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Abstract. It is known that the planar q-state Potts model undergoes a discon-
tinuous phase transition when q > 4 and there are exactly q + 1 extremal Gibbs
measures at the transition point: q ordered (monochromatic) measures and one dis-
ordered (free). We focus on the Potts model under the Dobrushin order–disorder
boundary conditions on a finite N × N part of the square grid. It was previously
known that, if defined at all, the interface between the ordered and disordered sides
of the box exhibits unbounded fluctuations. Our main result is that this interface
is a well defined object, has

√
N fluctuations, and converges to a Brownian bridge

under diffusive scaling. The same holds also for the corresponding FK-percolation
model for all q > 4.

Our proofs rely on a coupling between FK-percolation, the six-vertex model, and
the random cluster representation of an Ashkin–Teller model (ATRC), and on a
detailed study of the latter. Fine mixing properties the ATRC model are derived
using the link to the six vertex model and its height function, while the coupling
transfers the study of the interface in FK-percolation to the study of long subcritical
clusters in the ATRC model. These are then studied via the development of a
“renewal picture” à la Ornstein-Zernike. Along the way, we derive various properties
of the Ashkin-Teller model, such as Ornstein-Zernike asymptotics for its two-point
function.

In a companion work, we provide a detailed study of the Potts model under order-
order Dobrushin conditions. In particular, we show that the model is subject to the
phenomenon of wetting, and derive the scaling limit of the interface (under diffusive
scaling).

[AG: This is preliminary version, soon to be replaced by an arXiv version.] ⋆
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1. Introduction and results

The Potts model is a classical model of statistical mechanics introduced in 1952 [Pot52].
Each vertex of a graph is assigned one of q states (colours), with states of adjacent
vertices interacting with a strength depending on the temperature T > 0 of the sys-
tem. At q = 2, this corresponds to the seminal Ising model. The Potts model becomes
increasingly ordered as the temperature decreases, and a phase transition occurs on
lattices Zd with d ≥ 2 at some transition temperature Tc(q, d) > 0. Depending on q
and d, the transition is either discontinuous (first-order) or continuous (higher-order).
Such a rich behaviour has brought a lot of attention to the Potts model.

Interface in the planar Potts model. Our work is restricted to dimension d = 2.
In this case, planar duality and a correlation inequality (available when q ≥ 1) have
allowed to a watershed of progress in the phase diagram of the Potts model in the last
two decades:

• the transition occurs at the self-dual point Tc(q) := [log
(
1 +
√
q
)
]−1 [BD12];

• the transition is continuous when q = 2, 3, 4, in a sense that, at Tc(q), there is
a unique Gibbs measure [DST17] (see also [GL23] for another argument);
• the transition is discontinuous when q > 4 [DGH+21] (see also [RS20] for a

short proof), and any Gibbs measure can be written as a linear combination
of q + 1 extremal Gibbs measures (q monochromatic and one free) [GM23].

We focus on discontinuous transitions (q > 4) and study interfaces at Tc(q) separating
different states. The structure of extremal Gibbs measures (described above) leads to
two natural definitions of Dobrushin boundary conditions:

• order-disorder: one half of the boundary is of a fixed colour and the other one
is free (no colour assigned);
• order-order: both halves of the boundary are assigned different fixed colours.

The phenomenology is quite different in the two cases.
The main result of the current paper is convergence of the (properly defined) in-

terface under order-disorder conditions to the Brownian bridge in the diffusive limit.
Results of such precision were previously proven for T < Tc(q) and the order-order
interface. Indeed, planar duality transfers this problem to the study of the typical
geometry of long clusters at T > Tc, for which a quasi-renewal structure was devel-
oped in [CIV08]. We do use similar ideas, but the situation is more involved: duality
does not help directly as we work at the self dual point, and we consider the order-
disorder interface. Instead, we use a sequence of combinatorial mappings relating
FK-percolation to the Ashkin-Teller model, and use planar duality there to map the
problem to the study of suitable long subcritical clusters, for which we derive results
similar to those of [CIV08]. We then transport back the convergence result to the FK
and Potts models. The coupling between the different models and the study of the
AT model builds on [GP23, ADG24], while the renewal picture for long subcritical
clusters builds on [CIV03, CIV08, AOV24].

Let us also mention the work [MMSRS91] that showed
√
N fluctuations when q is

taken to be large enough. Our results imply this for all q > 4. In this generality,
the recent work [GM23] implies that the interface (if defined at all) exhibits diverging
fluctuations.
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The case of the order-order conditions is addressed in our companion paper: we
show emergence of a free layer in the middle of width

√
N (wetting) and establish

convergence of its boundaries to two Brownian bridges conditioned not to intersect.
In particular, we prove that in both cases of Dobrushin conditions when q > 4

the scaling limit of the Potts model (i.e.: as the mesh of the lattice goes to 0) is a
straight line separating two “constant” regions. To compare with what happens in
the case of continuous phase transition, let us describe the expected behaviour for
q = 2, 3, 4. The mesmerizing physics conjecture from 1980s postulates conformal in-
variance. Schramm’s [Sch00] geometric interpretation of this conjecture asserts that
as one takes the scaling limit of the Potts model, the interface converges to a random
fractal curve called the Schramm–Loewner Evolution. This is has been proven rigor-
ously only at q = 2 (Ising model) by Smirnov et al [Smi10, CS11].

The “Ornstein-Zernike” (OZ) theory is a (non-rigorous) picture introduced
in [OZ14, Zer16] of how do correlations functions in various models behave. Their main
idea was to postulate a suitable renewal structure satisfied by correlation functions,
which leads to very precise expressions for the asymptotics of the said correlations.
The first rigorous implementation of this renewal picture was done by Abraham and
Kunz [AK77] using perturbative expansions. The modern approach, which started
with the work of Chayes, and Chayes [CC86] on self avoiding walk and of Campanino,
Chayes, and Chayes [CCC91] on Bernoulli percolation, is based on creating a renewal
structure à la OZ for elongated subcritical objects (SAW or percolation clusters con-
taining a distant point). Both these works rely on heavy combinatorial study, and the
renewal steps are “irreducible crossings of slabs”.

This idea was further developed by Ioffe [Iof98] for the ballistic phase of the self-
avoiding walk, introducing key measure-tilting ideas coming from large deviation the-
ory. His strategy was then extended to Bernoulli percolation in [CI02], to the high
temperature of the Ising model in [CIV03], and to FK-percolation [CIV08]. Compared
to the cases of SAW and Bernoulli percolation (where measure factorizes nicely), the
structure obtained in the case of Ising and FK, while still geometrically being a con-
catenation of “irreducible blocs”, is not a real renewal structure, only a sequence of
“fast mixing kernels”, which study is heavier and performed in [CIV03]. The last step
to finally obtain a true renewal structure from the fast mixing kernel picture was done
in [OV18].

These works on subcritical clusters of FK-percolation all take place in any dimen-
sions. But, in the 2 dimensional case (for Z2), planar duality allows to re-write the
study of the interface of Potts model at T < Tc(q) as the asymptotic study of a
percolation cluster at T > Tc(q) conditioned to contain (0, 0) and (N, 0).

The contribution of the present work to this line of works is to derive a “renewal
picture” for the long clusters of the Random Cluster representation of the Ashkin–
Teller model (in dimension 2), in an intermediate regime. This model is then related
to the Potts interface using a suitable adaptation of a coupling introduced in [GP23].

We now formally state our main results for the Potts model, the FK percolation
and the Ashkin–Teller model.

1.1. Potts model. For i, j ∈ Z2, we write i ∼ j if i and j are adjacent, i.e. |i−j| = 1,
and denote by E the set of pairs of adjacent points. We view Z2 both as a set of points
on the plane having integer coordinates and as a graph (square grid) with edges linking
points at distance one. Denote by E the set of edges in Z2 and write i ∼ j if {i, j} ∈ E.
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Let G = (V,E) be a subgraph of Z2. Take parameters T > 0, q ∈ {2, 3, 4, . . . },
and boundary conditions η ∈ {0, 1, . . . , q}V. The Potts model on G with boundary
conditions η is the probability measure on {1, . . . , q}V given by

PottsηG;T,q(σ) :=
1

ZPotts
· exp

[
1
T
·

( ∑
{i,j}∈E

δ(σi, σj) +
∑

i∈V,j∈V c: i∼j

δ(σi, ηj)

)]
,

where Zη
Potts = Zη

Potts(V, T, q, η) is the unique normalising constant (called partition
function) that renders the above a probability measure. Note that we allowed the
boundary conditions to take the value 0 (which is not an allowed value for the spins)
to mimic boundary conditions favoring none of the q possible states of the spins.

We say that η defines the order-disorder (1-free) Dobrushin boundary conditions
(and denote it by 1/f) if η((x, y)) = 1≥0(y). Identify Λn := {−n, . . . , n}2 with the
induced subgraph of Z2 on this set of vertices. The Dobrushin boundary conditions
on Λn impose existence of an interface between color one and the rest. This can be
made explicit, but for brevity we choose to define directly the upper and lower discrete
envelopes of this interface: Γ+

Potts and Γ−
Potts respectively. Given σ ∈ {1, . . . , q}Λn ,

define σ̄ ∈ {0, 1, . . . , q}Z2 to be its extension outside of Λn by the Dobrushin boundary
conditions: one on Z× Z≥0 and zero on Z× Z<0. For k = −n, . . . , n, define

Γ+,n
Potts(k) := max{y ∈ Z : (k, y − 1)

σ̄ ̸=1←−→ (Z× Z<0) \ Λn},

Γ−,n
Potts(k) := min{y ∈ Z : (k, y + 1)

σ̄=1←−→ (Z× Z≥0) \ Λn},

where (k, y − 1)
σ̄ ̸=1←−→ (Z × Z<0) \ Λn states the existence of a path in Z2 in going

from (k, y−1) to (Z×Z<0)\Λn and consisting of vertices where σ̄ ̸= 1 and (k, y)
σ̄=1, diag←−−−−→

(Z × Z≥0) \ Λn states the existence of a path in Z2 with diagonal connectivity going
from (k, y) to (Z×Z≥0) \Λn and consisting of vertices where σ̄ = 1. By Z2 with diag-
onal connectivity we mean a graph with the vertex-set Z2 with edges linking vertices
at distance at most

√
2. Define the rescaled linear interpolation of Γ+,n

Potts and Γ−,n
Potts by

Γ̃±,n
Potts(t) :=

1√
n

(
(1− {2tn− n})Γ±

Potts(⌊2tn− n⌋) + {2tn− n}Γ±
Potts(⌈2tn− n⌉)

)
,

where ⌊ ⌋, ⌈ ⌉, { } denote respectively lower rounding, upper rounding, and fractional
part.

Theorem 1. Let q > 4 be integer and take T = Tc(q). For n ∈ N, sample Γ±,n
Potts

and Γ̃±,n
Potts from Potts

1/f
Λn;Tc(q),q

as described above. Then, as n tends to infinity,

(1) both
(
Γ̃+,n
Potts(t)

)
t∈[0,1] and

(
Γ̃−,n
Potts(t)

)
t∈[0,1] converge in law to (cqbt)t∈[0,1], where

bt is a standard Brownian bridge and cq > 0 is some constant;
(2) the probability that maxk

∣∣Γ+,n
Potts(k)− Γ−,n

Potts(k)
∣∣ ≥ 2 ln(n)9 tends to zero.

1.2. FK percolation. The main tool in analyzing the Potts model is the Fortuin–
Kasteleyn (FK) percolation (or random-cluster) model [FK72] that allows to express
the spin-spin correlation function via connection probabilities. We first define it and
then state the relation between the two models. Take a finite subgraph G = (V,E)
of Z2, parameters p ∈ (0, 1), q > 0 and boundary conditions ξ ∈ {0, 1}E. We identify
any ω ∈ {0, 1}E with the set of edges e ∈ E for which ωe = 1 (open edges) and with
the spanning subgraph of Z2 defined by the open edges. The FK-percolation model
on G with boundary conditions ξ is the probability measure on {0, 1}E given by

FKξ
G;p,q(η) :=

1
ZFK
· p|η∩E|(1− p)|E\η| qκV (η) 1η=ξ on E\E,
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where ZFK = ZFK(G, p, q, ξ) is the partition function and κV (η) is the number of
connected component (clusters) of (Z2, η) that intersect V .

The free and wired measures correspond to the choices ξ ≡ 0 and ξ ≡ 1, respectively,
and we simply write f and w instead of ξ, respectively. We will be interested in the
Dobrushin wired/free boundary conditions: ξe = 1 if and only if e ⊂ Z × Z≥0 (see
Figure 1). We denote these boundary conditions by 1/0.

For n ≥ 1, define the graph Gn = (Vn, En) by

En := {e ∈ E : e ⊂ Λn} ∪ {e ∈ E : e ⊂ Z× Z≥0 and e ∩ Λn ̸= ∅}, Vn :=
⋃
e∈En

e.

y = −1/2
0 0

Figure 1. Left: wired-free Dobrushin boundary conditions. Right: the graph
G2.

The seminal Edwards–Sokal coupling [ES88] states that, when q ≥ 2 is integer
and p = 1 − exp

[
− 1

T
· q
q−1

]
, coloring clusters of ω ∼ FK

1/0
Gn;p,q

independently in col-

ors 1, 2, . . . , q gives a spin configuration σ ∼ Potts
1/f
Λn;T,q

. We will denote this coupling
between the Potts model and the FK percolation by ES

1/0
Λn,T,q

.
We define an interface in the FK percolation forced by the Dobrushin boundary

conditions using planar duality. Note that the lattice dual to Z2 is again a square
lattice and we denote it by (Z2)∗. For each edge e of Z2, denote by e∗ the edge
of (Z2)∗ that is dual to e, i.e. the unique edge of (Z2)∗ that intersects e; see Fig. 2.
Given ω ∈ {0, 1}E, define its dual by

ω∗
e∗ := 1− ωe.

The FK percolation at pc(q), given by

pc(q) := 1− exp
[
− 1

Tc(q)
· q
q−1

]
=

√
q

√
q+1

,

is known to enjoy the self-duality: if ω ∼ FK
1/0
Gn;Tc(q),q

, then its dual ω∗ is also distributed
as an FK-percolation with parameters q and pc(q), but on a dual graph and under dual
Dobrushin boundary conditions. This self-dual nature is also revealed when looking
at the loop representation of the FK percolation model. Specifically, we draw two arcs
next to every primal or dual edge of ω, as shown on Fig. 3. These arcs link together
into loops separating primal and dual clusters and one interface tracing the boundary
of the union of primal clusters attached to the upper boundary of Λn. Denote this
interface by ΓFK. Remarkably, a standard application of the Euler’s formula, allows to
rewrite the distribution of ω via loops which are symmetric with respect primal and
dual configurations:

FK
1/0
Gn;pc(q),q

(ω) = 1
Zloop
· √q#loops, (1)
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where # loops stands for the number of loops in the loop representation of ω. This is
a part of the classical Baxter–Kelland–Wu [BKW76] coupling between the FK perco-
lation and the six-vertex model; see Sections 4 and 5.1.4.

As for the Potts model, we define the upper and the lower discrete envelops of ΓFK:

Γ+,n
FK (k) := max{y ∈ Z : (k ± 1

2
, y − 1

2
)

ω∗
←→ ({Z+ 1

2
} × {Z<0 +

1
2
}) \ Λ∗

n},

Γ−,n
FK (k) := min{y ∈ Z : (k, y + 1)

ω←→ (Z× Z≥0) \ Λn},

where Λ∗
n := [−n, n]2∩(Z2)∗. The rescaled linear interpolations Γ̃±,n

FK of Γ±,n
FK are defined

in the same way as in the Potts model. Our main result for the FK percolation is an
invariance principle for Γ̃±,n

FK :

Theorem 2. Let q > 4 be a real number and take p = pc(q). For n ∈ N, sample Γ±,n
FK

and Γ̃±,n
FK from FK

1/0
Gn;pc(q),q

as described above. Then, as n tends to infinity, the conver-
gence results from Theorem 1 hold for Γ±,n

FK and Γ̃±,n
FK in place of Γ±,n

Potts and Γ̃±,n
Potts.

We draw attention to the precision of our control of the interface. The interface Γn
FK

at pc(q) exhibits linear fluctuations when q ∈ [1, 4] (continuous transition); it was
expected that this is not the case when q > 4 (discontinuous transition), but remained
open. Our results imply that this is indeed the case and, moreover, the probability
that Γn

FK exhibits linear fluctuations is in fact exponentially small.
Our proof goes via developing the Ornstein–Zernike for the Ashkin–Teller model.

