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Exercise 1

Prove the reccurence relation

φj(hC)f =
1

j!
f + hCφj+1(hC)f (1)

for all j=0,1,2, and f ∈ X.

Proof. Fix h > 0. For j = 0, we have by definition

φ1(hC)f = hC
1

h

∫ h

0
e(h−τ)Cf dτ = C

∫ h

0
esCf ds = ehCf − f,

where we used Lemma 2.9 in the last equality. Since φ0(hC) := ehC , (1) for j = 0
follows.
Now, let j > 0 and f ∈ D(C). Since (s 7→ esAf) is continuously differentiable with
derivative CesA, using integration by parts, we obtain

φj(hC)f =
1

hj

∫ h

0

τ j−1

(j − 1)!
e(h−τ)Cf dτ

=
1

j!
f +

1

hj

∫ h

0

τ j

j!
Ce(h−τ)Cf dτ

=
1

j!
f + C

1

hj

∫ h

0

τ j

j!
e(h−τ)Cf dτ,

where the last equality holds since C is closed. Therefore, (1) holds for f ∈ D(C). For
arbitrary f ∈ X, let (fn) ⊂ D(C) be a sequence converging to f . From above, we know

φj(hC)fn =
1

j!
fn + hCφj+1(hC)fn ∀n ∈ N.
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This implies, because φj(hC) is bounded, that hCφj+1(hC)fn converges to φj(hC)f− 1
j!f

as n→∞. Therefore, by boundedness of φj+1(hC), we have

φj+1(hC)fn → φj+1(hC)f, hCφj+1(hC)fn → φj(hC)f − 1

j!
f,

as n→∞. Since C is closed, we conclude that φj+1(hC)f ∈ D(C) and

hCφj+1(hC)f = φj(hC)f − 1

j!
f.

Exercise 2

Let C be the operator from Example 11.5. Prove that the H4-norm makes D(C2) a Ba-
nach space.

Proof. It suffices to show that D(C2) is a closed subspace of (H4(Ω), ‖.‖H4). Let fn ∈
D(C2) and fn

H4

→ f (this denotes convergence in H4) as n → ∞. Clearly, this implies

that fn
H2

→ f and fn
H1

→ f . Since fn ∈ D(C) = H1
0 (Ω) ∩H2(Ω), it follows that f ∈ D(C)

because H1
0 (Ω) and H2(Ω) are Banach spaces.

Now, we show Cfn
H2

→ Cf . Since a, b ∈ C3(Ω̄), one easily sees that for f ∈ D(C)

Cf = (A+B)f = ∂x(a∂xf) + ∂y(b∂yf) ∈ H2.

In fact, for instance

‖∂xx∂x(a∂xf)‖L2(Ω) ≤
3∑
i=0

(
3

i

)∥∥∥∥( ∂i∂xia) · ∂4−i

∂x4−i f

∥∥∥∥
L2(Ω)

≤M‖f‖H4 <∞

Here,

M = C max
i=1,..3

∥∥∥∥( ∂i∂xia)2
∥∥∥∥
∞

(2)

which exists since a ∈ C3(Ω̄) and where C > 0 is a suitable constant. Analogously, we
deduce

‖Cfn − Cf‖H2(Ω) ≤
∑

(α,β)∈N×N,α+β≤4

Mα,β‖
∂α∂β

∂xα∂yβ
(f − fn)‖L2(Ω) ≤ M̃‖f − fn‖H4 ,

where Mα,β is computed similarly as in (2). Since fn
H4

→ f , it follows that Cfn
H2

→ Cf

and Cfn
H1

→ Cf . Thus, Cf ∈ H1
0 (Ω) ∩H2(Ω) = D(C). Therefore, f ∈ D(C2).

2



Exercise 3

Consider the operators A, B and C from Example 11.5 with a = b = 1. Show that they
generate an analytic contraction semigroups.

