to
integration paths. To abbreviate a little we shall call a piecewise continuously differentiable path
admissible if it belongs to Λ and goes from∞eiθ to∞e−iθ for some θ ∈ (θ0, π). Important examples
for admissible curves are given by the following parametrisations:

Example 7.7. let θ ∈ (θ0, π) and let γ1(s) = seiθ + a and let γ2(s) = se−iθ + a, s ∈ [0,∞). For
a > 0 sufficiently small the curve γ = −γ1 + γ2 is admissible.

a

θ

γ1

γ2

Figure 7.2: An admissible curve γ

Here is the first result giving meaning to the expression we sought for.

Lemma 7.8. For γ an admissible curve and z ∈ C with Re z < 0 the complex path integral

1

2πi

∫

γ

λzR(λ,A) dλ ∈ L (X)

converges in operator norm locally uniformly in {z : Re z < 0}, and is independent of γ.

Proof. The integrand is holomorphic, and since

‖λzR(λ,A)‖ ≤
M |λ|Re zeπ| Im z|

1 + |λ|
(7.2)

holds, it follows that the integral is absolutely and locally uniformly convergent.

The independence of the integral from γ follows from Cauchy’s integral theorem and from the
estimate above. �

The next result shows that our new definition for the power would be consistent with the usual
one.

Proposition 7.9. For n ∈ N and z = −n we have

Az = A−n =
1

2πi

∫

γ

λ−nR(λ,A) dλ.
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Proof. We may assume that γ is an admissible curve of the form given in Example 7.7. Let us
consider the part of γ inside of B(0, r) that we close on the left by a circle arc around 0 of radius
r. Hence we obtain the closed curve γr. The residue theorem applied to

λ−nR(λ,A) =

∞
∑

k=0

(−1)kλk−n(−A)−k+1 = −

∞
∑

k=0

λk−nA−k+1

yields
1

2πi

∫

γr

λ−nR(λ,A) dλ = A−n,

since γr is negatively oriented. If we let r →∞ we obtain the assertion by the estimate in (7.2). �

Now we can create a definition out of what we have seen.

Definition 7.10. For z ∈ C with Re z < 0 define the operator

Az :=
1

2πi

∫

γ

λzR(λ,A) dλ. (7.3)

We call Az the power of A.

As one might have expected we have the following algebraic property.

Proposition 7.11. For z, w ∈ C with Re z,Rew < 0 we have

AzAw = Az+w.

Proof. Take two admissible curves γ and γ̃ such that γ lies to the left of γ̃. Then we have

Az =
1

2πi

∫

γ

λzR(λ,A) dλ and Aw =
1

2πi

∫

γ̃

µwR(µ,A) dµ.

We calculate the product of the two powers

AzAw =
1

(2πi)2

∫

γ̃

∫

γ

λzµwR(µ,A)R(λ,A) dλ dµ =
1

(2πi)2

∫

γ̃

∫

γ

λzµw

λ− µ

(

R(µ,A)−R(λ,A)
)

dλ dµ

by the resolvent identity. We can continue by Fubini’s theorem

=
1

2πi

∫

γ̃

R(µ,A)
1

2πi

∫

γ

λzµw

λ− µ
dλ dµ−

1

2πi

∫

γ

R(λ,A)
1

2πi

∫

γ̃

λzµw

λ− µ
dµ dλ

=
1

2πi

∫

γ̃

µzµwR(µ,A) dµ− 0 = Aw+z,

where we also used Cauchy’s integral theorem. �

Before turning to the full definition including positive fractional powers we study the properties
of Az as a function of z ∈ {w : Rew < 0}.
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Proposition 7.12. The mapping

{w : Rew < 0} ∋ z 7→ Az ∈ L (X)

is holomorphic.

Proof. Since the integrand in (7.3) is holomorphic and since the integral is locally uniformly
convergent in {w : Rew < 0} (see Lemma 7.8), the assertion follows immediately. �

The next result provides important formulas in which the path integral is replaced by integration
on the real line. To ensure convergence at 0 we need to have a condition on the exponent.