We proceed by introducing the latter model and stating our results for it.

1.3. Ashkin–Teller model. Introduced in 1943 [AT43] as a generalization of the
Ising model to a four-component system, the Ashkin–Teller (AT) model can be viewed
as a pair of interacting Ising models. Take a finite subgraph G = (V,E) of Z2,
parameters J, U > 0 and boundary conditions σ, σ′ ∈ {0,±1}Z2 . The AT model on G
with parameters J, U ∈ R and boundary conditions (σ, σ′) is a probability measures
on pairs τ, τ ′ ∈ {±1}V given by

ATσ,σ′

G,J,U(τ, τ
′) = 1

ZAT
· exp

[ ∑
{i,j}∈E

J(τiτj + τ ′iτ
′
j) + Uτiτjτ

′
iτ

′
j

+
∑

i∈V,j∈V c : i∼j

J(τiσj + τ ′iσ
′
j) + Uτiσjτ

′
iσ

′
j

]
where ZAT = ZAT(G, J, U, σ, σ′) is the partition function. Taking σ = σ′ ≡ 1 we obtain
plus-plus boundary conditions and taking σ = σ′ ≡ 0 we obtain free-free boundary
conditions; we denote the corresponding measures by AT+,+

G,J,U and ATf,f
G,J,U respectively.

We consider only J > 0, since flipping the sign of J corresponds to flipping the sign
of τ ′ and τ at one of the two partite classes of Z2. Using the Ising-duality for τ ′ and
then for τ , the self-dual curve of the parameters was identified [MS71]:

sinh 2J = e−2U . (2)
The correlations are monotone [KS68] along the lines of a constant ratio J/U . The
case U = 0 gives two independent Ising models and the line J = U is in direct corre-
spondence with the four-state Potts model and the FK percolation with the cluster-
weight q = 4. In addition, the three models are related on the self-dual line (2),
with q > 4 corresponding to U > J . A precise coupling was constructed in [GP23]
via the six-vertex (square ice) model based on the works of Fan [Fan72a] and Weg-
ner [Weg72] and on the seminal Baxter–Kelland–Wu (BKW) correspondence [BKW76];
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see also [HDJS13]. This coupling is crucial to the current work and is described in
detail in Sections 4.3 and 5.1.4.

Fix U > J > 0 that satisfy sinh 2J = e−2U and omit them from the notation. Cor-
relation inequalities [KS68] guarantee the existence of the infinite-volume limits ATf,f

and AT+,+ of the free and monochromatic AT measures ATf,f
G and AT+,+

G , respectively.
Our first result states that their marginals on the single spin τ coincide.

Proposition 1.1. In the above notation, the measures ATf,f and AT+,+ have the same
marginal distribution on τ .

Denote the expectation operators with respect to ATf,f and AT+,+ by ⟨ · ⟩f,f and
⟨ · ⟩+,+, respectively, and define the inverse correlation length ν by setting, for x ∈ R2,

ν(x) := − lim
n→∞

1
n
ln⟨τ0τ⌊nx⌋⟩f,f = − lim

n→∞
1
n
ln⟨τ0τ⌊nx⌋⟩+,+,

where ⌊ · ⌋ is the componentwise integer part. The existence of the limit is de-
rived in a standard manner from correlation inequalities and a subadditive argument.
In [ADG24], it was shown that AT+,+

Λn
admits exponential decay of correlations in τ ,

which implies that ν > 0. The following theorem establishes sharp Ornstein–Zernike-
type asymptotics for the 2-point function.

Theorem 3. The inverse correlation length ν is a norm on R2. Furthermore, uni-
formly in |x| → ∞,

⟨τ0τx⟩f,f = ⟨τ0τx⟩+,+ = Ψ(x/|x|)√
|x|

e−ν(x) (1 + o(1)),

where Ψ is a strictly positive analytic function on S1.

1.4. Summary of the paper: what is new? The main novelty of our work is the
use of the graphical (or random-cluster) representation of the Ashkin–Teller model
(ATRC model) to study the FK percolation and the Potts models. At a first glance,
the FK percolation model has been by now much better understood, see the classical
book [Gri06] and more recent lecture notes [DC17]. Moreover, the FK model has been
used to establish some basic properties for the ATRC model [GP23, ADG24]. However,
compared to the FK percolation at its transition point when q > 4, the ATRC model
at its self-dual line when U > J remarkably exhibits a unique Gibbs measure. This
brings more symmetries that play a key role for developing the OZ theory.

This comes at some cost: the ATRC model is supported on pairs of edge config-
urations. Thus, the domain Markov property is significantly weaker than in the FK
percolation defined on a single edge configuration. In particular, it is highly non-trivial
to prove mixing properties of the ATRC model. For this we use a coupling of the ATRC
model to the six-vertex model, whose height function enjoys additional monotonicity
properties. Using the classical work of Alexander [Ale98] and a new general mixing
result [Ott25], we prove the exponential ratio mixing for the ATRC model.

We point out a technical issue that the FK percolation model under standard Do-
brushin boundary conditions is directly coupled only to the ATRC with rather involved
boundary conditions (we call it a modified ATRC model). Fortunately, apart from the
boundary, this model still satisfies the FKG lattice condition. This implies mixing
estimates and allows us to develop the renewal theory.

Organisation of the article. We now provide the structure of the paper.
Section 2: notation and conventions that will be used throughout the article.



8 MORITZ DOBER, ALEXANDER GLAZMAN, AND SÉBASTIEN OTT

Section 3: definition of the ATRC model, its basic properties and the results that
we establish for this model, including the uniqueness of the ATRC Gibbs measure and
strong mixing properties.

Section 4: coupling between the FK percolation and modified ATRC models. The
coupling is very sensitive to boundary conditions, eg. note appearance of a different
boundary-cluster weight in [GP23]. We extend this coupling to standard Dobrushin
boundary conditions in the FK percolation at a price of rather inconvenient conditions
in the ATRC model.

Section 5: proof of new mixing properties for the ATRC model and, in particular,
uniqueness of the ATRC Gibbs measure. We adapt the classical works of Alexan-
der [Ale92, Ale98, Ale04] and use the recent works on the ATRC model [GP23,
ADG24].

Section 6: derivation of a strong mixing from a weak mixing using a general argu-
ment from [Ott25].

Section 7: development of the OZ theory in the infinite volume following [CIV08]
(see also [Ott19]) and using the mixing established in Section 5. Specifically, we show
that the interface in the ATRC model can be well-approximated by a certain directed
random walk.

Section 8: adaptation of the approximation by a random walk from Section 7 to the
finite-volume setting and the proof the invariance principle for the modified ATRC
model following [GI05].

Section 9: the invariance principle for FK percolation and the Potts models is derived
from that for the modified ATRC model, utilising the coupling from Section 4.
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with tall rectangles. A part of the work was accomplished during the visits of some of
us to the Universities of Fribourg, Geneva, Innsbruck and Vienna and at the NCCR
SwissMAP research station in Les Diablerets. We want to thank these institutions
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This research was funded in whole or in part by the Austrian Science Fund (FWF)
10.55776/P34713.

2. Notations and conventions

2.1. Graphs and lattices. Let G = (V,E) be a graph. We simply write xy = {x, y}
for an edge {x, y} ∈ E. Given finite subsets Λ ⊂ V and E ⊂ E, define

EΛ := {e ∈ E : e ⊂ Λ}, VE :=
⋃
e∈E

e,

∂inΛ := {x ∈ Λ : ∃y ∈ V \ Λ, xy ∈ E}, ∂exΛ := {y ∈ V \ Λ : ∃x ∈ Λ, xy ∈ E},
∂inE := {e ∈ E : ∃f ∈ E \ E, e ∩ f ̸= ∅}, ∂exE := {e ∈ E \ E : ∃f ∈ E, e ∩ f ̸= ∅},

∂edgeΛ := {xy ∈ E : x ∈ Λ, y ∈ V \ Λ}, Λ := Λ ∪ ∂exΛ, E := E ∪ ∂exE.

In case of ambiguity, we add G as a subscript (and write, for example, ∂in
GΛ) to

emphasise that the boundary is taken in G. The interior of Λ (in G) is given by
Λ \ ∂inΛ. The sub-graph induced by Λ ⊂ V is given by (Λ,EΛ). We say that Λ is
simply connected if both the sub-graphs induced by Λ and by V \ Λ are connected.

We will mainly work on Z2 with nearest-neighbour edges, and on its dual. We will
denote the primal lattice by L• = Z2 and its dual by L◦ = (1/2, 1/2) + Z2. Denote
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by E• the nearest-neighbour edges between sites in L• (the primal edges), by E◦ the
nearest-neighbour edges between sites in L◦ (the dual edges).

Define the upper and lower half planes by

H+ := R× R≥0, H− := R× R<0,

and, for n,m ≥ 0, set

Λn,m := {−n, . . . , n} × {−m, . . . ,m}, ∂±
n,m := ∂exΛn,m ∩H±.

Moreover, define the graph Gn,m = (Vn,m, En,m) by

Vn,m = Λn,m ∪ ∂+
n,m, En,m = EVn,m \ EΛc

n,m
.

We will use several mappings between models defined on (L•,E•), (L◦,E◦), or on
the two simultaneously. A convenient way to encode all these mappings is to work
with L⋄, the set of mid-points of edges (primal or dual, as they give the same), and to
identify the mid-edges with the corresponding tiles: to each primal-dual pair of edges
e, e∗, associate a tile given by the convex hull of their endpoints; see Figure 2. For
t ∈ L⋄, denote et the associated primal edge, and e∗t the associated dual edge.

Figure 2. Tile associated to a mid-edge.

For a set of primal (or dual) edges E, define ∗E = {e∗ : e ∈ E}. As a convention,
sets of edges or of dual edges will be identified with the corresponding sets of mid-points
whenever the meaning is clear from the context.

Also, for a set of mid-edges A ⊂ L⋄, denote by V•(A) the set of primal vertices
belonging to a tile in A, and by V◦(A) the set of dual vertices belonging to a tile in A.
Let ∂A be the set of tiles in A adjacent to at least two tiles in Ac, and set Å = A\∂A.
For a set E of primal or dual edges, denote by T (E) the set of tiles having at least
one corner in VE, and one corner in V∗E.

2.2. Parameters. The parameter q will be fixed in all proofs and satisfy q > 4.
When not mentioned explicitly, the parameter β = 1

T
will also be fixed and set to

β = βc(q) = ln
(
1 +
√
q
)
. In the same fashion, unless explicitly stated, the parameters

U, J will also be fixed and satisfy U ≥ J ≥ 0. Additional constraints will be imposed
in the concerned sections.

2.3. Constants. Constants like c, c1, C, C1, C
′, . . . are constants which can change

from line to line and which can depend on the parameters unless explicitly stated.
They are independent of the system size, n, which will be our main “variable” quan-
tity.

3. Ashkin–Teller random-cluster model

Like the Potts models, the AT model has a random-cluster (RC) representation,
called the ATRC model, and itroduced in [CM97, PV97]. We will first introduce the
model and state some of its basic properties. This will be followed by the statement
of our results.
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3.1. Definition and basic properties. Let G = (V,E) be a graph, and let G =
(V,E) be a finite sub-graph of G. Let ξτ , ξττ ′ ∈ {0, 1}E with ξτ ⊆ ξττ ′ The ATRC
model on G with parameters U > J > 0 under boundary conditions (ξτ , ξττ ′) is the
probability measure on {0, 1}E × {0, 1}E given by

ATRC
ξτ ,ξττ ′
G;J,U (ωτ , ωττ ′) =

1
Z
· w|ωτ∩E|

τ w
|(ωττ ′\ωτ )∩E|
ττ ′ 2κV (ωτ )+κV (ωττ ′ )

· 1ωτ⊆ωττ ′

∏
e∈E\E

1ωτ (e)=ξτ (e)1ωττ ′ (e)=ξττ ′ (e)
, (3)

where Z = Z
ξτ ,ξττ ′
ATRC (G, J, U) is the partition function, κV (·) is the number of clusters

that intersect V , and the weights are given by

wτ = e2U(e2J − e−2J) and wττ ′ = e2(U−J) − 1. (4)

When ξτ ≡ 0 (respectively, ξτ ≡ 1), we write 0 (respectively, 1) instead of ξτ in the
superscript, and analogously for ξττ ′ . Given finite subsets Λ ⊂ V and E ⊂ E, we
write ATRC

ξτ ,ξττ ′
Λ;J,U and ATRC

ξτ ,ξττ ′
E;J,U for the measures on the graphs (Λ,EΛ) and (VE, E),

respectively.

Finite energy. There exists a constant c = c(J, U) > 0 such that the following holds.
For any finite sub-graph G = (V,E), any e ∈ E and any a, b ∈ {0, 1}E with a ⊆ b

ATRC
ξτ ,ξττ ′
G;J,U

(
(ωτ (e), ωττ ′(e)) = (ae, be)

∣∣ (ωτ , ωττ ′) = (a, b) on E \ {e}
)
> c. (FE)

Spatial Markov property. Given a sub-graph G′ = (V ′, E ′) of G and boundary
conditions ξτ , ξττ ′ , ξ̃τ , ξ̃ττ ′ with ξτ = ξ̃τ on E \ E ′ and ξττ ′ = ξ̃ττ ′ on E \ E ′,

ATRC
ξτ ,ξττ ′
G;J,U ( · | (ωτ , ωττ ′) = (ξ̃τ , ξ̃ττ ′) on E \ E ′) = ATRC

ξ̃τ ,ξ̃ττ ′
G′;J,U (·). (SMP)

Stochastic domination and positive association. We first introduce these notions
in a general setting. Given a finite partially ordered set S and an index set I, we
equip the set of functions SI with the associated product order. A subset A ⊆ SI is
called increasing if for any ω, ω′ ∈ SI , ω ∈ A and ω ≤ ω′ implies ω′ ∈ A. Given a
σ-algebra A on SI and two probability measures µ1 and µ2 on A, we say that µ1 is
stochastically dominated by µ2 (or µ2 stochastically dominates µ1), and write µ1 ≤st µ2

(or µ2 ≥st µ1), if for every increasing event A ∈ A, we have µ1(A) ≤ µ2(A). Moreover,
we say that a probability measure µ on A is positively associated or satisfies the FKG
property if, for all increasing events A,B ∈ A, we have

µ(A ∩B) ≥ µ(A)µ(B). (FKG)

If the index set I is finite and µ is a positive measure (µ(ω) > 0 for any ω ∈ SI), we
say that µ is strongly positively associated or satisfies the strong FKG property if

∀ J ⊂ I ∀ ω̃ ∈ SJ : µ( · |ω = ω̃ on J) is positively associated. (strong-FKG)

In order to incorporate pairs of percolation configurations into the above general
framework, we consider the natural bijection with ({0, 1}× {0, 1})E. Furthermore, we
can regard ATRC

ξτ ,ξττ ′
G;J,U as a positive measure on {(0, 0), (0, 1), (1, 1)}E. The following

lemma follows from [PV97, Proposition 4.1] (and its proof).

Lemma 3.1 ([PV97]). For any U > J > 0, any sub-graph G = (V,E) of G and all
boundary conditions ξτ , ξττ ′, the measure ATRC

ξτ ,ξττ ′
G;J,U satisfies the strong FKG property.
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The strong FKG property and (SMP) imply that, for any increasing sequence of sub-
graphs Gk ↗ G, the measures ATRC1,1

Gk;J,U
form a decreasing sequence (in the sense of

stochastic domination). Consequently, the weak limit exists and is independent of the
sequence (Gk), and we denote it by ATRC1,1

J,U . Analogously, we define ATRC0,0
J,U as the

(increasing) limit of ATRC0,0
Gk;J,U

.
Furthermore, Lemma 3.1 and (SMP) can be used to compare different boundary

conditions. For any U > J > 0, and any boundary conditions such that ξτ ≤ ξ̃τ
and ξττ ′ ≤ ξ̃ττ ′ ,

ATRC
ξτ ,ξττ ′
G;J,U ≤st ATRC

ξ̃τ ,ξ̃ττ ′
G;J,U . (CBC)

Edwards–Sokal relations on the square lattice. Let G be the square lattice
(L•,E•) defined in Section 2. Given Λ,∆ ⊂ L• and a percolation configuration ω ∈
{0, 1}E• , we write Λ

ω←→ ∆ for the event that Λ and ∆ are connected by a path in the
graph (L•, ω). If Λ = {i} and ∆ = {j}, we simply write i

ω←→ j. We omit ω from the
notation when it cannot lead to any confusion.

