Solutions of Exercises 11

Felix L. Schwenninger Team UT Twente, The Netherlands

January 2012

Exercise 1

Prove the recurrence relation

$$\phi_j(hC)f = \frac{1}{j!}f + hC\phi_{j+1}(hC)f$$
(1)

for all j=0,1,2, and $f \in X$.

Proof. Fix h > 0. For j = 0, we have by definition

$$\phi_1(hC)f = hC\frac{1}{h}\int_0^h e^{(h-\tau)C}f \ d\tau = C\int_0^h e^{sC}f \ ds = e^{hC}f - f,$$

where we used Lemma 2.9 in the last equality. Since $\phi_0(hC) := e^{hC}$, (1) for j = 0 follows.

Now, let j > 0 and $f \in D(C)$. Since $(s \mapsto e^{sA}f)$ is continuously differentiable with derivative Ce^{sA} , using integration by parts, we obtain

$$\begin{split} \phi_j(hC)f &= \frac{1}{h^j} \int_0^h \frac{\tau^{j-1}}{(j-1)!} e^{(h-\tau)C} f \ d\tau \\ &= \frac{1}{j!} f + \frac{1}{h^j} \int_0^h \frac{\tau^j}{j!} C e^{(h-\tau)C} f \ d\tau \\ &= \frac{1}{j!} f + C \frac{1}{h^j} \int_0^h \frac{\tau^j}{j!} e^{(h-\tau)C} f \ d\tau, \end{split}$$

where the last equality holds since C is closed. Therefore, (1) holds for $f \in D(C)$. For arbitrary $f \in X$, let $(f_n) \subset D(C)$ be a sequence converging to f. From above, we know

$$\phi_j(hC)f_n = \frac{1}{j!}f_n + hC\phi_{j+1}(hC)f_n \qquad \forall n \in \mathbb{N}.$$

This implies, because $\phi_j(hC)$ is bounded, that $hC\phi_{j+1}(hC)f_n$ converges to $\phi_j(hC)f - \frac{1}{j!}f$ as $n \to \infty$. Therefore, by boundedness of $\phi_{j+1}(hC)$, we have

$$\phi_{j+1}(hC)f_n \to \phi_{j+1}(hC)f, \qquad hC\phi_{j+1}(hC)f_n \to \phi_j(hC)f - \frac{1}{j!}f,$$

as $n \to \infty$. Since C is closed, we conclude that $\phi_{j+1}(hC)f \in D(C)$ and

$$hC\phi_{j+1}(hC)f = \phi_j(hC)f - \frac{1}{j!}f.$$

Exercise 2

Let C be the operator from Example 11.5. Prove that the H^4 -norm makes $D(C^2)$ a Banach space.

Proof. It suffices to show that $D(C^2)$ is a closed subspace of $(H^4(\Omega), \|.\|_{H^4})$. Let $f_n \in D(C^2)$ and $f_n \xrightarrow{H^4} f$ (this denotes convergence in H^4) as $n \to \infty$. Clearly, this implies that $f_n \xrightarrow{H^2} f$ and $f_n \xrightarrow{H^1} f$. Since $f_n \in D(C) = H_0^1(\Omega) \cap H^2(\Omega)$, it follows that $f \in D(C)$ because $H_0^1(\Omega)$ and $H^2(\Omega)$ are Banach spaces.

Now, we show $Cf_n \xrightarrow{H^2} Cf$. Since $a, b \in C^3(\overline{\Omega})$, one easily sees that for $f \in D(C)$

$$Cf = (A+B)f = \partial_x(a\partial_x f) + \partial_y(b\partial_y f) \in H^2.$$

In fact, for instance

$$\|\partial_{xx}\partial_x(a\partial_x f)\|_{L^2(\Omega)} \le \sum_{i=0}^3 \binom{3}{i} \left\| \left(\frac{\partial^i}{\partial x^i}a\right) \cdot \frac{\partial^{4-i}}{\partial x^{4-i}}f \right\|_{L^2(\Omega)} \le M \|f\|_{H^4} < \infty$$