Proof. Since for a = b = 1 the operators A and B are only ‘working’ on either x or
y, this operators can be considered on L2(0, 1) instead of L2(Ω). From lecture 1 and
2 we know that they generate the heat semigroup on L2(0, 1), which is a contraction
semigroup. To show that we even get an analytic semigroup, we apply Proposition 9.19.
Therefore, it remains to show that there exist an α ∈ (0, π/2) such that e−iαA and eiαA
generate bounded semigroups. Since for f ∈ D(A), we obtain using the integration by
parts formula that

〈e±iαAf, f〉L2(0,1) = e±iα
∫

01f ′′(t)f(t) dt

= e±iαf ′f
∣∣1
0
− e±iα

∫ 1

0
f ′(t)f ′(t) dt

= − e±iα‖f ′‖2L2(0,1).

For α ∈ (0, π/2), we deduce that Re〈e±iαAf, f〉L2(0,1) ≤ 0, hence e±iαA is dissipative.

Clearly, e±iαA are densely defined, closed and their resolvent sets include (0,∞), because
these properties hold for A. Thus, by the Lumer-Phillips theorem (lecture 6), these
operators generate a contraction semigroup and, hence, by Prop. 9.19, we conclude that
A generates a (bounded) analytic semigroup. Obviously, the argumentation for B is the
same.
For C, we have seen a similar result in lecture 2 (the heat semigroup on L2(R) is a
contraction semigroup). In fact, to show that C (X = L2(Ω)) is the generator of a
contraction semigroup, we use the Lumer-Phillips theorem once again. Apparentely, the
domain of C is dense in L2(Ω) and the operator is closed (since C is the closure of its
restriction to C2(Ω)). Furthermore, from PDEswe know (see e.g.1) that for g ∈ C2(Ω)
the elliptic equation

−∆f + f = g, f = 0 on ∂Ω,

has a solution in C2(Ω). Hence, rg(I−C) is dense. Finally, for f ∈ D(C) we make a
similar observation as above,

〈e±iαCf, f〉L2(Ω) = e±iα
∫
∂Ω
f(∇f · ν) dν − e±iα

∫
Ω
∇f · ∇f dx

= − e±iα‖∇f‖2L2(Ω),

which has real-part less or equal zero for α ∈ (0, π/2) (and also for α = 0). By Lumer-
Phillips, we conclude that e±iαC (and A) generate contraction semigroups, thus, C is
the generator of a bounded(contraction) analytic semigroup by Prop. 9.19.

1Evans, R., Partial Differential Equations. Graduate Studies in Mathematics, American Mathemati-
cal Society, 1998.
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Exercise 4

Suppose A generates a contraction semigroup on the Hilbert space H. Prove that the
Cayley transform

G = (I +A)(I−A)−1

is a contraction, i.e. ‖G‖ ≤ 1.

Proof. We begin with the following fact, which is easy to see

G = (I +A)(I−A)−1 = − I−A
I−A

+
2 I

I−A
= − I +2(I−A)−1.

Using this, we see, for x ∈ X, that

‖Gx‖2 = ‖x‖2 + 4‖(I−A)−1x‖ − 4 Re〈(I−A)−1x, x〉. (3)

Since A generates a contraction semigroup, A is dissipative (by Hille-Yoshida Theorem).
Let us note, as seen in lecture 6, that dissipativity is equivalent to

Re〈y,Ay〉 ≤ 0 ∀y ∈ D(A).

This implies
‖y‖2 − Re〈y, (I−A)y〉 ≤ 0. (4)

By defining y = (I−A)−1x, (4) can be used to estimate the right hand side in (3), which
reads then

‖Gx‖2 ≤ ‖x‖2.

Thus, ‖G‖ ≤ 1.

Exercise 5

Prove Theorem 11.14

Theorem. The Marchuk-Strang splitting is convergent at time level t > 0 if the stability
condition (11.10) holds for the approximate semigroups, and the approximate generators
satisfy Assumption 11.7.

Proof. Basically, the proof is very similar to one done for the sequential splitting. Recall
that the Marchuk-Strang splitting is defined by

Fm = Tm(h/2)Sm(h)Sm(h/2),

where Tm and Sm denote the approximate semigroups. As in the lecture, let Am, Bm
be the corresponding generators respectively and T , S (A, B) be the ‘exact’ semigroups
(generator). Furthermore, let the closure C of A + B generate a semigroup. As for
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the sequential splitting, in order to show the convergence, we are going to apply the
Modified Chernoff Theorem, Theorem 11.11. Clearly, Fm(h) is a bounded operator and
Fm(0) = I for all m ∈ N, h ≥ 0. Furthermore, the following stability