Recall the definition of the infinite-volume AT expectation operators ⟨ · ⟩f,f and
⟨ · ⟩+,+ defined in Section 1.3. The essential feature of the ATRC is that its connection
probabilities are related to the correlations in the AT model [PV97, Proposition 3.1]:
for U > J > 0 and any i, j ∈ L•,

⟨τiτj⟩+,+ = ATRC1,1
J,U(i

ωτ←→ j), ⟨τiτ ′iτjτ ′j⟩+,+ = ATRC1,1
J,U(i

ωττ ′←→ j). (5)

The analogous relations for ⟨·⟩f,f and ATRC0,0
J,U are also valid.

Duality on the square lattice. Recall the definitions of the primal and dual square
lattices (L•,E•) and (L◦,E◦) in Section 2, and the definition of the dual ω∗ ∈ {0, 1}E◦

of a percolation configuration ω ∈ {0, 1}E• in Section 1. For any finite subset E ⊂ E•

and all boundary conditions ξτ , ξττ ′ ∈ {0, 1}E
• , it holds that

(ωτ , ωττ ′) ∼ ATRC
ξτ ,ξττ ′
E;J,U implies (ω∗

ττ ′ , ω
∗
τ ) ∼ ATRC

ξ∗τ ,ξ
∗
ττ ′

∗E;J,U . (6)

Notice the different order in the dual pair.

3.2. Results on the ATRC. In this section, we present our main results concerning
the self-dual ATRC model on the square lattice L•.

Mixing properties. Our first result regarding the mixing behaviour of the ATRC
is exponential relaxation for the single edges, consequently implying exponential weak
mixing (see Section 5).

Proposition 3.2. Let 0 < J < U satisfy sinh 2J = e−2U . There exists c > 0 such
that, for any edge e ∈ E• with 0 ∈ e, and any n ≥ 1,

max
σ∈{τ,ττ ′}

∣∣∣ATRC1,1
Λn;J,U

(
ωσ(e) = 1

)
− ATRC0,0

Λn;J,U

(
ωσ(e) = 1

)∣∣∣ ≤ e−cn.

As a consequence, the measures ATRC
ξτ ,ξττ ′
G;J,U converge (as G ↗ L•) to a limit mea-

sure ATRCJ,U , which is independent of the choice of boundary conditions ξτ , ξττ ′ . Fur-
thermore, the limit ATRCJ,U is the unique ATRC Gibbs measure.

We then apply the classical work of Alexander [Ale98] to derive ratio weak mixing.
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Theorem 4. Let 0 < J < U satisfy sinh 2J = e−2U . There exist C ≥ 0, c > 0 such
that, for any finite sub-graph G = (V,E) of L•, any F ⊂ E, and any F -measurable
event A having positive probability,

sup
ξτ ,ξττ ′ ,ξ

′
τ ,ξ

′
ττ ′

∣∣∣∣∣ATRC
ξτ ,ξττ ′
G;J,U (A)

ATRC
ξ′τ ,ξ

′
ττ ′

G;J,U (A)
− 1

∣∣∣∣∣ ≤ C
∑
f∈F

∑
e∈Ec

e−cd∞(e,f),

whenever the right side is strictly less than 1.

We refer to Section 6, for our results on strong mixing properties of the ATRC.

Uniform exponential decay. We say that a subset E of E• is simply lattice-
connected if both (VE, E) and the planar dual of (VEc , Ec) are connected. The follow-
ing result is a consequence of [Ale04], exponential decay of connection probabilities in
ωτ [ADG24, Proposition 1.1], and the exponential weak mixing property (Theorem 7).

Theorem 5. There exists a constant c > 0 such that, for any finite simply lattice-
connected E ⊂ E, and any i, j ∈ VE,

ATRC1,1
E;J,U

(
i

ωτ∩E←−−→ j
)
≤ e−cd∞(i,j),

where d∞ is the distance induced by the L∞ norm.

Proof. This is [Ale04, Theorem 1.1]: the push-forward of ATRCJ,U by ωτ is trans-
lation invariant, has finite-energy for closing edges, exponential decay of connectivi-
ties [ADG24, Proposition 1.1], and is exponentially weak mixing by Theorem 7. Fi-
nally, for n with E ⊆ EΛn−1 , we have by (SMP) that

ATRCJ,U(ωτ ∈ · |ωτ (e) = 1 for e ∈ EΛn \ E) = ATRC1,1
E;J,U .

□

Ornstein–Zernike asymptotics. Recall the definition of the inverse correlation
length ν in the AT model. By the Edwards–Sokal relations (5) and since ATRC0,0

J,U =

ATRC1,1
J,U , it holds that

ν(x) = − lim
n→∞

1

n
logATRC0,0

J,U(0
ωτ←→ ⌊nx⌋) = − lim

n→∞

1

n
logATRC1,1

J,U(0
ωτ←→ ⌊nx⌋).

The following theorem is the analogue of Theorem 3 for the ATRC model.

Theorem 6. The inverse correlation length ν is a norm on R2. Furthermore, uni-
formly in |x| → ∞,

ATRC0,0
J,U(0

ωτ←→ x) = ATRC1,1
J,U(0

ωτ←→ x) = Ψ(x/|x|)√
|x|

e−ν(x) (1 + o(1)),

where Ψ is a strictly positive analytic function on S1.

4. Couplings and interfaces

This section is concerned with the construction of a coupling of FK percolation
and the Ashkin–Teller model, via the six-vertex model, and the derivation of its ba-
sic properties. The coupling of the FK and six-vertex measures is a version of the
Baxter–Kelland–Wu (BKW) coupling [BKW76]. The relation of the six-vertex and
AT measures has first been noticed in [Fan72a] comparing their critical properties,
and it was made explicit in [Fan72b, Weg72] on a level of partition functions. We
build on [GP23], where a coupling of the six-vertex model and a graphical representa-
tion of the AT model (a marginal of ATRC) was constructed.
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Figure 3. A tile centred at the middle of a horizontal primal edge (solid
black) or its associated vertical dual edge (dashed black), and its two possible
local loop configurations.

4.1. The parameters. The couplings go through standard “expansion–resummation”
of Boltzmann weights combined with extensive use of planarity. As for each step one
will write the weight associated with a given model as a sum of weights for a “more
expanded” model, several parameters will come into play. We list them here, as well
as the algebraic relations linking them:

q > 4, β = βc(q) = ln(1 +
√
q), λ > 0, c > 2, U > J > 0,

√
q = eλ + e−λ, c = eλ/2 + e−λ/2 = coth(2J), (7)

sinh(2J) = e−2U .

The parameter c also has a “boundary version”:

cb > 1, cb = eλ/2. (8)

For the remainder of Section 4, we fix q > 4, along with the corresponding parameters
above (which are uniquely determined by q).

4.2. Different models and combinatorial mappings. This section provides an
overview of the combinatorial objects that will be encountered, as well as a description
of their relations. We first discuss oriented loop configuration, which serve as an
intermediate step in the BKW coupling of FK percolation and the six-vertex model.
This is followed by a description of two of the representations of the six-vertex model:
edge-orientations and spin configurations. The height function representation appears
only in Section 5, where its monotonicity properties are crucial when we derive mixing
and relaxation properties of the ATRC measures.

We already saw that percolation configurations are in bijection with (unoriented)
loop configurations. To make the correspondence ω ↔ ω∗ ↔ ℓ = loop(ω) explicit, we
can regard each of these models as an assignment of a local piece of drawing of an
edge and two arcs to lozenge tiles centred at the mid-edges as depicted in Figure 3.
Clearly, retaining only either the primal or dual edges, or the arcs, provides complete
information about all three.

Oriented loop configurations. They are obtained from unoriented loop configura-
tions by assigning an orientation to each loop [BKW76], or equivalently by assigning
orientations to the loop arcs on each tile, subject to the constraint that neighbouring
orientations match. The eight local configurations that can occur at a tile are referred
to as types, see Fig. 4. Boundary conditions with respect to a tile-set A ⊂ L⋄ are
imposed by conditioning the tiles in L⋄ \ A to take prescribed values, and by forcing
the tiles in ∂A to contain a given oriented arc.

The edge-orientations of the six-vertex model. The medial graph of L• has
vertex-set L⋄ and edges between adjacent tiles. We denote its edge-set by E⋄. The edge-
orientations of the six-vertex model [Pau35, Rys63] are assignments of orientations to
the edges in E⋄, obtained from oriented loop configurations via the natural surjection;
see Fig. 4. The edge orientations that we obtain in this way satisfy the ice rule: at any
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type 1 2 3 4 5A 5B 6A 6B

type 1 2 3 4 5 6

Figure 4. Tiles of the oriented loop model and their types and weights, and
the mapping from oriented loop arcs to six-vertex edge-orientations.

mid-edge in L⋄, there are two incoming and two outgoing edges of E⋄. This constraint
permits six possible local configurations at a tile, which are also called types; see Fig. 4.
The local inverse operation can be considered as splitting the oriented edges into two
oriented loop arcs. While tiles of types 1-4 permit a unique reconstruction of the loop
arcs based on the edge orientations, there are two possibilities for tiles of types 5-6,
giving the latter a special role.

The six-vertex spin representation. The six-vertex model may be represented by
pairs of spin-configurations (σ•, σ◦) ∈ {±1}L• × {±1}L◦ [Wu71, KW71, Lis22, GP23],
obtained from the edge-orientations via the following two-valued mapping. Fix the
value of σ• or σ◦ at some arbitrary fixed vertex and proceed iteratively as follows.
Take an edge e ∈ E⋄ and observe that it separates a vertex i ∈ L• from a vertex
u ∈ L◦. The values of σ•(i) and σ◦(u) are defined in such a way that i is positioned on
the left side of e (with respect to its assigned orientation) precisely if σ•(i) = σ◦(u);
see Fig. 5. The ice rule ensures that this operation is well-defined.

This mapping is two-valued due to the liberty to choose the value of σ• or σ◦ at
a fixed vertex, and the two images are related to each other by a global spin flip.
Furthermore, it is injective, meaning that the edge-orientations can be reconstructed
from the spins. The type of a tile with respect to (σ•, σ◦) is given by the type of the
corresponding edge-orientations; see Fig. 5. It should also be noted that the ice rule
can be translated as follows: for any tile t ∈ L⋄, σ• is constant on the endpoints of et
or σ◦ is constant on the endpoints of e∗t . Formally,(

σ•(i)− σ•(j)
)(
σ◦(u)− σ◦(v)

)
= 0 for any t ∈ L⋄ with et = ij, e∗t = uv. (9)

In the context of spins, this property will henceforth be referred to as the ice rule.

Baxter–Kelland–Wu correspondence [BKW76]. Given a measure on oriented
loops, taking its pushforwards with respect to the above mappings, one obtains mea-
sures on the six-vertex edge-orientations and spin configurations, the latter necessarily
having a prescribed value at a fixed vertex. In order to obtain an oriented loop config-
uration ℓ� from an unoriented one ℓ, we will utilise a sequence of independent uniform
random variables on [0, 1], indexed by the set L of all loops, to randomly assign an
orientation to each loop l in ℓ.

4.3. Coupling under Dobrushin conditions. The idea is to take the FK mea-
sure with Dobrushin boundary conditions, and from it construct via coupling both a
measure on pairs of spin configurations on L• and L◦ and a measure on ATRC config-
urations. We will then identify the measure on spin configurations as a six-vertex spin
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Figure 5. The six-vertex types for all representations at a tile corresponding
to a horizontal primal edge e. Top: the spin at the left endpoint of e is fixed
to be +. Bottom: the height at the left endpoint of e is fixed to be 0.

measure with Dobrushin boundary conditions, and show that the measure on ATRC
configurations is a modification of an ATRC measure. This procedure gives a coupling
between FK and (a modification of) ATRC, which will allow us to transfer the study
of the former to the study of the latter.

Recall the sub-graphs Gn,m = (Vn,m, En,m) of (L•,E•) given in Section 2. As n,m
will be fixed in this section, we will omit them in the notation and simply write
G = (V,E). The FK measure under investigation is FK

η1/0
G ≡ FK

1/0
G (with η1/0 the

Dobrushin boundary conditions defined in Section 1; see Fig. 1).

Coupling measure. The couplings will use additional randomness in the form of
i.i.d. uniform [0, 1] random variables. We will work with the space Ω1/0 := {0, 1}E• ×
[0, 1]L × [0, 1]L⋄ , where L is the set of all unoriented loops . We consider a uniform
measure [0, 1] equipped with the Borel sigma-algebra and define Q and Q′ respectively
as the product measures on [0, 1]L and on [0, 1]L⋄ equipped with the product sigma-
algebra. Take (ω, U, U ′) distributed according to Ψ1/0 := FK

1/0
G ⊗ Q ⊗ Q′. We will

use this augmented space to couple FK
1/0
G with both a six-vertex spin measure and a

modified version of the ATRC measure.

From FK to six-vertex. We will employ the link between the unoriented and ori-
ented loop models and the six-vertex spin model: the six-vertex spin configurations are
obtained from the edge-orientations by fixing the value at one vertex (see Fig. 5). The
edge orientations are obtained from oriented loop configurations by the natural map
(see Fig. 4), whence it suffices to construct a measure on oriented lopp configurations.
This is achieved by modifying the BKW coupling [BKW76]. In Section 5.1.4, we will
describe this coupling without Dobrushin boundary conditions and in the context of
height functions.

Recall that percolation configurations are in bijection with unoriented loop con-
figurations, and let ℓ be the (random) unoriented loop configuration associated with
ω ∼ FK

1/0
G . We first define the relevant sets (see Fig.6):

• the interior of V in the graph (L•, η1/0), Λ := Λn,m ⊂ L•;
• the interior of V∗E in the graph (L◦, η

∗
1/0),

Λ′ :=
((

[−n− 1, n+ 1]× [0,m+ 1]
)
∪
(
[−n, n]× [−m, 0]

))
∩ L◦.
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Figure 6. For n = m = 2. Left: the sets Λ (solid) and Λ′ (hollow). Right:
the inner tiles Ai (white) and the boundary tiles ∂A (grey).

vL vR

σ• = 1
σ◦ = 1

σ• = 1
σ◦ = −1

Figure 7. Boundary conditions on oriented loops and on six-vertex spins.
The edges drawn are those induced by the oriented loop boundary conditions.

Define D := Λ ∪ Λ′, and let A ⊂ L⋄ be given by the tiles with at least one corner in
D. The set ∂A of boundary tiles is given by the tiles in A with precisely one corner in
D, and the set Ai of inner tiles is given by A \ ∂A. See again Figure 6.

By orienting the loops in ℓ, we will construct an oriented loop configuration ℓ�. We
will first define its boundary conditions; see Fig. 7: each (dual) vertex in (L◦∩H+)\Λ′

and each (primal) vertex in (L• ∩H−) \ Λ is surrounded by a clockwise oriented loop
consisting of four arcs, and there is a bi-infinite right-left path in between.

It remains to define the oriented loop arcs of ℓ� on tiles in Ai. Recall the definition
of λ and c in (7). Take an unoriented loop l in ℓ that surrounds a vertex in Λ ∪ Λ′,
and orient it clockwise if Ul < eλ/c and counter-clockwise otherwise. Finally, consider
the six-vertex edge orientations obtained from ℓ�, and let (σ•, σ◦) be the associated
six-vertex spin configurations with σ•((n + 1, 0)) = +1. Observe that the boundary
conditions of the edge orientations imposed by those of the oriented loops ℓ� (see
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Fig. 7) impose the following boundary conditions on (σ•, σ◦):

σ• ∈ Σ+
Λ := {σ• ∈ {±1}L• : σ•(i) = 1∀i ∈ L• \ Λ},

σ◦ ∈ Σ+−
Λ′ := {σ◦ ∈ {±1}L◦ : σ◦(u) = 1H+(u)− 1H−(u)∀u ∈ L◦ \ Λ′}.