Proposition 7.13. For z ∈ C with −1 < Re z < 0 we have

Az =
sin(πz)

π

∞
∫

0

szR(−s,A) ds = −
sin(πz)

π

∞
∫

0

sz(s+A)−1 ds. (7.4)

Proof. Choose the admissible curve γ as in Example 7.7. Then

Az =
1

2πi

∫

γ

λzR(λ,A) dλ

= −
1

2πi

∞
∫

0

(seiθ + a)zR(seiθ + a,A)eiθ ds+
1

2πi

∞
∫

0

(se−iθ + a)zR(se−iθ + a,A)e−iθ ds

= −
1

2πi

∞
∫

0

eiθ(z+1)(s+ ae−iθ)zR(seiθ + a,A) ds+
1

2πi

∞
∫

0

e−iθ(z+1)(s+ eiθa)zR(se−iθ + a,A) ds.

If we let a→ 0 and θ ր π, then we obtain

= −
1

2πi

∞
∫

0

eiπ(z+1)szR(−s,A) ds+
1

2πi

∞
∫

0

e−iπ(z+1)szR(−s,A) ds =
sin(πz)

π

∞
∫

0

szR(−s,A) ds.

This passage to the limit is allowed, since we can estimate the integrand

‖eiθ(z+1)(s+ ae−iθ)zR(seiθ + a,A)‖ ≤ K
sRe z

1 + s
,

which is integrable near s = 0 since Re z > −1 and is integrable near ∞ since Re z < 0. Hence we
can apply Lebesgue’s dominated convergence theorem. �

A trivial consequence of this theorem is the identity

aα = −
sin(πa)

π

∞
∫

0

sα

s+ a
ds (7.5)

for a ∈ (−1, 0). This is one of the scalar identities motivating the formulas behind fractional powers
of operators.
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Proposition 7.14. For α ∈ C with Reα ∈ (−1, 0) we have

‖Aα‖ ≤M
| sin(πα)|

sin(πReα)
.

In particular, the mapping
(−1, 0) ∋ α 7→ Aα ∈ L (X)

is uniformly bounded.

Proof. We use the representation (7.4) from Proposition 7.13. For α ∈ (−1, 0) we have

‖Aα‖ =
∥

∥

∥

sin(πα)

π

∞
∫

0

sαR(−s,A) ds
∥

∥

∥
≤
| sin(πα)|

π

∞
∫

0

sReα M

1 + s
ds = M

| sin(πα)|

sin(πReα)
,

by identity (7.5). For real α the assertion follows from this trivially. �

Corollary 7.15. If A is densely defined, then T (t) := A−t, t > 0 and T (0) = I defines a strongly
continuous semigroup.

Proof. The mapping T has the semigroup property by Proposition 7.11. Since T : [0, 1]→ L (X) is
bounded by Proposition 7.14, it suffices to check the strong continuity at 0 on the dense subspace
D(A) (see Proposition 2.5). For t ∈ (0, 1) and f ∈ D(A) we have by Proposition 7.13 and by
identity (7.5) for a = 1 that

A−tf − f =
sin(πt)

π

∞
∫

0

s−t
(

R(−s,A)−R(−s, I)
)

ds =
sin(πt)

π

∞
∫

0

s−t

1 + s
R(−s,A)(I −A)f ds.

From this it follows

‖A−tf − f‖ ≤M
sin(πt)

π

∞
∫

0

s−t

1 + s
‖R(−s,A)‖ · ‖(I −A)f‖ ds ≤

sin(πt)

π

∞
∫

0

s−t

(1 + s)2
ds‖(I −A)f‖,

which converges to 0 as tց 0. �

7.2 Complex powers

We expect that Az = (A−z)−1 should hold, so Az should be injective. The first result tells that this
intuition—unlike many others concerning complex powers—is true.

Proposition 7.16. For z ∈ C with Re z < 0 the operator Az is injective.

Proof. Let n ∈ N be such that −n < Re z and take w := −n− z. Then we have

AzAw = AwAz = Az+w = A−n.

By Proposition 7.9, the operator A−n is the nth power of the inverse A−1 of A so it is injective,
hence so are Az and Aw. �

The result above allows us to formulate the next definition.
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Definition 7.17. Let z ∈ C. If Re z < 0, then the operator Az is defined in (7.3). If Re z > 0, then
we set

D(Az) := ran(A−z) and Az := (A−z)−1,

which exists by Proposition 7.16. If Re z = 0, then we define

D(Az) :=
{

f ∈ X : Az−1f ∈ D(A)
}

and Azf := AAz−1f.