Here,

$$M = C \max_{i=1,..3} \left\| \left(\frac{\partial^i}{\partial x^i} a \right)^2 \right\|_{\infty}$$
(2)

which exists since $a \in C^3(\overline{\Omega})$ and where C > 0 is a suitable constant. Analogously, we deduce

$$\|Cf_n - Cf\|_{H^2(\Omega)} \le \sum_{(\alpha,\beta)\in\mathbb{N}\times\mathbb{N}, \alpha+\beta\le 4} M_{\alpha,\beta} \|\frac{\partial^{\alpha}\partial^{\beta}}{\partial x^{\alpha}\partial y^{\beta}}(f-f_n)\|_{L^2(\Omega)} \le \tilde{M}\|f-f_n\|_{H^4},$$

where $M_{\alpha,\beta}$ is computed similarly as in (2). Since $f_n \xrightarrow{H^4} f$, it follows that $Cf_n \xrightarrow{H^2} Cf$ and $Cf_n \xrightarrow{H^1} Cf$. Thus, $Cf \in H_0^1(\Omega) \cap H^2(\Omega) = D(C)$. Therefore, $f \in D(C^2)$.

Exercise 3

Consider the operators A, B and C from Example 11.5 with a = b = 1. Show that they generate an analytic contraction semigroups.

Proof. Since for a = b = 1 the operators A and B are only 'working' on either x or y, this operators can be considered on $L^2(0,1)$ instead of $L^2(\Omega)$. From lecture 1 and 2 we know that they generate the heat semigroup on $L^2(0,1)$, which is a contraction semigroup. To show that we even get an analytic semigroup, we apply Proposition 9.19. Therefore, it remains to show that there exist an $\alpha \in (0, \pi/2)$ such that $e^{-i\alpha}A$ and $e^{i\alpha}A$ generate bounded semigroups. Since for $f \in D(A)$, we obtain using the integration by parts formula that

$$\langle e^{\pm i\alpha}Af, f \rangle_{L^2(0,1)} = e^{\pm i\alpha} \int 0^1 f''(t) \overline{f(t)} dt$$
$$= e^{\pm i\alpha} f' \overline{f} \big|_0^1 - e^{\pm i\alpha} \int_0^1 f'(t) \overline{f'(t)} dt$$
$$= -e^{\pm i\alpha} \|f'\|_{L^2(0,1)}^2.$$

For $\alpha \in (0, \pi/2)$, we deduce that $\operatorname{Re}\langle e^{\pm i\alpha}Af, f \rangle_{L^2(0,1)} \leq 0$, hence $e^{\pm i\alpha}A$ is dissipative. Clearly, $e^{\pm i\alpha}A$ are densely defined, closed and their resolvent sets include $(0, \infty)$, because these properties hold for A. Thus, by the Lumer-Phillips theorem (lecture 6), these operators generate a contraction semigroup and, hence, by Prop. 9.19, we conclude that A generates a (bounded) analytic semigroup. Obviously, the argumentation for B is the same.

For C, we have seen a similar result in lecture 2 (the heat semigroup on $L^2(\mathbb{R})$ is a contraction semigroup). In fact, to show that C $(X = L^2(\Omega))$ is the generator of a contraction semigroup, we use the Lumer-Phillips theorem once again. Apparentely, the domain of C is dense in $L^2(\Omega)$ and the operator is closed (since C is the closure of its restriction to $C^2(\Omega)$). Furthermore, from PDEswe know (see e.g.¹) that for $g \in C^2(\Omega)$ the elliptic equation

$$-\Delta f + f = g, \qquad f = 0 \text{ on } \partial\Omega,$$

has a solution in $C^2(\overline{\Omega})$. Hence, rg(I-C) is dense. Finally, for $f \in D(C)$ we make a similar observation as above,

$$\begin{split} \langle e^{\pm i\alpha} Cf, f \rangle_{L^2(\Omega)} &= e^{\pm i\alpha} \int_{\partial \Omega} f(\nabla f \cdot \nu) \ d\nu - e^{\pm i\alpha} \int_{\Omega} \nabla f \cdot \overline{\nabla f} \ dx \\ &= -e^{\pm i\alpha} \|\nabla f\|_{L^2(\Omega)}^2, \end{split}$$

which has real-part less or equal zero for $\alpha \in (0, \pi/2)$ (and also for $\alpha = 0$). By Lumer-Phillips, we conclude that $e^{\pm i\alpha}C$ (and A) generate contraction semigroups, thus, C is the generator of a bounded(contraction) analytic semigroup by Prop. 9.19.