‖(Fm(h))k‖ ≤Mehωk

holds by Assumption 11.7. and Exercise 5 of lecture 10. Therefore, to apply Theorem
11.11, it remains find λ > 0 and a dense subspace Y such that for f ∈ Y

lim
m→∞

JmFmPmf − JmPmf
h

exists uniformly in h ∈ (0, t0] (for some t0 > 0) and that

Gf := lim
h→0+

lim
m→∞

JmFmPmf − JmPmf
h

(5)

exists. Furthermore, (λ I−G)Y should be dense.
For that, we consider some fixed t0 > 0 and

1

h

[
JmFm(h)Pmf − JmPmf

]
=
JmTm(h/2)Sm(h)Tm(h/2)Pmf − JmPmf

h

= JmTm(h/2)Sm(h)Pm
1

2

JmTm(h/2)Pmf − JmPmf
h/2

+

+ JmTm(h/2)Pm
JmSm(h)Pmf

h
− 1

h
JmPmf

= JmTm(h/2)Sm(h)Pm
1

2

JmTm(h/2)Pmf − JmPmf
h/2︸ ︷︷ ︸

=α(m,h)

+

+ JmTm(h/2)Pm
JmSm(h)Pmf − JmPmf

h︸ ︷︷ ︸
=β(m,h)

+

+
1

2

JmTm(h/2)Pmf − JmPmf
h/2︸ ︷︷ ︸

=γ(m,h)

where we used that PmJm = I several times. Now, the argument is similar as in the
proof for the sequential splitting: From Lemma 11.12 we know that for f ∈ D(A),

lim
m→∞

JmTm(h/2)Pmf − JmPmf
h/2

=
1

(h/2)
[T (h/2)f − f ], (6)

as m→∞ uniformly in h ∈ (0, t0]. Analogously, for f ∈ D(B),

lim
m→∞

JmSm(h)Pmf − JmPmf
h

=
1

h
[S(h)f − f ], (7)
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as m → ∞ uniformly in h ∈ (0, t0]. Let f ∈ D(A) ∩ D(B). To see the convergence of
β(m,h) we consider

‖β(m,h)−Bf‖ = ‖JmTm(h/2)Pm
1

h

[
JmSm(h)Pm − JmPm

]
− JmTm(h/2)PmBf+

+ JmTm(h/2)PmBf −Bf‖

≤ ‖JmTm(h/2)Pm‖
∥∥∥∥JmSm(h)Pm − JmPm

h
−Bf

∥∥∥∥+

+ ‖JmTm(h/2)PmBf −Bf‖.

Since ‖JmTm(h/2)Pm‖ ≤ Ce(t0/2)ω for all m ∈ N and h ∈ [0, t0] and because of (7), the
first term converges to zero as m → ∞ and h → 0+ (the limit for m → ∞ is uniformly
in h). By Remark 11.8 and the strong continuity, this convergence also holds for the
second term.
Similarly, α(m,h)→ (1/2)Af can be seen. For γ(m,h) we can apply (6) directly.
Altogether, we obtain that

lim
m→∞

α(h,m), lim
m→∞

β(h,m) and lim
m→∞

γ(m,h)

exist uniformly in h ∈ (0, t0] and that

lim
h→0+

lim
m→∞

(α(h,m) + β(h,m) + γ(m,h)) =
1

2
Af +Bf +

1

2
Af.

Therefore, for f ∈ D(A) ∩D(B)

lim
m→∞

1

h

[
JmFm(h)Pmf − JmPmf

]
exists uniformly in h ∈ (0, t0] and

lim
h→0+

lim
m→∞

1

h

[
JmFm(h)Pmf − JmPmf

]
= Af +Bf = Cf.

Hence, we set Y = D(A) ∩ D(B) which is dense by assumption. Since C generates a
semigroup, there exists a positive λ such that (λ I−C) is boundedly invertible. Thus,
(λ I−C)Y is also dense (in fact, assume that there exists a non-empty open set O ⊆ X
such that O ∩ (λ I−C)Y = ∅. Therefore, and since (λ I−C) is boundedly invertible,
(λ I−C)−1O is a non-empty open set with (λ I−C)−1O ∩ Y = ∅. This contradicts that
Y is dense.)
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