In particular, we set A0 = I. The operator Az is called the complex power of A.

First, we study algebraic properties of the complex powers Az.

Proposition 7.18. a) For z ∈ C with Re z < −n, n ∈ N we have that

ran(Az) ⊆ D(An) and AnAzf = An+zf for all f ∈ X.

b) For z ∈ C with Re z < 0, f ∈ D(An), n ∈ N we have

Azf ∈ D(An) and AzAnf = AnAzf.

c) For z ∈ C with 0 ≤ Re z < n we have

D(Az) =
{

f ∈ X : Az−nf ∈ D(An)
}

and Azf = AnAz−nf.

Proof. a) We first prove the assertion for n = 1 and assume Re(z) < −1. Let γ be an admissible
curve. Since

‖λzAR(λ,A)‖ = ‖λz(λR(λ,A)− I)‖ ≤ (M0 + 1)|λ|Re zeπ| Im z|,

and since λzAR(λ,A) is bounded on compact parts of γ, we see that the integral Az converges in
the norm of L (X,D(A)). Since A is closed we obtain

AAz =
1

2πi

∫

γ

λz+1R(λ,A) dλ−
1

2πi

∫

γ

λz dλ.

By closing γ on the right by large circle arc of radius r > 0 and by letting r → ∞, we see that
integral on the right hand side is 0 by Cauchy’s integral theorem. Hence the assertion follows.

For general n ∈ N we can argue inductively. Indeed, let n ∈ N, n ≥ 2, and let z ∈ C be with
Re z < −n. Then Re(z + 1) < −(n − 1), hence ran(Az+1) ⊆ D(An−1) and An−1Az+1f = An+zf

follows for f ∈ X by the induction hypothesis. We already proved Az+1 = AAz. From these the
assertion follows.

b) Since R(λ,A) and An commute on D(An), it follows that Az and An commute on D(An). This
implies the assertion.

c) If Re z > 0, then D(Az) = ran(A−z). By Proposition 7.11 we have A−n = A−zAz−n. Hence
f ∈ ran(A−z) if and only if Az−nf ∈ ran(A−n) = D(An) and the asserted equality follows. Suppose
Re z = 0, and notice that the assertion is true for n = 1 by the definition of Az. For n ∈ N, n ≥ 2
we have

Az−n = A1−nAz−1.

This implies that Az−nf ∈ D(An) if and only if Az−1 ∈ D(A). �

The next result is the extension of the “semigroup property” from Proposition 7.11.
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Proposition 7.19. For z, w ∈ C with Re z < Rew the following assertions are true:

a) One has D(Aw) ⊆ D(Az) and Azf = Az−wAwf for all f ∈ D(Aw)

b) For every f ∈ D(Aw) we have Azf ∈ D(Aw−z) and Awf = Aw−zAzf .

c) If f ∈ D(Az) and Azf ∈ D(Aw−z), then f ∈ D(Aw).

Proof. a) Let n ∈ N satisfy n > Rew, and let f ∈ D(Aw), then by Proposition 7.18.c) we have
Aw−nf ∈ D(An). Proposition 7.11 yields A−n+zf = Az−wA−n+wf ∈ D(An), so actually again by
Proposition 7.18.c) we conclude x ∈ D(Az).

b) Let f ∈ D(Aw) and let n ∈ N satisfy n > Rew and n > Rew − Re z. Then we can write

A−n+w−zAwf = A−n+w−zAz−wAwf = A−nAwf,

hence by Proposition 7.18.c) we obtain Az ∈ D(Aw−z) and Aw−zAzf = Awf .

c) Take f ∈ D(Az) such that Azf ∈ D(Aw−z). Let n ∈ N satisfy n > Rew and n > Rew − Re z.
Proposition 7.11 yields

Aw−2nf = Aw−n−zAz−nf = Aw−n−zA−nAzf = A−nAw−z−nAzf.

By Proposition 7.18.c) the right-hand side belongs to D(A2n), so again this proposition gives
f ∈ D(Aw). The equality

Awf = A2nAw−2nf = A2nA−nAw−z−nAzf = Aw−zAzf

also follows. �

7.3 Domain embeddings

As mentioned in the introduction, our main interest in powers of operators lies in the excellent
properties of their domains. Hence, we turn to study various norms on D(Az) for Re z > 0.