¹Evans, R., *Partial Differential Equations*. Graduate Studies in Mathematics, American Mathematical Society, 1998.

Exercise 4

Suppose A generates a contraction semigroup on the Hilbert space H. Prove that the Cayley transform

$$G = (I + A)(I - A)^{-1}$$

is a contraction, i.e. $||G|| \leq 1$.

Proof. We begin with the following fact, which is easy to see

$$G = (I+A)(I-A)^{-1} = -\frac{I-A}{I-A} + \frac{2I}{I-A} = -I + 2(I-A)^{-1}.$$

Using this, we see, for $x \in X$, that

$$||Gx||^{2} = ||x||^{2} + 4||(\mathbf{I} - A)^{-1}x|| - 4\operatorname{Re}\langle(\mathbf{I} - A)^{-1}x, x\rangle.$$
(3)

Since A generates a contraction semigroup, A is dissipative (by Hille-Yoshida Theorem). Let us note, as seen in lecture 6, that dissipativity is equivalent to

$$\operatorname{Re}\langle y, Ay \rangle \leq 0 \qquad \forall y \in D(A).$$

This implies

$$||y||^2 - \operatorname{Re}\langle y, (\mathbf{I} - A)y \rangle \le 0.$$
(4)

By defining $y = (I - A)^{-1}x$, (4) can be used to estimate the right hand side in (3), which reads then

$$||Gx||^2 \le ||x||^2.$$

Thus, $||G|| \leq 1$.

Exercise 5

Prove Theorem 11.14

Theorem. The Marchuk-Strang splitting is convergent at time level t > 0 if the stability condition (11.10) holds for the approximate semigroups, and the approximate generators satisfy Assumption 11.7.

Proof. Basically, the proof is very similar to one done for the sequential splitting. Recall that the Marchuk-Strang splitting is defined by

$$F_m = T_m(h/2)S_m(h)S_m(h/2),$$

where T_m and S_m denote the approximate semigroups. As in the lecture, let A_m , B_m be the corresponding generators respectively and T, S(A, B) be the 'exact' semigroups (generator). Furthermore, let the closure C of A + B generate a semigroup. As for

the sequential splitting, in order to show the convergence, we are going to apply the Modified Chernoff Theorem, Theorem 11.11. Clearly, $F_m(h)$ is a bounded operator and $F_m(0) = I$ for all $m \in \mathbb{N}$, $h \ge 0$. Furthermore, the following stability

$$\|(F_m(h))^k\| \le M e^{h\omega k}$$

holds by Assumption 11.7. and Exercise 5 of lecture 10. Therefore, to apply Theorem 11.11, it remains find $\lambda > 0$ and a dense subspace Y such that for $f \in Y$

$$\lim_{m \to \infty} \frac{J_m F_m P_m f - J_m P_m f}{h}$$

exists uniformly in $h \in (0, t_0]$ (for some $t_0 > 0$) and that

$$Gf := \lim_{h \to 0^+} \lim_{m \to \infty} \frac{J_m F_m P_m f - J_m P_m f}{h}$$
(5)

exists. Furthermore, $(\lambda I - G)Y$ should be dense. For that, we consider some fixed $t_0 > 0$ and

$$\frac{1}{h} [J_m F_m(h) P_m f - J_m P_m f] = \frac{J_m T_m(h/2) S_m(h) T_m(h/2) P_m f - J_m P_m f}{h}$$

$$= J_m T_m(h/2) S_m(h) P_m \frac{1}{2} \frac{J_m T_m(h/2) P_m f - J_m P_m f}{h/2} + J_m T_m(h/2) P_m \frac{J_m S_m(h) P_m f}{h} - \frac{1}{h} J_m P_m f$$