Note that the vertices in L◦ \ Λ′ where σ◦ takes opposite values are separated by
the right-left path. The following lemma will identify the law of (σ•, σ◦) as a six-
vertex spin measure, which we will define first. To lighten notation, we will use the
same symbols for random variables and their deterministic realisations. Define the
probability measure Spin+,+−

D on {±1}L• × {±1}L◦ by setting, for σ = (σ•, σ◦),

Spin+,+−
D (σ) ∝ c|T

i
5,6(σ)| c

|Tb
5,6(σ)|

b 1Σ+
Λ×Σ+−

Λ′
(σ)1ice(σ), (10)

where c, cb are defined by (7)-(8), T i
5,6 and T b

5,6 are the sets of tiles of types 5-6 in Ai

and ∂A, respectively, according to Figure 5, and 1ice is the indicator imposing the ice
rule (9).

Lemma 4.1. Let (ω, U1, U2) be distributed according to Ψ1/0, and let (σ•, σ◦) be as
constructed above. Then the law of (σ•, σ◦) is given by Spin+,+−

D .

Proof. We follow the ideas of [BKW76]. One has to examine which values of (ω, U)
give a fixed (σ•, σ◦) ∈ {±1}L•×{±1}L◦ . The probability to obtain (σ•, σ◦) ∈ Σ+

Λ×Σ
+−
Λ′

is the probability to obtain its associated six-vertex edge orientations. This is therefore
the sum of the probabilities of all oriented loop configurations ℓ� that induce these
edge orientations. The probability of a given oriented loop configuration ℓ� satisyfing
the boundary conditions in Fig. 7 is proportional to

√
q |loop(ℓ�)| ·

(
eλ

eλ+e−λ

)|loop⟳(ℓ�)|−|loop⟲(ℓ�)|
= eλ(|loop⟳(ℓ�)|−|loop⟲(ℓ�)|), (11)

where loop⟳(ℓ�) and loop⟲(ℓ�) are respectively the sets of clockwise and counter-
clockwise oriented loops in ℓ� not imposed by boundary conditions, and loop(ℓ�) is
their union. Indeed, by Lemma 1, the first factor on the right side is proportional to
FK

1/0
G (ω(ℓ)), where ω(ℓ) ∈ {0, 1}E• is the percolation configuration associated to the

unoriented loop configuration ℓ corresponding to ℓ�. The second factor comes from
the values of the uniforms necessary to obtain correct orientations of loops in loop(ℓ�).
The equality holds since √q = eλ + e−λ due to the choice of λ.

Notice that each loop which is oriented clockwise does 4 more right quarter-turns
than left quarter-turns, that the converse holds for counter-clockwise oriented loops,
and that the number of left and right quarter-turns of the crossing path differ by a
universal constant. Consequently, the expression on the right side of (11) equals

exp(λ(#↷(ℓ�)−#↶(ℓ�))/4),

where #↷(ℓ�) and #↶(ℓ�) are respectively the number of right and left quarter-turns
in ℓ� that are not imposed by the boundary conditions. The key idea is to count these
oriented loop arcs locally at each tile in A = Ai ∪ Ab. Observe that, for tiles in Ai,
types 5B,6A correspond to a pair of right-oriented loop arcs and types 5A,6B to a pair
of left-oriented loop arcs, whereas types 1-4 correspond to one right-oriented and one
left-oriented loop arc each. Moreover, due to the boundary conditions (see Fig. 7), a
tile in Ab contains a right turn precisely if it is of type 5,6, and it contains a left turn
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otherwise. We deduce that the probability of ℓ� is proportional to( ∏
t∈T5,6(ℓ�)∩Ai

eλ/2 1T5B,6A(ℓ�)(t) + e−λ/2 1T5A,6B(ℓ�)(t)

)
·
(
eλ/2

)|T5,6(ℓ�)∩∂A|
, (12)

where T5B,6A(ℓ�) and T5A,6B(ℓ�) are respectively the sets of tiles of types 5B and 6A
and the set of tiles of types 5A and 6B in ℓ�, and T5,6(ℓ�) is their union.

Finally, fix a pair (σ•, σ◦) ∈ Σ+
Λ × Σ+−

Λ′ that satisfies the ice-rule, and consider its
associated edge-orientations. It remains to identify all oriented loop configurations ℓ�
that satisfy the boundary conditions in Fig. 7 and that induce these edge-orientations.
Observe that the boundary conditions and the spins (σ•, σ◦) uniquely determine the
oriented loop arcs at tiles in (L⋄ \A)∪Ab and at tiles in Ai \ T i

5,6(σ•, σ◦). For a tile in
T i
5,6(σ•, σ◦), one can split the oriented edges either into a pair of right-oriented loops

arcs (types 5B,6A) or into a pair of left-oriented loop arcs (types 5A,6B). Summing the
probabilities (12) of all oriented loop configurations obtained in that way, we obtain
that the probability of (σ•, σ◦) is proportional to(

eλ/2 + e−λ/2
)|T i

5,6(σ•,σ◦)| ·
(
eλ/2

)|Tb
5,6(σ•,σ◦)|

.

Recalling that c = eλ/2 + e−λ/2 and cb = eλ/2 finishes the proof. □

From six-vertex to modified ATRC. In line with the approach outlined in [GP23,
Section 7], we make appropriate adjustments. Recall the notation introduced at the
beginning of the subsection: the sets of primal and dual vertices Λ and Λ′, D = Λ∪Λ′

and the set of tiles A that intersect D. Let E1 := {et : t ∈ A} ⊃ E, and define a
pair of percolation configurations ξτ , ξττ ′ ∈ {0, 1}E1 as follows. For each tile t ∈ A,
denoting et = ij ∈ E1 and e∗t = uv,

• if σ◦(u) ̸= σ◦(v), set ξτ (et) = ξττ ′(et) = 1 (never happens for t ∈ ∂A ∩H−);
• if σ•(i) ̸= σ•(j), set ξτ (et) = ξττ ′(et) = 0 (never happens for t ∈ ∂A ∩H+);
• if both σ◦(u) = σ◦(v) and σ•(i) = σ•(j) hold (types 5-6), let

(ξτ (et), ξττ ′(et)) =

{
1[0, 1

c
)(Ut) · (1, 1) + 1[ 1

c
, 2
c
)(Ut) · (0, 0) + 1[ 2

c
,1](Ut) · (0, 1) if t ∈ Ai,

1[0, 1
cb

)(Ut) · (1, 1) + 1[ 1
cb

,1](Ut) · (0, 0) if t ∈ ∂A.

In particular, it holds that ξτ ⊆ ξττ ′ and ξττ ′ \ ξτ ⊆ {et : t ∈ Ai} = E.
For an edge ij ∈ E•, we write σ• ∼ e if σ•(i) = σ•(j); for ξ ⊂ E•, we write σ• ∼ ξ

if σ• ∼ e for every e ∈ ξ (in other words, σ• is constant on clusters of ξ). We use similar
notation for E◦ and σ◦. The above definition implies that σ• ∼ ξττ ′ and σ◦ ∼ ξ∗τ .

Remark 4.2. The above sampling rule for t ∈ Ai applied to a six-vertex spin or height
measure without modified boundary weight cb yields an ATRC measure, as defined in
Secton 3. See Section 5.1.3 for details.

Before providing an explicit expression for the law of (ξτ , ξττ ′) in the next lemma,
we require some notation.

• Let K be the graph (VE1 , E1), and let K∼ be the graph obtained from K by
identifying the vertices in ∂in

L•VE1 (it has many self-edges). See Figure 8 (left).
• Let K ′ be the graph induced by edges dual to edges in E1: K ′ = (V∗E1 , ∗E1),

and let K ′
∼ be the graph obtained from K ′ by identifying the vertices in ∂in

L◦V∗E1 .
See Figure 8.
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vL vR vL vR vL vR

Figure 8. The graphs K (left), K ′ (center), and the planar duality relation
between their edges (right). Vertices surrounded by a circle are identified in
K∼ and K ′

∼, respectively.

One then has that the planar dual of K is K ′
∼, and the planar dual of K ′ is K∼.

Recall that n is the width of Λ = Λn,m, and define
vL = (−n− 1, 0), vR = (n+ 1, 0),

see Figures 7 and 8. Moreover, define Eb := {et : t ∈ ∂A} = E1 \ E, and set
E+

b := {e ∈ Eb : e ⊂ H+} and E−
b := Eb \ E+

b .

The next lemma expresses the law of (ξτ , ξττ ′) as a certain measure on {0, 1}E1 ×
{0, 1}E1 conditioned on the event vL

ξτ←→ vR. We first introduce this measure.

Definition 1. In the current definition, we view each a ∈ {0, 1}E1 as a spanning sub-
graph of K. We say that a cluster of a is an inner cluster if it is entirely contained in Λ
and a boundary cluster otherwise. Define κK(a) as the number of clusters in ξ, and
let clΛ(a) be the set of clusters in ξ that intersect Λ. The modified ATRC probability
measure mATRCn,m ≡ mATRCK on {0, 1}E1 × {0, 1}E1 is defined by

mATRCK(a, b) ∝ 1a⊆b1b\a⊆E2
κK(a)2|a|(c− 2)|b\a|(cb − 1)|E

+
b \b|

·
∏

C∈clΛ(b)

(
1C⊆Λ + (cb − 1)|E

−
b ∩∂edgeC|).

As before, we will use the same symbols for random variables and their realisations.

Lemma 4.3. Let ((σ•, σ◦), U) be distributed according to Ψ1/0, and let ξτ , ξττ ′ be as
constructed above. Then the probability of a realisation (ξτ , ξττ ′) ∈ {0, 1}E1 × {0, 1}E1

is proportional to mATRCK( · | vL
ξτ←→ vR).

Proof. We build on [GP23, Proof of Lemma 7.1]. One has to examine which values of
(σ•, σ◦, U) give a fixed pair ξτ , ξττ ′ ∈ {0, 1}E1 . Recall first that σ• has to be constant
on ξττ ′ and that σ◦ has to be constant on ξ∗τ . By (10), the probability of a quadruplet
(σ•, σ◦, ξτ , ξττ ′) is

Spin+,+−
D (σ•, σ◦)1σ•∼ξττ ′

1σ◦∼ξ∗τ 1ξτ⊆ξττ ′
1ξττ ′\ξτ⊆E

·
∏

t∈T i
5,6

(
1
c
(1t∈ξτ + 1t∈ξ∗

ττ ′
) + c−2

c
1t∈ξττ ′\ξτ

) ∏
t∈Tb

5,6

(
1
cb
1t∈ξτ +

cb−1
cb

1t∈ξ∗
ττ ′

)
∝ 1Σ+

Λ
(σ•)1Σ+−

Λ′
(σ◦)1σ•∼ξττ ′

1σ◦∼ξ∗τ 1ξτ⊆ξττ ′
1ξττ ′\ξτ⊆E

·
∏

t∈T i
5,6

(
1t∈ξτ + 1t∈ξ∗

ττ ′
+ (c− 2)1t∈ξττ ′\ξτ

) ∏
t∈Tb

5,6

(
1t∈ξτ + (cb − 1)1t∈ξ∗

ττ ′

)
, (13)
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where we used the shorthand T#
5,6 ≡ T#

5,6(σ•, σ◦) and the fact that

1ice(σ•, σ◦)1σ•∼ξττ ′
1σ◦∼ξ∗τ 1ξτ⊆ξττ ′

= 1σ•∼ξττ ′
1σ◦∼ξ∗τ 1ξτ⊆ξττ ′

.

Observe then that under the event {σ• ∼ ξττ ′ , σ◦ ∼ ξ∗τ , ξτ ⊆ ξττ ′ , ξττ ′ \ ξτ ⊆ E},
1T i

5,6
(t) = 1ξτ (t)1σ◦∼e∗t

+ 1ξ∗
ττ ′

(t)1σ•∼et + 1ξττ ′\ξτ (t),

1Tb
5,6
(t) = 1ξτ (t)1σ◦∼e∗t

+ 1ξ∗
ττ ′

(t)1σ•∼et .

Using this, (13) becomes

1Σ+
Λ
(σ•)1Σ+−

Λ′
(σ◦)1σ•∼ξττ ′

1σ◦∼ξ∗τ1ξτ⊆ξττ ′
1ξττ ′\ξτ⊆E

·
∏
t∈Ai

(
1t∈ξτ + 1t∈ξ∗

ττ ′
+ (c− 2)1t∈ξττ ′\ξτ

)1
T i
5,6

(t) ∏
t∈∂A

(
1t∈ξτ + (cb − 1)1t∈ξ∗

ττ ′

)1
Tb
5,6

(t)

= 1Σ+
Λ
(σ•)1Σ+−

Λ′
(σ◦)1σ•∼ξττ ′

1σ◦∼ξ∗τ1ξτ⊆ξττ ′
1ξττ ′\ξτ⊆E(c−2)|ξττ ′\ξτ |

∏
e∈Eb\ξττ ′

(cb−1)1σ•∼e .

Observe that σ◦ ∈ Σ+−
Λ′ and σ◦ ∼ ξ∗τ imply that vL and vR are connected in ξτ (see

Figure 7). To obtain the probability of a pair (ξτ , ξττ ′) satisfying vL
ξτ←→ vR (up to

multiplicative constant), we need to sum the last expression over (σ•, σ◦).
The configurations σ◦ ∈ Σ+−

Λ′ with σ◦ ∼ ξ∗τ are in bijective correspondence with
assignments of ±1 to the clusters of ξ∗τ in K ′

∼ that are contained in Λ′, whence there
exist 2κK′∼

(ξ∗τ )−1 of them. By Euler’s formula,

κK′
∼(ξ

∗
τ )− 1 = κK(ξτ ) + |ξτ | − |VE1|.

In particular, the probability of a triplet (ξτ , ξττ ′ , σ•) with vL
ξτ←→ vR is proportional to

1Σ+
Λ
(σ•)1σ•∼ξττ ′

1ξτ⊆ξττ ′
1ξττ ′\ξτ⊆E2

κK(ξτ )2|ξτ |(c− 2)|ξττ ′\ξτ |
∏

e∈Eb\ξττ ′

(cb − 1)1σ•∼e . (14)

We now sum this expression over σ•. As in the σ◦ case, this is equivalent to summing
over assignments of ±1 values to the inner clusters of ξττ ′ and a fixed +1 spin to the
boundary clusters. Denote the sets of the inner clusters by cliΛ(ξττ ′) and the set of the
boundary clusters by clbΛ(ξττ ′). Writing cl, cli and clb for brevity, we get:

• for any edge e ∈ E+
b , every σ• ∈ Σ+

Λ is constant +1 on the endpoints of e, and
hence σ• ∼ e;
• for any σ• ∈ Σ+

Λ with σ• ∼ ξττ ′ , each edge e ∈ E−
b \ ξττ ′ satisfies σ• ∼ e in

precisely two cases: (i) if e ∈ ∂edgeC for a boundary cluster C ∈ clb; (ii) if
e ∈ ∂edgeC for an inner cluster C ∈ cli (which is then unique and) on which
σ• = +1.

Therefore,∑
σ•∈Σ+

Λ
σ•∼ξττ ′

∏
e∈Eb\ξττ ′

(cb − 1)1σ•∼e = (cb − 1)|E
+
b \ξττ ′ |

∑
σ•∈Σ+

Λ
σ•∼ξττ ′

∏
e∈E−

b \ξττ ′

(cb − 1)1σ•∼e

= (cb − 1)|E
+
b \ξττ ′ |

( ∏
C∈clb

(cb − 1)|E
−
b ∩∂edgeC|

)( ∏
C∈cli

(
1 + (cb − 1)|E

−
b ∩∂edgeC|)).

Substituting the last display in the sum of (14) over σ•, we get mATRCK as required.
□
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4.4. Properties of the modified ATRC. In this section, we will derive basic proper-
ties of the modified ATRC measure that will be instrumental in its analysis in Section 8
and in the proof of Theorem 2. We continue in the setting of the previous section.

Computation of the marginals on E ∪E+
b . Recall the Defintion 1 of the modified

ATRC measure and the coupling from Lemma 4.3. To study the cluster of vL, vR
in ξτ , it suffices to consider the restriction of ξτ to E ∪ E+

b . We first introduce the
corresponding measure.

Definition 2. Let K+ ≡ K+
n,m be the graph (VE∪E+

b
, E ∪ E+

b ). We regard a ∈
{0, 1}E∪E+

b as a spanning sub-graph of K+. Define κK+(a) as the number of clusters
in a, and let clΛ(a) be the set of clusters in a that intersect Λ. Moreover, given a
subset C ⊆ VE∪E+

b
, define its lower boundary index by I(C) =

∑
e∈E−

b
|e ∩ C|. Define

the modified ATRC probability measure mATRC+
n,m ≡ mATRCK+ on {0, 1}E∪E+

b ×
{0, 1}E∪E+

b by

mATRCK+(a, b) ∝ 1a⊆b1b\a⊆E2
|a∩E|( 2

cb−1

)|a∩E+
b |
(c− 2)|b\a|

· 2κK+ (a)
∏

C∈clΛ(b)

(
1C⊆Λ + c

I(C)
b

)
.