Proposition 7.20. a) For z ∈ C the operator Az is closed.

b) For Re z > 0 the graph norm of Az is equivalent to

‖f‖Az := ‖Azf‖ for all f ∈ D(Az).

c) For z, w ∈ C with 0 ≤ Re z < Rew the embedding

D(Aw) →֒ D(Az)

is continuous.

Proof. a) If Re(z) 6= 0, either Az or A−z is bounded, hence both of them are closed. If Re(z) = 0,
then Az = AAz−1, where Az−1 is bounded. By Exercise 1 the product is closed.

b) Since Az has bounded inverse A−z, we have ‖f‖ ≤ ‖A−z‖ · ‖Azf‖. From this it follows that the
graph norm is equivalent to ‖ · ‖Az .

c) By Proposition 7.19.a) we have D(Aw) ⊆ D(Az) and

Az−wAwf = Azf for all f ∈ D(Aw),

hence ‖Az‖ ≤ ‖Az−w‖ · ‖Aw‖. �
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To be able to relate the various norms ‖·‖Aα more precisely, we need the next alternative formula
for complex powers.

Proposition 7.21 (Balakrishnan’s formula). For α ∈ C with 0 < Reα < 1 we have

Aαf =
sin(πα)

π
A

∞
∫

0

sα−1(s+A)−1f ds =
sin(πα)

π
A

∞
∫

0

sα−1(s+A)−1f ds for all f ∈ D(A).

Proof. Since −1 < Reα− 1 < 0 we obtain from (7.4) in Proposition 7.13

Aα−1f =
sin(πα)

π

∞
∫

0

sα−1(s+A)−1f ds. (7.6)

Since sα−1(s+A)−1f ∈ D(A) for every s > 0 and since

∞
∫

0

sα−1(s+A)−1Af ds

is a convergent improper integral, the closedness of A implies that the right-hand side in (7.6)
belongs to D(A) and that

AAα−1f =
sin(πα)

π
A

∞
∫

0

sα−1(s+A)−1f ds =
sin(πα)

π

∞
∫

0

sα−1(s+A)−1Af ds.

By Proposition 7.19.a) we have Aαf = AAα−1f , hence the statement is proved. �

Remark 7.22. The above proof can be modified to yield the following more general statement:
For α, β ∈ C with 0 < Reα < Reβ ≤ 1 we have

Aαf = sin(π(β−α))
π

∞
∫

0

sα−β(s+A)−1Aβf ds = sin(π(β−α))
π

∞
∫

0

sα−β(s+A)−1Aβf (7.7)

for all f ∈ D(Aβ)

We can make use of this representation to obtain finer relations between the ‖ · ‖Aα norms.

Proposition 7.23. For α, β ∈ C with 0 < Reα < Reβ < 1 there is K0 ≥ 0 such that the following
assertions holds:

a) For all f ∈ D(Aβ)

‖Aαf‖ ≤ K0

(

tReα−Reβ+1‖f‖+ tReα−Reβ‖Aβf‖
)

for all t > 0. (7.8)

b) For all f ∈ D(Aβ)

‖Aαf‖ ≤ 2K0‖f‖
Reβ−Reα · ‖Aβf‖1−(Reβ−Reα). (7.9)
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Proof. For f ∈ D(Aβ) we have by Remark 7.22 that

‖Aαf‖ ≤ | sin(π(β−α))|
π

(

t
∫

0

‖sα−βAβ(s+A)−1‖ · ‖f‖ ds+

∞
∫

t

‖sα−β(s+A)−1‖ · ‖Aβf‖ ds
)

≤ | sin(π(β−α))|
π

(

t
∫

0

‖sα−βAβ−1A(s+A)−1‖ · ‖f‖ ds+

∞
∫

t

‖sα−β(s+A)−1‖ · ‖Aβf‖ ds
)

≤ | sin(π(β−α))|
π

(

‖Aβ−1‖

t
∫

0

sReα−Reβ
(

1 +
Ms

1 + s

)

ds‖f‖+

∞
∫

t

sReα−Reβ M

s+ 1
ds‖Aβf‖

)

≤ | sin(π(β−α))|
π

(

tReα−Reβ+1(1 +M)‖Aβ−1‖ · ‖f‖+MtReα−Reβ‖Aβf‖
)

≤ K0

(

tReα−Reβ+1‖f‖+ tReα−Reβ‖Aβf‖
)

.