$$= \underbrace{J_m T_m(h/2) S_m(h) P_m \frac{1}{2} \frac{J_m T_m(h/2) P_m f - J_m P_m f}{h/2}}_{=\alpha(m,h)} + \underbrace{J_m T_m(h/2) P_m \frac{J_m S_m(h) P_m f - J_m P_m f}{h}}_{=\beta(m,h)} + \underbrace{\frac{1}{2} \frac{J_m T_m(h/2) P_m f - J_m P_m f}{h/2}}_{=\gamma(m,h)} + \underbrace{\frac{1}{2} \frac{J_m T_m(h/2) P_m f - J_m P_m f}{h/2}}_{=\gamma(m,h)}$$

where we used that $P_m J_m = I$ several times. Now, the argument is similar as in the proof for the sequential splitting: From Lemma 11.12 we know that for $f \in D(A)$,

$$\lim_{m \to \infty} \frac{J_m T_m (h/2) P_m f - J_m P_m f}{h/2} = \frac{1}{(h/2)} [T(h/2) f - f],$$
(6)

as $m \to \infty$ uniformly in $h \in (0, t_0]$. Analogously, for $f \in D(B)$,

$$\lim_{m \to \infty} \frac{J_m S_m(h) P_m f - J_m P_m f}{h} = \frac{1}{h} [S(h)f - f],$$
(7)

as $m \to \infty$ uniformly in $h \in (0, t_0]$. Let $f \in D(A) \cap D(B)$. To see the convergence of $\beta(m, h)$ we consider

$$\begin{aligned} \|\beta(m,h) - Bf\| &= \|J_m T_m(h/2) P_m \frac{1}{h} \left[J_m S_m(h) P_m - J_m P_m \right] - J_m T_m(h/2) P_m Bf + \\ &+ J_m T_m(h/2) P_m Bf - Bf\| \\ &\leq \|J_m T_m(h/2) P_m\| \left\| \frac{J_m S_m(h) P_m - J_m P_m}{h} - Bf \right\| + \\ &+ \|J_m T_m(h/2) P_m Bf - Bf\|. \end{aligned}$$

Since $||J_m T_m(h/2)P_m|| \leq Ce^{(t_0/2)\omega}$ for all $m \in \mathbb{N}$ and $h \in [0, t_0]$ and because of (7), the first term converges to zero as $m \to \infty$ and $h \to 0^+$ (the limit for $m \to \infty$ is uniformly in h). By Remark 11.8 and the strong continuity, this convergence also holds for the second term.

Similarly, $\alpha(m,h) \to (1/2)Af$ can be seen. For $\gamma(m,h)$ we can apply (6) directly. Altogether, we obtain that

$$\lim_{m \to \infty} \alpha(h, m), \ \lim_{m \to \infty} \beta(h, m) \text{ and } \lim_{m \to \infty} \gamma(m, h)$$

exist uniformly in $h \in (0, t_0]$ and that

$$\lim_{h \to 0^+} \lim_{m \to \infty} (\alpha(h,m) + \beta(h,m) + \gamma(m,h)) = \frac{1}{2}Af + Bf + \frac{1}{2}Af.$$

Therefore, for $f \in D(A) \cap D(B)$

$$\lim_{m \to \infty} \frac{1}{h} \big[J_m F_m(h) P_m f - J_m P_m f \big]$$

exists uniformly in $h \in (0, t_0]$ and

$$\lim_{h \to 0^+} \lim_{m \to \infty} \frac{1}{h} \left[J_m F_m(h) P_m f - J_m P_m f \right] = Af + Bf = Cf$$

Hence, we set $Y = D(A) \cap D(B)$ which is dense by assumption. Since C generates a semigroup, there exists a positive λ such that $(\lambda I - C)$ is boundedly invertible. Thus, $(\lambda I - C)Y$ is also dense (in fact, assume that there exists a non-empty open set $O \subseteq X$ such that $O \cap (\lambda I - C)Y = \emptyset$. Therefore, and since $(\lambda I - C)$ is boundedly invertible, $(\lambda I - C)^{-1}O$ is a non-empty open set with $(\lambda I - C)^{-1}O \cap Y = \emptyset$. This contradicts that Y is dense.)