Lemma 4.4. Let (ξτ , ξττ ′) ∼ mATRCK. The law of (ξτ , ξττ ′) restricted to E ∪ E+
b is

given by mATRCK+.

Proof. Recall the definitions of V = Vn,m and Λ = Λn,m given is Section 4.3. Introduce
the probability measure Q on quadruplets (a, b, s, t) ∈ ({0, 1}E1)2 × ({±1}V )2 by

Q(a, b, s, t) ∝ 1Σ+
Λ
(t)1a⊆b1b\a⊂E1s∼a1t∼b

∏
e∈E1

2ae(c−2)be−ae
∏
e∈Eb

(cb−1)1t∼e(1−ae), (15)

where t ∈ Σ+
Λ if and only if t(i) = 1 for all i ∈ V \ Λ. The marginal of Q on a, b

is mATRCK . Indeed, summing (15) over s and using that a = b on Eb gives (14)
with t = σ•. Summing then over t and reasoning precisely as below (14), one obtains
mATRCK(a, b) as defined in Definition 1.

We will now compute the desired marginals of mATRCK by summing (15). For a, s
as above and e ∈ E1, we write se ∼ ae if ae = 0 or s ∼ e. We use the same notation
for b, t as above. Observe that any t ∈ Σ+

Λ and e ∈ E+
b satisfy t ∼ e. We start by

summing (15) over the values of ae, be for e ∈ E−
b , and the values of si for i ∈ VE−

b
\Λ

(denoted
∑∗

a,b,s), which yields

1Σ+
Λ
(t)
∏
e∈E

1ae≤be1se∼ae1te∼be2
ae(c− 2)be−ae

∏
e∈E+

b

2ae1ae=be1se∼ae1te∼be(cb − 1)1−ae

·
∗∑

a,b,s

∏
e∈E−

b

2ae1ae=be1se∼ae1te∼be(cb − 1)1t∼e(1−ae). (16)
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Now, the sum in the second row above satisfies
∗∑

a,b,s

∏
e∈E−

b

2ae1ae=be1se∼ae1te∼be(cb − 1)1t∼e(1−ae) =
∗∑
s

∏
e∈E−

b

(
21s∼e1t∼e + (cb − 1)1t∼e

)
=
∏
e∈E−

b

(
21t∼e + 2(cb − 1)1t∼e

)
= 2|E

−
b |
∏
e∈E−

b

c1t∼e
b . (17)

We then substitute (17) into (16) and sum the resulting expression over the remaining
values of s and over t ∈ Σ+

Λ , which for any a, b ∈ {0, 1}E∪E+
b gives

Q(a, b) ∝ 1a⊆b

∏
e∈E

2ae(c− 2)be−ae
∏
e∈E+

b

2ae1ae=be(cb − 1)(1−ae)
∑
s,t

1s∼a1t∼b

∏
e∈E−

b

ct∼e
b .

Along the lines below (14) in the proof of Lemma 4.3, we see that∑
s

1s∼a = 2κK+ (a) and
∑
t

1t∼b

∏
e∈E−

b

ct∼e
b =

∏
C∈clΛ(b)

(
1C⊆Λ + c

∑
e∈E−

b
|e∩C|

b

)
.

□

Positive association. The motivation for considering the marginals of the modi-
fied ATRC measure on E ∪ E+

b is that they satisfy the strong FKG property (see
Section 3). This will allow us to ‘sandwich’ the associated modified ATRC measure
between unmodified ATRC measures, and from this to deduce the convergence to the
unique infinite-volume ATRC Gibbs measure; see Section 5.

Lemma 4.5. The measure mATRCK+ satisfies the strong FKG property.

Proof. Recall that cb = eλ with λ > 0. We verify the Holley criterion [Hol74]. To
shorten notation, given a, b ∈ {0, 1}E∪E+

b with a ⊆ b and a = b on E+
b , we write

mATRCK+(ae, be | aec , bec) for the conditional probability

mATRCK+

(
(ξτ (e), ξττ ′(e)) = (ae, be)

∣∣ (ξτ , ξττ ′) = (a, b) on (E ∪ E+
b ) \ {e}

)
.

For e = ij ∈ E, denote by Ca
i , C

a
j the clusters of i, j in aec , and by C̃b

i , C̃
b
j the clusters

of i, j in bec ∪ E+
b . Observe that C̃b

i ̸= C̃b
j implies that C̃b

i ⊆ Λ or C̃b
j ⊆ Λ. Then, for

any a, b ∈ {0, 1}E∪E+
b with a ⊆ b and a = b on E+

b ,

mATRCK+(ae, be | aec , bec) =
(
2ae c

c+1

)1Ca
i
=Ca

j (c− 2)be−ae f(b)be

1+(c−1)f(b)
, (18)

where
f(b) = 1C̃b

i=C̃b
j
+ α

(
1C̃b

i ̸=C̃b
j ̸⊆Λ + 1Λ̸⊇C̃b

i ̸=C̃b
j

)
+ β1Λ⊇C̃b

i ̸=C̃b
j⊆Λ

and

α =
eλI(C̃

b
i )

1 + eλI(C̃
b
i )
, β =

1 + eλI(C̃
b
i )+λI(C̃b

j )

(1 + eλI(C̃
b
i ))(1 + eλI(C̃

b
j ))

.

Note first that c ≥ 1 (in fact c > 2) and 1Ca
i =Ca

j
is increasing in a. Moreover, β ≤ α ≤ 1

and both α and β are increasing in I(C̃b
i ) and I(C̃b

j ) and hence in b. Therefore f ≥ 1
is increasing in b. This implies that mATRCK+(1, 1 | aec , bec) is increasing in a, b and
mATRCK+(0, 0 | aec , bec) is decreasing in a, b.

For e = {i, j} ∈ E+
b , one has for any ae = be,

mATRCK+(ae, be | aec , bec) =
(
2ae cb

cb+1

)1Ca
i
=Ca

j

(
f(b)
cb−1

)ae
cb−1

cb−1+f(b)
, (19)
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where f(b) is as above. Recall that cb = eλ > 1 and that 1Ca
i =Ca

j
and f are increasing

in a and b, respectively. This implies that mATRCK+(1, 1 | aec , bec) is increasing in a, b,
and hence mATRCK+(0, 0 | aec , bec) is decreasing in a, b, and the proof is complete. □

Finite energy. Another feature of the marginals of the modifed ATRC measure is
that they satisfy the finite-energy property.

Lemma 4.6. The exists a constant c > 0 such that, for any e ∈ E and any a, b ∈
{0, 1}E∪E+

b with a ⊆ b and b \ a ⊆ E,

mATRCK+

(
(ξτ (e), ξττ ′(e)) = (ae, be)

∣∣ (ξτ , ξττ ′) = (a, b) on (E ∪ E+
b ) \ {e}

)
> c.

The statement also holds for e ∈ E+
b , provided that ae = be.

The above lemma follows directly from the explicit expressions (18)-(19) of the
conditional probabilities computed in the proof of Lemma 4.5.

Controlling regions properties. The following controlling regions property was
introduced in [Ale04].

Lemma 4.7. Let (ξτ , ξττ ′) be distributed according to mATRCK. Let F1 ⊂ F2 ⊂ E,
and let ξ̃τ , ξ̃ττ ′ ∈ {0, 1}F2\F1 be such that there exists circuits in ξ̃∗τ and in ξ̃ττ ′ that
both surround F1. Then, conditionally on (ξτ |F2\F1 , ξττ ′ |F2\F1) = (ξ̃τ , ξ̃ττ ′), the values
of (ξτ |F1 , ξττ ′|F1) and (ξτ |E\F2 , ξττ ′|E\F2) are independent.

The proof is very similar to that of Lemma 4.8 below, though notationally heavier,
whence we omit it here.

4.5. Interface and conditional measure. We continue in the setting of the previous
section. Recall the coupling Ψ1/0 of the six-vertex spin random variable (σ•, σ◦) ∼
Spin+,+−

D and the modified ATRC pair (ξτ , ξττ ′) ∼ mATRCK . In view of the more
advantageous properties of mATRCK+ , we will be investigating this measure rather
than mATRCK , whence we formulate the following definitions for the restrictions of
(ξτ , ξττ ′) to E ∪ E+

b .

Interface. Since σ◦ must be constant on edges in ξ∗τ while being subject to Dobrushin
boundary conditions (σ◦ ∈ Σ+−

Λ′ ), one automatically has that vL and vR are connected
in ξτ . Let CvL,vR ⊆ E ∪ E+

b ⊂ E• be the set of edges that are connected to vL, vR in
ξτ restricted to E ∪E+

b . Observe that there exists a unique closed curve γ ⊂ R2 given
by the union of line-segments between endpoints of edges in ∗∂ex

L•CvL,vR such that the
edges in CvL,vR are contained in the bounded connected component of R2\γ. Define the
surrounding polygon P as the closure of the bounded connected component of R2 \ γ
(so that γ ⊂ P). See Fig. 9. We now define our notion of interface:

• Γ = ΓATRC := P ∩ L• ⊆ V , which is simply connected,
• A1 ⊆ V is the set of vertices above Γ, that is, the vertices in V \ Γ that are

connected to ∂inV ∩H+ in the graph induced by V \ Γ,
• A0 ⊆ V is the set of vertices below Γ, that is, the vertices in V \ Γ that are

connected to ∂inV ∩H− in the graph induced by V \ Γ.
Moreover, let Γ′ := P ∩ L◦.

Expression of the conditional measure. We now investigate the measure mATRCK+

conditionally on a realisation of CvL,vR , which will be used in the study of the relax-
ation to pure phases away from the interface. Given a realisation C of CvL,vR , we write
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Figure 9. Left: A realisation C of CvL,vR (solid edges) in K for n = m = 3,
the dual ∗∂ex

K+C of its external edge-boundary in K+ (dashed edges), and the
surrounding polygon PC (grey). Center: The edge-set Eex

C (thin solid edges).
Right: The edge-set Ein

C (thin solid edges).

PC ,ΓC ,Γ
′
C for the corresponding realisations of P ,Γ,Γ′, respectively, and we define

E∂ex

C := {e ∈ ∂ex
K+C : e ∪ e∗ ̸⊂ PC}, Eex

C := E∂ex

C ∪ {e ∈ E ∪ E+
b : e ⊂ R2 \ PC}.

Let KC := (VEex
C \E∂ex

C
, Eex

C \E∂ex

C ), and let K1
C be the graph obtained from (VEex

C
, Eex

C )
by identifying the vertices connected by C. See Fig. 9. First, we will derive an explicit
expression for the conditional measure.

Lemma 4.8. For a realisation C of CvL,vR and aex, bex ∈ {0, 1}Eex
C with aex∩E∂ex

C = ∅,

mATRCK+

(
(ξτ |Eex

C
, ξττ ′ |Eex

C
) = (aex, bex)

∣∣ CvL,vR = C
)
∝ 1aex⊆bex 1bex\aex⊆E

· 2|aex∩E| ( 2
cb−1

)|aex∩E+
b |
(c− 2)|b

ex\aex| 2κKC
(aex)

∏
C∈cl

K1
C
(bex)

(
1C⊆Λ + c

I(C)
b

)
.

where κKC
(aex) is the number of clusters in the spanning sub-graph of KC with edge-set

aex, and clK1
C
(bex) is the set of clusters in the spanning sub-graph of K1

C with edge-set
bex that intersect Λ.

Proof. Define E∂in

C := ∂exC \E∂ex

C and Ein
C := (E ∪E+

b ) \ (Eex
C ∪C), so that E ∪E+

b is
the disjoint union of Ein

C , E
ex
C and C, see Fig. 9. Let GC := (V

Ein
C \E∂in

C
, Ein

C \E∂in

C ), and
let G1

C be the graph obtained from (VEin
C
, Ein

C ) by identifying the vertices connected
by C. Since ξτ ⊆ ξττ ′ almost surely, we clearly have

mATRCK+

(
(ξτ |Eex

C
, ξττ ′ |Eex

C
) = (aex, bex)

∣∣ CvL,vR = C
)

∝
∑
ain,bin

mATRCK+

(
(ξτ , ξττ ′) = (aex ∪ ain ∪ C, bex ∪ bin ∪ C)

)
,

where the sum is over all ain, bin ∈ {0, 1}Ein
C ∪E∂in

C with ain ∩E∂in

C = ∅. Fix such a pair,
and set a = aex ∪ ain ∪C and b = bex ∪ bin ∪C. Since C is disjoint from and separates
KC and GC , we clearly have

κK(a) = κKC
(aex) + κGC

(ain) + 1.

Moreover, by the definitions of K1
C and G1

C (look again at Fig. 9), it holds that

clΛ(b) = clK1
C
(bex) ⊔

(
clG1

C
(bin) \ {cluster of C in bin}

)
,
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and every cluster C in the second set satisfies C ⊆ Λ and has lower boundary index
I(C) = 0, whence∏

C∈clΛ(b)

(
1C⊆Λ + c

I(C)
b

)
=

∏
C∈cl

K1
C
(bex)

(
1C⊆Λ + c

I(C)
b

)
· 2κG1

C
(bin)−1

,

and the proof is complete. □

Proximity of interfaces. Consider the coupling measure Ψ1/0 constructed in Sec-
tion 4. A feature of this coupling, that is crucial for our purposes, is that the respective
interfaces stay close to each other with high probability. To measure the distance be-
tween interfaces, we will work with the one-sided Hausdorff distance defined by

dH(R, S) := sup
x∈R

inf
y∈S

d∞(x, y), R, S ⊂ R2.

Given a bi-infinite connected set C ⊂ L• ∩ (R × [−c, c]) with C ∩ (R × {±c}) ̸= ∅,
we say that a subset R ⊂ R2 is (weakly) above C if it is contained in the closure of
the connected component of (0, c + 1) in R2 \ C, where we identify C with the union
of line segments between the endpoints of the edges in EC . We say that R is below C
if it is contained in the closure of the connected component of (0,−c − 1) in R2 \ C.
We make the analogous definitions for finite connected sets by extending them in a
natural way to bi-finite connected sets, and for connected subsets C ⊂ L◦. Recall the
definition of the upper and lower envelopes Γ±,n

FK in Gn defined in Section 1, and define
Γ±,n,m
FK in G = Gn,m analogously.

Lemma 4.9. There exist constants C, c > 0 such that, for any k ≥ 1,

Ψ1/0(dH(Γ
±,n,m
FK ,ΓATRC) > k) ≤ Cnmke−ck.

Proof. We present the argument for Γ+,n,m
FK . The statement for Γ−,n,m

FK is proved in an
analogous fashion. Consider the coupling Ψ1/0 of ω ∼ FK

1/0
G , (σ•, σ◦) ∼ Spin+,+−

D and
(ξτ , ξττ ′) ∼ mATRCK in Section 4. Let C ′ = C ′v′L,v′R be the cluster of v′L := (−n− 1

2
,−1

2
)

and v′R := (n+ 1
2
,−1

2
) in ω∗, and observe that dH(Γ

+,n,m
FK , C ′) ≤ 1

2
. Therefore, it suffices

to bound the probability
Ψ1/0(dH(C ′,ΓATRC) > k).

Let p− ⊂ V∗E be the uppermost path connecting v′L to v′R such that σ◦(u) = −1 for
all u ∈ p−. Since ∗∂exCvL,vR contains such a path, as well as a path p+ that connects
(−n− 3

2
, 1
2
) to (n+ 3

2
, 1
2
) such that σ◦(u) = +1 for all u ∈ p+, we have dH(p−,ΓATRC) ≤ 1

2
.

Therefore, it suffices to bound the probability

Ψ1/0(dH(C ′, p−) > k).

In the coupling, it holds that σ◦ is constant −1 on C ′ (see Fig. 7). Thus, the path p−
cannot contain vertices below C ′. Hence, conditional on C ′ = C ′, the random variable
dH(C ′, p−) is measurable with respect to σ◦ restricted to the vertices in D ∩ L◦ above
C ′. Let us determine the conditional law of (σ•, σ◦) restricted to the vertices in D
above C ′.