This proves assertion a).

For f = 0 the desired inequality (7.9) is trivial. For f 6= 0 set t = ‖Aβf‖
‖f‖ in the inequality above to

conclude

‖Aαf‖ ≤ 2K0‖f‖
Reβ−Reα‖Aβf‖1−(Reβ−Reα). �

Remark 7.24. The proof above works whenever Aβ−1 is bounded, for example also for β = 1. In
particular, we obtain for α ∈ [0, 1]

‖Aαf‖ ≤ K‖f‖1−α‖Af‖α for all f ∈ D(A), (7.10)

the limiting cases α = 0 and α = 1 being trivial.

With some more work one can prove the following general version of interpolation type inequalities,
which we mention here without proof.

Theorem 7.25 (Moment inequality). For α < β < γ there is K ≥ 0 such that

‖Aβf‖ ≤ K‖Aαf‖
γ−β
γ−α · ‖Aγf‖

β−α
γ−α holds for all f ∈ D(Aγ).

Corollary 7.26. Let α ∈ (0, 1] and let B be a closed operator such that D(B) ⊇ D(Aα). Then the
following assertions are true:

a) There is a K ≥ 0 such that

‖Bf‖ ≤ K‖Aαf‖ for all f ∈ D(Aα).

b) There is K0 ≥ 0 such that

‖Bf‖ ≤ K0

(

sα‖f‖+ sα−1‖Af‖
)

holds for all s > 0 and f ∈ D(Aα).

Proof. a) Since by Exercise 1 the operator BA−α is closed, and since it is by assumption everywhere
defined, it is bounded by the closed graph theorem, see Theorem 2.32. Boundedness of BA−α means
precisely the assertion.

b) The assertion follows from part a) and Proposition 7.23.a). �
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After having seen the fine structure of the embeddings of domains of complex powers, let us close
this lecture by returning to the motivating question. To which the last result gives one possible
answer.

Proposition 7.27. Let A generate a semigroup T of type (M,ω) with ω < 0 and consider the
powers (−A)z for Re z > 0. The domain D((−A)z) is invariant under the semigroup T . The
restriction of T to this subspace is a strongly continuous semigroup of bounded linear operators for
the norm ‖ · ‖(−A)z . The type of this semigroup is (M,ω).

Proof. Since the bounded operator (−A)−z commutes with −R(−λ,−A) = R(λ,A), as a conse-
quence of the convergence of the implicit Euler scheme(see Theorem 5.10), we obtain that (−A)−z

commutes with the semigroup operators T (t). This implies that ran((−A)−z) = D((−A)z) is inva-
riant under the semigroup. Moreover, we have

‖(−A)zT (t)f‖ ≤ ‖T (t)‖ · ‖(−A)zf‖,

so T (t) ∈ L (D((−A)z)). The strong continuity follows from

‖(T (t)− I)f‖(−A)z = ‖(−A)z(T (t)− I)f‖ = ‖T (t)(−A)zf − (−A)zf‖. �

Exercises

1. Suppose A : D(A)→ X is closed and B ∈ L (X) is bounded.

a) Prove that the product AB with

D(AB) =
{

f ∈ X : Bx ∈ D(A)
}

.

is closed.

b) Give an example for A and B such that BA with D(BA) = D(A) is not closed.

2. Let m = (mn) ⊆ C be a sequence. Give a sufficient and necessary condition on m so that the
multiplication operator Mm fulfills Assumption 7.3. Determine in that case the powers of Mm.

3. Prove that for t ∈ R and f ∈ D(Ait) we have Aitf ∈ D(A−it) and A−itAitf = f .

4. Prove the identity (7.7) in Remark 7.22.

5. Suppose A is densely defined, and take z ∈ C with Re z < 0. Prove that T (t) := Azt, t > 0 and
T (0) = I defines a strongly continuous semigroup.

6. Assume we have proved assertion b) in Proposition 7.23. Deduce part a) from that.

7. Let α ∈ (0, 1). Prove that for all λ > 0 sufficiently large we have

‖AαR(−λ,A)‖ < 1.

Compare this to Exercise 6.5.

8. Prove what has been remaining from Proposition 7.1.