Fix a realisation C ′ of C ′, and let p�
γ be the lower most path in ω above C ′. Let DC′

be the subset of vertices in D above p�
γ. Denote by AC′ the set of tiles with at least

one corner in DC′ , and by Ab
C′ the set of tiles with precisely one corner in DC′ . Define

EC′

1 = {et : t ∈ AC′}, EC′

b = {et : t ∈ Ab
C′} and EC′

= EC′

1 \ EC′

b .
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Set GC′ = (VEC′ , EC′
). Then, by Lemma 4.1 and the domain Markov property of

FK-percolation, for any ω0 ∈ {0, 1}E
C′

,

Ψ1/0(ω|EC′ = ω0 | C ′ = C ′) = FK
1/0
G (ω|EC′ = ω0 | C ′ = C ′) = FK1

GC′ (ω|EC′ = ω0).

Then, along the lines in the proof of Lemma 4.1,

Ψ1/0
(
(σ•|DC′∩L• , σ◦|DC′∩L◦) ∈ ·

∣∣ C ′ = C ′) = Spin+,+
DC′ |DC′ ,

where the latter is defined by setting, for σ ∈ {±1}L• × {±1}L◦ ,

Spin+,+
DC′ (σ) ∝ c|T

i
5,6(σ)| c

|Tb
5,6(σ)|

b 1σ=+1 on (L•∪L◦)\DC′ 1ice(σ),

where T i
5,6(σ) and T b

5,6(σ) are respectively the sets of tiles in AC′ \ Ab
C′ and Ab

C′ that
are of types 5,6 in σ. Let us determine the conditional law of (ξτ , ξττ ′). Define KC′ =
(VEC′

1
, EC′

1 ), and let K1
C′ be the graph obtained from KC′ by identifying vertices in

∂in
L•VEC′

1
and those connected by p�

C′ . Observe that, conditional on C ′ = C ′, σ• is
constant +1 on the endpoints of edges in EC′

b . By a computation exactly analogous
to that in the proof of Lemma 4.3,

Ψ1/0
(
(ξτ |EC′

1
, ξττ ′|EC′

1
) ∈ ·

∣∣ C ′ = C ′) = mATRCKC′ ,

where mATRCKC′ is defined by setting, for any (a, b) ∈ {0, 1}EC′
1 × {0, 1}EC′

1 ,

mATRCKC′ (a, b) ∝ 1a⊆b1b\a⊆EC′2
κKC′ (a)+κ

K1
C′

(b)
2|a|(c− 2)|b\a|(cb − 1)|E

C′
b \b|.

It is easy to see that mATRCKC′ is positively associated (a significant simplification of
the proof of Lemma 4.5 applies). Together with the definition of ATRC1,1

GC′ , we deduce

mATRCKC′ ≤st mATRCKC′ (· | ξτ (e) = 1 for all e ∈ EC′

b ) = ATRC1,1
GC′ .

By uniform exponential decay of connection probabilities in ATRC1,1
GC′ (Theorem 5)

and since Eb
C′ is a one-dimensional set, a result of [Ott25] and a conceptually simple

but lengthy argument in [IOVW20] shows that connection probabilities in mATRCKC′

decay exponentially as well.
Finally, since σ◦ ∼ ξ∗τ and σ◦ = 1 on L◦ \DC′ , any connected component of σ◦ = −1

must be surrounded by a circuit in ξτ , we deduce

Ψ1/0(dH(C ′, p−) > k | C ′ = C ′) ≤ mATRCKC′ (∃ i ∈ p�
C′ : i

ξτ←→ i+ ∂inΛk) ≤ Cnmke−ck,

and the proof is complete. □

5. Weak mixing in the ATRC

The main results proved in this section are the single-edge relaxation of the ATRC,
Proposition 3.2, and the ratio weak mixing property for the ATRC, Theorem 4.

In Subsections 5.1 and 5.2 we define the height function of the six-vertex model
and use [GP23] to show that it relaxes exponentially to its infinite-volume limit. In
Subsection 5.3, we show that this implies exponential relaxation for the ATRC mea-
sure with ‘0, 1’ boundary conditions, stated in Proposition 5.9. In Subsection 5.4, we
derive Proposition 3.2 from Proposition 5.9 and an imput from [ADG24], stated in
Proposition 5.11. In Subsection 5.5, we show how to derive from Proposition 3.2 the
exponential weak mixing property of the ATRC, stated in Theorem 7. Finally, we
prove Theorem 4 using the classical work of Alexander [Ale98], Theorem 7 and the
imput, Proposition 5.11, from [ADG24].
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5.1. The six-vertex height function. The proof of Proposition 3.2 relies on expo-
nential relaxation of the ATRC measures with ‘0, 1’ boundary conditions. The latter
will be established via the height function representation of the six-vertex model and
the BKW coupling [BKW76] with FK-percolation, while it also requires some input
from [GP23]. We first introduce the six-vertex height function and provide the neces-
sary graph definitions.

5.1.1. Six-vertex height function. Recall the edge-orientations and spin representation
of the six-vertex model introduced in Section 4.2. A six-vertex height function is an
assignment of integers, called heights, to the vertices in both L• and L◦. Given edge-
orientations that satisfy the ice rule, define h on L• ∪ L◦ as follows. Fix an integer
height at some arbitrary fixed vertex. Then iteratively define the heights at other
vertices by increasing the height by 1 when traversing an edge e ∈ E⋄ from its left
to its right (with respect to its assigned orientation) and decreasing the height by 1
when traversing an arrow from its right to its left; see Fig. 5. As with the spins, the
procedure is self-consistent due to the ice rule. Note that the heights on L• and on
L◦ automatically have different parity. By convention, we set the parity on L• to be
even. The gradient of h is in bijective correspondence with the edge-orientations and
hence with the spin representation, up to a global spin flip, as demonstrated by the
following relation (see Fig. 5):

h(u)− h(i) = σ•(i)σ◦(u) for any t ∈ L⋄ with i ∈ et, u ∈ e∗t .

On the other hand, up to a global spin flip, the spins are obtained from the height
function by setting, for all i ∈ L• and u ∈ L◦,

σ•(i) =

{
+1 if h(i) = 0 mod 4

−1 if h(i) = 2 mod 4
, σ◦(u) =

{
+1 if h(u) = 1 mod 4

−1 if h(u) = 3 mod 4
. (20)

This motivates the following definition.

Definition 3. A function h : L• ∪ L◦ → Z is called a (six-vertex) height function if it
satisfies the following:

• for any t ∈ L⋄, i ∈ t ∩ L•, and u ∈ t ∩ L◦, one has |h(i)− h(u)| = 1,
• for any i ∈ L•, one has h(i) ∈ 2Z.

Denote the set of all height functions by Ωhf . The type of a tile t ∈ L⋄ in a height
function h is given by the type of its gradient function; see Fig. 5. Fix g ∈ Ωhf ,
parameters c, cb > 0 and a finite subset ∆ ⊂ L• ∪ L◦. The set A := A∆ ⊂ L⋄ of
tiles of ∆ is given by the tiles with at least one corner in ∆. The set ∂A ⊆ A of
boundary tiles of ∆ is given by the tiles with precisely one corner in ∆. Let δ ⊆ ∂A.
The corresponding height function measure on ZL•∪L◦ is defined by

HFg
∆,δ;c,cb

(h) ∝ c|T
A\δ
5,6 (h)| c

|T δ
5,6(h)|

b 1Ωhf
(h)1h(x)=g(x) ∀x∈(L•∪L◦)\∆ , (21)

where T
A\δ
5,6 (h) (resp. T δ

5,6(h)) is the set of tiles t ∈ A \ δ (resp. t ∈ δ) of type 5-6 in h.

If g is constant n on L• and constant m on L◦ (n even and m = n± 1), we simply
write HFn,m

∆,δ;c,cb
. When δ = ∂A, we omit δ from the subscript. When δ = ∅, we omit

δ and cb from the subscript.
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Figure 10. Left: part of the rotated square lattice L. Its faces are the tiles
in L⋄. Center: part of the augmented lattice L. Right: L-domains given
by the vertices strictly within simple circuits in L, L•, L◦, respectively. The
lower left and right L-domains are even and odd, respectively.

5.1.2. Rotated lattice and domains. Consider the rotated square lattice L with vertex-
set L•∪L◦ and edges between nearest neighbours, that is, between vertices of Euclidean
distance 1/

√
2. Given ∆ ⊆ L, we write ∆• = ∆∩L• and ∆◦ = ∆∩L◦. The augmented

graph L has the same vertex-set as L and all edges of L, L• and L◦, see Figure 10.
We restrict the notion of simple circuits in L to those that do not traverse both e and
e∗ for any e ∈ E•, so that they can be embedded in R2. We identify such circuits with
their planar embedding.

Definition 4 (L-domains). A finite subset D ⊂ L is called an L-domain if there exists
a simple circuit C in L such that D is given by the vertices of L strictly within C,
that is, in the bounded connected component of R2 \C. It is called even (respectively,
odd) if ∂ex

L D ⊂ L• (respectively, ∂ex
L D ⊂ L◦); see Figure 10.

Definition 5 (L•- and L◦-domains). We identify circuits in L• and L◦ with their sets
of edges as well as with their planar embedding given by the union of line-segments
between consecutive vertices. Given a simple circuit C in L• or L◦, we say that a
subset of R2 is within C if it is contained in the topological closure of the bounded
connected component of R2 \C. A sub-graph G = (V,E) of L• is called an L•-domain
of the first kind if E = EV and V is given by the vertices within a simple circuit in L•.
We define L◦-domains of the first kind in the same manner. We say that a sub-graph
G = (V,E) of L• is a domain of the second kind if its dual (V∗E, ∗E) is an L◦-domain
of the first kind. It is called an L•-domain if it is an L•-domain of the first or second
kind. We define L◦-domains (of the second kind) analogously; see Figure 11.

Given a sub-graph G = (V,E) of L• with dual G∗ = (V∗E, ∗E), define ∆G as the
set of vertices of degree 4 in G and G∗, that is,

∆G := {i ∈ V : |∂edge
G {i}| = 4} ∪ {u ∈ V∗E : |∂edge

G∗ {u}| = 4}.

Observe that, if G is an L•-domain, then DG := ∆G is an L-domain. In this case, any
tile t ∈ L⋄ intersects DG precisely if its associated edge et ∈ E• belongs to E, that is,
{et : t ∈ ADG} = E; see Section 5.1.1 and Figure 11.

5.1.3. Duality coupling with the AT model. The ATRC measures can be sampled lo-
cally from the HF measures, which is the content of the following lemma. We build
on [GP23], where a marginal of the ATRC measure was sampled. Given c > 2, a
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Figure 11. Left: a circuit in L• (thick black edges) and the corresponding
L•-domain of the first kind (thin and thick black edges). Right: a circuit
in L◦ (dashed edges) obtained by shifting the left one by (1/2, 1/2) and the
corresponding L•-domain of the second kind (black edges). The tiles corre-
sponding to the edges of the domains are shaded grey, and the vertices of the
corresponding L-domains are surrounded by red circles.

height function h ∈ ZL, an edge e = ij ∈ E• with e∗ = uv, and x ∈ [0, 1], define
Xc(h, e, x) ∈ {(0, 0), (0, 1), (1, 1)} as follows:

• if h(u) ̸= h(v), set Xc(h, e, x) = (1, 1),

• if h(i) ̸= h(j), set Xc(h, e, x) = (0, 0),

• if h(u) = h(v) and h(i) = h(j), set
Xc(h, e, x) = 1[0, 1

c
)(x) · (1, 1) + 1[ 1

c
, 2
c
)(x) · (0, 0) + 1[ 2

c
,1](x) · (0, 1).

(22)

Observe that, in order to define Xc(h, e, x), it suffices to know the values of the corre-
sponding six-vertex spins σ•(i), σ•(j), σ◦(u), σ◦(v), defined in (20).

Lemma 5.1. Let 0 < J < U satisfy sinh 2J = e−2U and take c := coth 2J . Let
G = (V,E) be an L•-domain, and let D := DG be its associated L-domain. Let h be
distributed according to HF0,1

D;c, and let (Ue)e∈E be a sequence of i.i.d. uniform random
variables on [0, 1], independent of h. Define ωτ , ωττ ′ ∈ {0, 1}E

• by setting, for e ∈ E•,

(ωτ (e), ωττ ′(e)) :=

{
(0, 1) if e ∈ E• \ E,

Xc(h, e, Ue) if e ∈ E.
(23)

Then, the law of (ωτ , ωττ ′) is given by ATRC0,1
G;J,U .

Proof. Recall that a tile t ∈ L⋄ intersects D precisely if its corresponding edge et ∈ E•

belongs to E, see Figure 11. Let (σ•, σ◦) with values in {±1}L• × {±1}L◦ be the spin
configurations corresponding to h, defined by (20). For ease of notation, we use the
same symbols for the random variables and their realisations. For σ• ∈ {±1}L• , σ◦ ∈
{±1}L◦ , ω ∈ {0, 1}E• and # ∈ {0, 1}, define

Σ+
D•
(σ•) := 1σ•≡1 on L•\D• , Σ+

D◦
(σ◦) := 1σ◦≡1 on L◦\D◦ , Ω#

E(ω) = 1ω≡# on E•\E.
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Then, the law of the quadruple (σ•, σ◦, ωτ , ωττ ′) can be written as follows:

(σ•, σ◦, ωτ , ωττ ′) ∝ 1ice(σ•, σ◦) Σ
+
D•
(σ•) Σ

+
D◦
(σ◦)1σ•∼ωττ ′

1σ◦∼ω∗
τ

· (c− 2)|(ωττ ′\ωτ )∩E| 1ωτ⊆ωττ ′
Ω0

E(ωτ ) Ω
1
E(ωττ ′),

where σ• ∼ ωττ ′ denotes the event that σ• is constant on edges in ωττ ′ and similarly for
σ◦ ∼ ω∗

τ . Observe that σ• ∼ ωττ ′ , σ◦ ∼ ω∗
τ and ωτ ⊆ ωττ ′ imply that (σ•, σ◦) satisfies

the ice rule. Summing over σ• and σ◦, we obtain the law of (ωτ , ωττ ′):

(ωτ , ωττ ′) ∝ 2κV (ωττ ′ )+κV ′ (ω∗
τ )Ω0

E(ωτ ) Ω
1
E(ωττ ′)1ωτ⊆ωττ ′

(c− 2)|(ωττ ′\ωτ )∩E|,

where V ′ := V∗E, and where we used that there exist 2κV (ωττ ′ )−1 spin configurations
σ• ∼ ωττ ′ with Σ+

D•
(σ•) = 1, and similarly for σ◦ ∼ ω∗

τ . By planar duality, κV ′(ω∗
τ ) =

κV (ωτ )+ |ωτ ∩ E|+const(G). Since wτ ,wττ ′ from (4) satisfy wτ = 2 and wττ ′ = c−2,
the proof is complete. □

5.1.4. Baxter–Kelland–Wu coupling. In Section 4.3, we described the BKW coupling
by sampling the FK-percolation from the six-vertex model. We now focus on the re-
verse direction of the BKW. Fix q > 4 and β = βc(q) = ln

(
1 +
√
q
)
, and let λ, c, cb be

as in (7) and (8). Recall the loop representation of FK-percolation and the represen-
tations of the six-vertex model introduced in Section 4.2.

Let D be an even L-domain, and set

E := ∗ED◦ ⊂ E•, Λ := VE ⊂ L•, and G := (Λ, E). (24)

The following result [BKW76] is classical. It may be proved through the arguments
presented in the proof of Lemma 4.1; see [GP23, Theorem 7] for a proof in a similar
setting. We will construct a height function from a loop configuration by increasing
or decreasing the height whenever we cross a loop, which is the same as orienting the
loops as in Section 4.3. We chose the first option for the sake of brevity.

Proposition 5.2. Let ω be a random element of {0, 1}E• distributed according to
FKw

G;β,q. Consider the corresponding loop configuration loop(ω), and define a height
function h as follows:

H1 Set h(i) = 0 for i ∈ L• \ D, and h(u) = 1 for u ∈ L◦ \ D.
H2 Assign constant values to clusters of ω and ω∗ in D by decreasing the height

by 1 with probability eλ/
√
q and increasing the height by 1 with probability

e−λ/
√
q when crossing a loop from outside, independently for every loop.

The height function h is distributed according to HF0,1
D;c,cb

.

The above procedure also works for odd L-domains with the difference that one has
to take ω ∼ FKf

D•;p,q, and H2 must be replaced by
H2’ Assign constant values to clusters of ω and ω∗ in D by decreasing the height

by 1 with probability eλ/
√
q and increasing the height by 1 with probability

e−λ/
√
q when crossing a loop from outside, independently for every loop.

5.1.5. Input from [GP23]. For the whole section, fix q > 4 and β = βc(q) = ln
(
1 +
√
q
)
,

and let λ, c, cb be as in (7) and (8). The following proposition is a consequence
of [GP23, Proposition 6.1 and Lemma 6.2] and their proofs.

Proposition 5.3. For any sequence of even or odd L-domains Dk ↗ L, the measures
HF0,1

Dk;c,cb
converge to some HF0,1

c which is independent of the sequence (Dk). Moreover,
the limiting measure HF0,1

c can be constructed in either of the following two ways:
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(i) Sample ω ∈ {0, 1}E• according to FKw
β,q. Set h = 0 on the unique infinite cluster

of ω, and sample h elsewhere according to H2 in Section 5.1.4.
(ii) Sample ω ∈ {0, 1}E• according to FKf

β,q. Set h = 1 on the unique infinite cluster
of ω∗, and sample h elsewhere according to H2’ in Section 5.1.4.

The following lemma is a slight generalisation of [GP23, Eq. (28)] and can be proved
in exactly the same manner.

Lemma 5.4. Let D be an L-domain, and let δ be a set of boundary tiles of D. Define
Deven = D \ (∂inD)• and Dodd = D \ (∂inD)◦, where the boundaries are taken in L.
Then, Deven and Dodd are disjoint unions of even and odd domains in L, respectively.
Moreover, the following stochastic ordering of measures holds:

HF0,1
Deven;c,cb

≤st HF
0,1
D,δ;c,cb

≤st HF
0,1
Dodd;c,cb

.

This lemma readily implies that HF0,1
Dk,δk;c,cb

(in particular HF0,1
Dk;c

) converges to the
same limit, no matter which sequences of Dk and δk we chose.

5.2. Relaxation of height function measures. The aim of this section is to prove a
relaxation statement for the six-vertex height function measures with modified weight
cb on arbitrary boundary tiles, in particular for the measure with unmodified weight
c on all tiles. For the whole section, fix q > 4 and β = βc(q) = ln

(
1 +
√
q
)
, and let

λ, c, cb be as in (7) and (8).
Given a measure HF on ZL and ∆ ⊂ L, define HF|∆ as its marginal on Z∆.

Proposition 5.5. There exist constants c, α > 0 such that, for every finite ∆ ⊂ L,
every L-domain D that contains ∆, and every set δ ⊂ L⋄ of boundary tiles of D,

dTV

(
HF0,1

D,δ;c,cb
|∆,HF0,1

c |∆)
)
< c |∆| (diam(∆) + d∞(∆,Dc))2 e−α d∞(∆,Dc).

The statement on even or odd L-domains and with modified weight cb on all bound-
ary tiles can be proven in the same way as [ADG24, Proposition 4.2], which is slightly
less general. We provide only the statement.

Lemma 5.6. There exist constants c, α > 0 such that, for every finite ∆ ⊂ L and
every even or odd L-domain D that contains ∆,

dTV

(
HF0,1

D;c,cb
|∆,HF0,1

c |∆
)
< c (diam(∆) + d∞(∆,Dc)) e−α d∞(∆,Dc).

Before deducing Proposition 5.5 from the above and the stochastic ordering of height
function measures, Lemma 5.4, we need a general lemma.

Lemma 5.7. [HS22, Lemma 2.16] Let µ and ν be two probability measures on a finite
totally ordered set S with µ ≤st ν. Let P be a monotone coupling of X ∼ µ and
Y ∼ ν. Then,

P(X ̸= Y ) ≤ (|S| − 1) dTV(µ, ν).

Proof. Identify S with {0, . . . , |S| − 1}. Let Pop be an optimal coupling of X and Y ,
that is, Pop(X ̸= Y ) = dTV(µ, ν). Since P(X ≤ Y ) = 1, we have

P(X ̸= Y ) = P(Y −X ≥ 1) ≤ E[Y −X]

= Eop[Y −X] ≤ (|S| − 1)Pop(X ̸= Y ),

where we applied Markov’s inequality. □
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Proof of Proposition 5.5. Let ∆ ⊂ L be finite, let D be an L-domain, and let δ ⊂ L⋄ be
a set of boundary tiles of D. Assume without loss of generality that ∆ ⊆ D\∂inD. Let
Deven and Dodd be as in Lemma 5.4, and recall the stochastic domination statement
therein. Consider a monotone coupling P of h− ∼ HF0,1

Deven;c,cb
, h ∼ HF0,1

D,δ;c,cb
and

h+ ∼ HF0,1
Dodd;c,cb

, that is,
P(h− ≤ h ≤ h+) = 1.

Take any vertex v ∈ ∆ and note that, deterministically, the height functions at v
take values in [−m,m], where m := 2(diam(∆)+d∞(∆,Dc)). By Lemma 5.7, we have

P(h−(v) ̸= h(v)) ≤ P(h−(v) ̸= h+(v)) ≤ 2m dTV

(
HF0,1

Deven;c,cb
|∆,HF0,1

Dodd;c,cb
|∆
)

(25)

≤ 2m
(
dTV

(
HF0,1

Deven;c,cb
|∆,HF0,1

c |∆
)
+ dTV

(
HF0,1

c |∆,HF
0,1
Dodd;c,cb

|∆
))
.

Now, Deven is a disjoint union of even L-domains D1, . . . ,Dn with ∂exDi ∩Dj = ∅ for
any i ̸= j. There exists an i with ∆ ⊆ Di and d∞(∆,Dc

i ) ≥ d∞(∆,Dc)− 1. Moreover,
the definition of the height function measures (21) readily implies that, for any event
A ⊂ ZL depending only on values in ∆, we have HF0,1

Deven;c,cb
(A) = HF0,1

Di;c,cb
(A). Similar

reasoning applies to Dodd. By Lemma 5.6, there exist c, α > 0, such that the right-hand
side of (25) is bounded by cm2 e−αd∞(∆,Dc). The union bound gives

dTV

(
HF0,1

Deven;c,cb
|∆,HF0,1

D,δ;c,cb
|∆
)
≤ P(h−|∆ ̸= h|∆) ≤

∑
v∈∆

P(h−(v) ̸= h(v)).

Another application of the triangle inequality and of Lemma 5.6 finishes the proof. □

Remark 5.8. Using that h−, h+ have uniformly bounded second moment (localisation)
and adapting Lemma 5.7 allow to remove the square of (diam(∆)+d∞(∆,Dc))2 in the
bound in Proposition 5.5.

5.3. Relaxation of ATRC measures. The proof of Proposition 3.2 is based on
Proposition 5.11 and another one below, which is a consequence of Proposition 5.5.

The following proposition establishes exponential relaxation of the ATRC measures
on domains and with ‘0, 1’ boundary conditions. Once Proposition 3.2 is proven, it can
be concluded that the limit coincides with the unique ATRC Gibbs measure. Recall
the definition (22) of Xc.

Proposition 5.9. Let 0 < J < U satisfy sinh 2J = e−2U . There exists a measure
ATRCJ,U on {0, 1}E• × {0, 1}E• and constants c, α > 0 such that, for any L•-domain
G = (V,E) and any F ⊆ E,

dTV

(
ATRC0,1

G;J,U [(ωτ |F , ωττ ′|F ) ∈ · ],ATRCJ,U [(ωτ |F , ωττ ′|F ) ∈ · ]
)

< c |VF | (diam(VF ) + d∞(VF , V
c))2 e−αd∞(VF ,V c),

where diam denotes the diameter with respect to d∞. Furthermore, the measure
ATRCJ,U is constructed as follows. Let c = coth 2J , let h be distributed accord-
ing to HF0,1

c , and let (Ue)e∈E• be a sequence of i.i.d. uniform random variables on
[0, 1], independent of h. The measure ATRCJ,U is given by the law of (ωτ , ωττ ′) ∈
{0, 1}E• × {0, 1}E• defined by

(ωτ (e), ωττ ′(e)) := Xc(h, e, Ue), e ∈ E•.

Remark 5.10. It is possible to improve the bound in Proposition 5.9 and remove the
square in (diam(VF ) + d∞(VF , V

c))2, see Remark 5.8.
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The above proposition follows from the analogous statement for the height function
measures, Proposition 5.5, and the fact that the ATRC measures can be sampled
locally from these measures, which is the content of Lemma 5.1.

Proof of Proposition 5.9. Let 0 < J < U satisfy sinh 2J = e−2U and c = coth 2J . Let
G = (V,E) be an L•-domain and D := DG be its associated L-domain. Recall that a
tile t ∈ L⋄ intersects D precisely if its associated primal edge et ∈ E• belongs to E,
see Figure 11. Let F ⊂ E, and set ∆ := VF ∪ V∗F .

Take h ∼ HF0,1
D;c and h′ ∼ HF0,1

c , and consider an optimal coupling of h|∆ and h′|∆.
Let (Ue)e∈E• be a sequence of i.i.d. uniform random variables on [0, 1], independent of
(h, h′). Denote the corresponding probability measure by P. Define ωτ , ωττ ′ ∈ {0, 1}E

•

from h and (Ue) as in (23). Define ω′
τ , ω

′
ττ ′ from h′ and (Ue) by setting (ω′

τ (e), ω
′
ττ ′(e)) =

Xc(h
′, e, Ue) for e ∈ E•. Then, clearly

(ωτ |F , ωττ ′|F ) ̸= (ω′
τ |F , ω′

ττ ′ |F ) implies h|∆ ̸= h′|∆.

Therefore, by the definition of an optimal coupling and by Proposition 5.5,

P
(
(ωτ |F , ωττ ′ |F ) ̸= (ω′

τ |F , ω′
ττ ′ |F )

)
< c |∆| (diam(∆) + d∞(∆,Dc))2 e−αd∞(∆,Dc)

< c′ |F | (diam(VF ) + d∞(VF , V
c))2 e−α d∞(VF ,V c),

for some c, c′, α > 0. By Lemma 5.1, the law of (ωτ , ωττ ′) is given by ATRC0,1
G;J,U .

Finally, denote the law of (ω′
τ , ω

′
ττ ′) by ATRCJ,U , and the proof is complete. □

5.4. Proof of Proposition 3.2. Finally, we derive Proposition 3.2 from Proposi-
tion 5.9 and the following one that we import from [ADG24].

Proposition 5.11. [ADG24, Proposition 1.1] Let 0 < J < U satisfy sinh 2J = e−2U .
There exists c > 0 such that, for every n ≥ 1,

ATRC1,1
Λn;J,U

(0
ωτ←→ ∂exΛn) < e−cn.

Proof of Proposition 3.2. Let σ ∈ {τ, ττ ′}. Assume without loss of generality that
n = 2k is even (the other case is treated similarly). We proceed in two steps.
Claim 1. There exists α > 0 such that

ATRC1,1
Λn;J,U

[ωσ(e)]− ATRC0,1
Λn;J,U

[ωσ(e)] ≤ e−αn.

Let (ωτ , ωττ ′) be distributed according to ATRC1,1
Λn;J,U

. Define C to be the outermost
(dual) circuit in ω∗

τ that surrounds Λk and is contained in Λ2k if it exists, otherwise
set C = ∅. By exponential decay of connection probabilities in ωτ , Proposition 5.11,
there exist c, α > 0 such that

ATRC1,1
Λn;J,U

[ωσ(e)] ≤ ATRC1,1
Λn;J,U

[
ωσ(e)

∣∣ C ̸= ∅
]
+ ATRC1,1

Λn;J,U
[Λk

ωτ←→ ∂inΛ2k]

≤ ATRC1,1
Λn;J,U

[
ωσ(e)

∣∣ C ̸= ∅
]
+ cke−αk,

where we also used the strong FKG and spatial Markov properties of the ATRC
measures (Lemma 3.1 and (SMP) in Section 3). Now, again by the strong FKG
and (SMP) and by exponential relaxation, Proposition 5.9, there exist c′, α′ > 0 such
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that
ATRC1,1

Λn;J,U

[
ωσ(e)

∣∣ C ̸= ∅
]

=
∑
C

ATRC1,1
Λn;J,U

[
ωσ(e)

∣∣ C = C
]
ATRC1,1

Λn;J,U

[
C = C

∣∣ C ̸= ∅
]

≤
∑
C

ATRC0,1
GC ;J,U [ωσ(e)] ATRC

1,1
Λn;J,U

[
C = C

∣∣ C ̸= ∅
]

≤ ATRC0,1
Λn;J,U

[ωσ(e)] + c′k2e−α′k,

where the summation is over all realisations C of C, and where GC is the largest
L•-domain of the first kind within C that contains Λk. This proves Claim 1.
Claim 2. There exists α > 0 such that

ATRC0,1
Λn;J,U

[ωσ(e)]− ATRC0,0
Λn;J,U

[ωσ(e)] ≤ e−αn.

We use the same strategy as in Claim 1. Indeed, let (ω̃τ , ω̃ττ ′) be distributed ac-
cording to ATRC0,0

Λn;J,U
. Since, by self-duality (6), ω̃∗

ττ ′ has the same law as ωτ (but on
the dual graph of Λn) from Claim 1, Proposition 5.11 allows to find a circuit in ω̃ττ ′

that surrounds Λk and is contained in Λ2k. For a realisation C of an outermost such
circuit, consider the largest L•-domain of the second kind within C that contains Λk.
The remainder of the argument is analogous to Claim 1. □

5.5. Ratio weak mixing: proof of Theorem 4. We first derive the exponential
weak mixing property from the single edge relaxation, Proposition 3.2. Given F ⊂ E•

and a measure ATRC on {0, 1}E• × {0, 1}E• , we write ATRC|F for its marginal on
{0, 1}F × {0, 1}F .

Theorem 7. Let 0 < J < U satisfy sinh 2J = e−2U . There exists c > 0 such that, for
any finite sub-graph G = (V,E) of L• and any F ⊂ E,

sup
ξτ ,ξττ ′ ,ξ

′
τ ,ξ

′
ττ ′

dTV

(
ATRC

ξτ ,ξττ ′
G;J,U |F ,ATRC

ξ′τ ,ξ
′
ττ ′

G;J,U |F
)
≤ 2

∑
e∈F

e−cd∞(e,V c),

where d∞ is the distance induced by the L∞ norm.

As a consequence, the measures ATRC
ξτ ,ξττ ′
G;J,U converge (as G ↗ L•) to a limit mea-

sure ATRCJ,U , which is independent of the choice of boundary conditions ξτ , ξττ ′ . Fur-
thermore, the limit ATRCJ,U is the unique ATRC Gibbs measure.

Proof. By strong positive association, Lemma 3.1, the supremum is attained for ξτ =
ξττ ′ = 1 and ξ′τ = ξ′ττ ′ = 0. Let Ψ be a monotone coupling of ATRC1,1

G;J,U and ATRC0,0
G;J,U ,

and let (X, Y ) =
(
(Xτ , Xττ ′), (Yτ , Yττ ′)

)
∼ Ψ. Then,

dTV

(
ATRC1,1

G;J,U |F ,ATRC
0,0
G;J,U |F

)
≤ Ψ(X|F ̸= Y |F )

≤ Ψ(Xτ |F ̸= Yτ |F ) + Ψ(Xττ ′ |F ̸= Yττ ′|F ).
Now, for σ ∈ {τ, ττ ′},

Ψ(Xσ|F ̸= Yσ|F ) ≤
∑
e∈F

Ψ(Xσ(e) ̸= Yσ(e)) =
∑
e∈F

Ψ(Xσ(e) > Yσ(e))

=
∑
e∈F

(Ψ(Xσ(e) = 1)−Ψ(Yσ(e) = 1)) ≤
∑
e∈F

e−cd∞(e,V c)

for some c > 0 by Proposition 3.2, where we also used strong positive association and
the spatial Markov property of the ATRC measures. □
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A less trivial consequence is the ratio weak mixing property, Theorem 4. This follows
from the study performed in [Ale98], relying on Theorem 7 and Proposition 5.11.

Proof of Theorem 4. This is a direct application of [Ale98, Section 5]. The reasoning
there requires two properties of the measure. The first is exponential weak mixing,
which is the content of Theorem 7. The second is the admittance of exponentially
bounded controlling regions in the sense of [Ale98], and we argue its validity as follows.

Let (ωτ , ωττ ′) ∼ ATRC
ξτ ,ξττ ′
G;J,U , fix F ⊂ E, and define

H(F ) = {e ∈ E \ F : e
ωτ←→ VF or e∗

ω∗
ττ ′←−→ V∗F}.

Conditionally on the states of the edges in H(F ), the values of the field in F and
E \ (F ∪H(F )) are independent. Moreover, the probability that e ∈ E \F belongs to
H(F ) decays exponentially in d∞(e,VF ) by uniform exponential decay in ωτ and in the
dual of ωττ ′ . The former is the content of Proposition 5.11 and the latter follows from
self-duality. One can then apply [Ale98, Section 5] to obtain the desired claim. □

6. Strong mixing

In this section we push the mixing properties derived in the previous section to
strong mixing properties for finite volume ATRC measures.

6.1. Blocked model and setup. Let l ≥ 1 be a fixed large number (it has to be taken
large as a function of J, U only) and let Λl(x) = x + {−l, . . . , l}2, (with e1 = (1, 0),
e2 = (0, 1))

El(x) = {(y, y + e1), (y, y + e2) : y ∈ Λl(x)}.
Let Γl = ((2l + 1)Z)2. Define the bocked model: for a, b ∈ {(0, 0), (0, 1), (1, 1)}E,

ϕi = ϕi(a, b) =
(
(ae, be)

)
e∈El(i)

.

It is bijective mapping. For Λ ⊂ Γl, denote El(Λ) =
⋃

i∈ΛEl(i).
For Λ ⊂ Γl

∂inΛ = {x ∈ Λ : ∃y ∈ Λc, ∥x− y∥∞ = l}.

For any F ⊂ E finite, (a, b) ∈ {(0, 0), (0, 1), (1, 1)}E, Λ ⊂ Γl finite, F ′ ⊂ ∂inF ,
introduce a probability measure on the blocked configurations:

PF,a,b,F ′

Λ (x) =

{
ATRCa,b

F (ϕ−1(x) |ωτ (e) = 0∀e ∈ F ′) if (∂exF ∪ F ′) ⊂ El(∂
inΛ),

ATRCa,b
El(Λ)

(ϕ−1(x)) else.

This is the setup of [Ott25]: the model is defined on the sites of Z2, which is the same
as Γl. We now have to say what is the set corresponding to the index set T of [Ott25].
The index will give the boundary conditions (a, b), the volume of the real (ATRC)
model F , and what subset of the boundary, F ′, is conditioned to be 0 in ωτ . We
restrict which boundary conditions and F ′ are allowed in terms of the volume finite
volume F (and which volume are allowed).

The condition will be as follows: say that the measure ATRCa,b
F ( |ωτ (e) = 0∀e ∈

F ′) has the l-path decoupling property if for any simple closed path γ in Γl, and
configurations

ξ = (ξτ , ξττ ′) ∈ {(0, 0), (0, 1), (1, 1)}El(γ)
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such that ξ contains both a simple path of edges open in ξττ ′ surrounding El(̊γ) and
a simple open path of dual edges open in ξ∗τ , with γ̊ the set of sites of Γl surrounded
by γ but not in γ, one has that if

(ωτ , ωττ ′) ∼ ATRCa,b
F

(
|ωτ (e) = 0∀e ∈ F ′, (ωτ , ωττ ′)|F∩El(γ) = ξ|F∩El(γ)

)
then (ωτ , ωττ ′)|F∩El (̊γ) and (ωτ , ωττ ′)|F∩El((̊γ∪γ)c) are independent.

In other words: the presence of open paths in both ωττ ′ and ω∗
τ in a fixed annuli

decouples the inside from the outside of the annuli.
The index set T is then the set of sequences (F, a, b, F ′) as above such that the

measure ATRCa,b
F ( |ωτ (e) = 0∀e ∈ F ′) has the l-path decoupling property. We will

refer to such (F, a, b, F ′) as having the l-path decoupling property.

6.2. Verifications of the mixing and decoupling hypotheses. [Ott25] relies on
a sequence of hypotheses, denoted Mix1, Mix2, Mar1, Mar2, Mar3. We check that
these hypotheses hold in out setup.

Mixing hypotheses.
The hypotheses Mix1 and Mix2 are exponential mixing hypotheses which are weaker

version of the ratio weak mixing property (Theorem 4).
Markov-type hypotheses.
Let t = (F, a, b, F ′) be an element of our index set (volume, b.c., and constraint set

with the decoupling path property).
The hypotheses Mar1, Mar2, Mar3 ask for a family of local events, Mai,Mati, i ∈ Γl.

With our notations: local means Mai depends only on El(∆1(i)), with ∆1(i) = {j ∈
Γl : ∥j − i∥∞ ≤ l}, and Mati depends only on El(i). They should satisfy

(1) infi infa′,b′ ATRC
a′,b′

El(∆1(i))
(Mai) is close enough to 1,

(2) the probability of Mati is positive uniformly over i, t and the configuration
outside of El(i),

(3) if γ is a simple closed path in Γl, then any element of
⋂

i∈γ:∆1(i)⊂F Mai ∩⋂
i∈γ:∆1(i) ̸⊂F,El(i)∩F ̸=∅Mati implies the presence of a pair of decoupling path in

F ∩ El(γ),
(4) if a configuration is in Mai, changing its value on El(j), j ∈ ∆1(i), for an

element of Matj still gives a configuration in Mai.

The relevant local events in our setup are

• Mai is the event that El(∆1(i))\El(i) contains both an open path surrounding
El(i) in ωττ ′ , and an open dual path surrounding El(i) in ω∗

τ ,
• Mati is the event that all edges of F ∩ El(i) are open in ωττ ′ and closed in ωτ .

The first condition is a direct consequence of weak mixing and of exponential decay
connectivities in ω∗

ττ and in ωτ . This requires l large enough. The second follows
from finite energy. The third is the required path decoupling property of the measure
P t
Λ. The fourth is a direct consequence of our choices: Mai is increasing in ωττ ′ and

decreasing in ωτ .

6.3. Strong mixing. We need a bit of notation to state the result we will use later.
For L ≥ 1 fixed, let ΛL(x) = x+ {−L, . . . , L}2. Let ΓL = ((2L+1)Z)2. Let Xi, Yi, i ∈
ΓL be an independent family of random variables with Xi Bernoulli R.V. of parameter
p and Yi Bernoulli R.V. of parameter q. Define φ : Z2 → ΓL via φ(x) = i if x ∈ ΛL(i).
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For Λ ⊂ Z2, define

[Λ]in = {x : d∞(x,Λc) > 2L},
[Λ]ext = {x : d∞(x,Λ) > 2L}, [Λ]bnd = Z2 \ ([Λ]in ∪ [Λ]ext).

Let PΛ;L,p,q be the law of the (site) bloc-percolation random variable ω defined as

ωx =


Xi if φ(x) = i, and x ∈ [Λ]in,

Yi if φ(x) = i, and x ∈ [Λ]bnd,

0 else.

Then, the main result we obtain from [Ott25] is the next Theorem. To get it, apply
the main Theorem of [Ott25] to the family Pt

Λ defined in section 6.1: the necessary
hypotheses for applying the Theorem are verified in section 6.2.

Theorem 8. Let l be as in section 6.1. For any p > 0, there are L < ∞ and q < 1
such that for any (F, a, b, F ′) having the l-path decoupling property (recall F ′ ⊂ ∂inF ),
any disjoint, connected F1, F2 ⊂ F , and any (f, g), (f ′, g′) ∈ {(0, 0), (0, 1), (1, 1)}F1

dTV

(
Pt

(
· | (ξτ , ξττ ′)|F1 = (f, g)

)
, Pt

(
· | (ξτ , ξττ ′)|F1 = (f ′, g′)

))
≤ PVF ;L,p,q

(
[VF1 ]bnd ↔∗ [VF2 ]bnd

)
where ↔∗ means ∗-connections (connections with ∥ ∥∞ nearest-neighbours), and

Pt(·) = ATRCa,b
F

(
·
∣∣ωτ (e) = 0 ∀e ∈ F ′).

Remark 6.1. We will systematically apply this result in cases where [VF ]bnd is a very
elongated one dimensional object, so exponential decay of the connection probability
can be obtained by a coarse-graining argument as in [OV18, Lemma 3.2].

7. Random Walk picture in the ATRC

We start this section by introducing the objects necessary to the development of
the “Ornstein-Zernike theory” (renewal picture of connection probabilities). We follow
the general strategy used in [CI02, CIV03, CIV08, OV18, AOV24], most results will
be imported when their proof is a repetition of existing arguments. To keep notations
readable, we will use the following short-hand throughout this section:

Φ ≡ ATRCJ,U , Φa,b
Λ ≡ ATRCa,b

Λ;J,U ,

where ATRCJ,U is the unique infinite-volume measure for the ATRC model (recall
Proposition 5.9). The theorems that will be used in other sections will be stated with
the notation matching the rest of the paper. Moreover, again to lighten notations, all
connections are understood to be in ωτ when not explicitly stated otherwise. We will
denote C0 the cluster of 0 in ωτ .

7.1. Decay rate, Cones, and Diamonds. Start by introducing some objects.
Norm induced by the decay rates and associated sets. For s ∈ S1, define

ν(s) = − lim
n→∞

1
n
lnΦ(0↔ ns). (26)

Existence of the limit follows in the standard fashion by Fekete’s Lemma, using sub-
additivity which follows from FKG inequality. We now extend ν to R2 by positive
homogeneity of order one: for any s ∈ S1 and r ≥ 0, define

ν(r · s) := r · ν(s).
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Using existence of the limit and the FKG inequality, one can show that ν is a non-
degenerate norm as soon as it is non-zero: ν is positive homogeneous by definition;
exponential decay of connection probabilities in Φ (the ATRC model) implies posi-
tivity; the FKG inequality for Φ implies the triangular inequality for ν. See [Ale01,
section 2] for details. Clearly, ν inherits the symmetries of the lattice, that is axial
and diagonal reflections and rotations by π/2. From these symmetry considerations,
one has that for any s ∈ S1,

1√
2
ν(e1) ≤ ν(s) ≤

√
2ν(e1),

with e1 = (1, 0). Moreover, one has

Φ(0↔ x) = e−ν(x)(1+o(1)). (27)

As ν is a norm, there are two convex sets naturally associated to it: the equi-decay
set U , and the convex set of which ν is the support function, W .

U = {x ∈ Rd : ν(x) ≤ 1}, W =
⋂
s∈S1
{x ∈ Rd : x · s ≤ ν(s)}. (28)

It is easy to see that are dual to each other (i.e.: W is the equi-decay set of the norm
dual to ν, and the dual norm is the support function of U). We say that (s, t) ∈ S1×∂W
is a dual pair if ν(s) = t · s. From the definitions, one has, for any x ∈ Rd,

ν(x) = max
t∈∂W

t · x. (29)

We refer to [Roc70] for details on convex duality. From the last display, it is also easy
to see that W is the closure of the convergence domain of

G(t) =
∑
x∈Z2

Φ(0↔ x)et·x. (30)

Cones and Diamonds. Let t ∈ ∂W , δ ∈ (0, 1). Let us introduce the geometric
objects used in the interface study. We first define the cones and the associated
diamonds:

Y◀
t,δ :=

{
x ∈ R2 : x · t ≥ (1− δ)ν(x)

}
, Y▶

t,δ := −Y◀
t,δ,

Diamondt,δ(u, v) := (u+ Y◀
t,δ) ∩ (v + Y▶

t,δ).

As δ goes to 1, the cone Y◀
t,δ converges to the half-plane that contains t and whose

boundary is orthogonal to t. As δ goes to 0, the cone Y◀
t,δ converges to the convex

cone generated by the directions dual to t. The latter set is a line when ν is strictly
convex.

Let V ⊂ Z2. We will say that V is:
• (t, δ)-forward-confined if there exists u ∈ V such that V ⊂ u + Y◀

t,δ. When it
exists, such a u is unique; we denote it by f(V ).
• (t, δ)-backward-confined if there exists v ∈ V such that V ⊂ v + Y▶

t,δ. When it
exists, such a v is unique; we denote it by b(V ).
• (t, δ)-diamond-confined if it is both forward- and backward-confined.

We will say that v ∈ V is a (t, δ)-cone-point of V if

V ⊂ v + (Y▶
t,δ ∪ Y◀

t,δ).

We denote CPtst,δ(V ) the set of cone-points of V . When speaking about cone-points
of graphs, we mean cone-points of their vertex set.
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We call a graph with a distinguished vertex a marked graph. The distinguished
vertex is denoted v∗. Define

• The sets of confined pieces (all are sets of finite connected sub-graphs of
(Z2,E)):

BL(t, δ) = {γ marked backward-confined with v∗ = 0},
BR(t, δ) = {γ marked forward-confined with f(γ) = 0},

A(t, δ) = {γ diamond-confined with f(γ) = 0}.
To fix ideas we shall, unless stated otherwise, think of A as of a subset of BL,
that is, by default the vertex f(γ) = 0 is marked for any γ ∈ A. Note that A
can alternatively be viewed as subset of BR by marking b(γ).
• The displacement along a piece:

X(γ) :=

{
b(γ) if γ ∈ BL, in particular, if γ ∈ A,
v∗ if γ ∈ BR.

(31)

• The concatenation operation: for γ1 ∈ BL and γ2 ∈ BR define the concatena-
tion of γ2 to γ1 as

γ1 ◦ γ2 = γ1 ∪ (X(γ1) + γ2).

The concatenation of two graphs in A is an element of A, the concatenation of
a graph in A to an element of BL is an element of BL, and the concatenation
of a element in BR to an graph in A is an element of BR. The displacement
along a concatenation is the sum of the displacements along the pieces.

These sets can be seen as equivalence classes of general marked forward/backward/diamond
confined graphs modulo translations. A general such graph, γ′

L, γ
′
R, γ

′, can then be re-
covered uniquely from an element γL, γR, γ of BL,BR,A by specifying the translation
vector.

7.2. Main result of the section. Our main goal is to prove the following “coupling
with random walk” in infinite volume for long connections in the ATRC model. Recall
that e1 = (1, 0), e2 = (0, 1) are the canonical basis vectors.

Theorem 9. Let s0 ∈ S1, t ∈ ∂W dual to s0 and δ ∈ (0, 1) be such that the interior
of Y◀

t,δ contains an element of {±e1,±e2}. Then, there exist constants C, C1, C2 ≥
0, c1, c2 > 0, ϵ > 0 and probability measures pL, p, pR on BL(t, δ), BR(t, δ), A(t, δ)
respectively such that

(1) for any x ∈ Z2 such that x · s0 ≥ (1− ϵ)|x|, and any f real valued function of
the cluster of 0,∣∣∣C ∑

γL,γR

pL(γL)pR(γR)
∑
k≥0

∑
γ1,...,γk

f(γ̄)1X(γ̄)=x

k∏
i=1

p(γk)

− et·xATRCJ,U

(
f(C0)10

ωτ←→x

)∣∣∣ ≤ C1∥f∥∞e−c1|x|, (32)

where γ̄ = γL ◦ γ1 ◦ . . . ◦ γk ◦ γR, and the sums are over γL ∈ BL, γR ∈ BR,
and γ1, . . . , γk ∈ A;

(2) for q ∈ {pL, pR, p},
q
(
X(γ) ≥ ℓ

)
≤ C2e

−c2ℓ, (33)

q
(
γ
)
≥ α|γ|+1, (34)
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for some α > 0,
(3) there is a > 0 such that ∑

γ∈A(t,δ)

p(γ)X(γ) = as0. (35)

Moreover, ∂U , ∂W are analytic manifolds and the norm ν is uniformly strictly
convex, that is U is strictly convex and ∂U has uniformly lower bounded curvature.
In particular, each direction s ∈ S1 has a unique dual vector ts ∈ ∂W and there exist
κ > 0 such that the following sharp triangle inequality holds:

ν(x) + ν(y)− ν(x+ y) ≥ κ(|x|+ |y| − |x+ y|).

The proof of Theorem 9 spans over the remainder of this section. It is concluded in
the end of section 7.7.

Remark 7.1. We use the value of J, U through only two inputs: the exponential decay
in ωτ , and the mixing of Theorem 4 which follows from edge relaxation (Proposi-
tion 3.2) and exponential decay in ωτ and ω∗

ττ ′. In particular, if one can extend these
properties beyond the self-dual line (part of which is done in [ADG24]), Theorem 9
extends directly.

7.3. The coarse-graining procedure. The first step is to analyse the typical geom-
etry of long connections. The analysis of [CIV08, AOV24] is based on a coarse-graining
of the cluster of 0. Introduce the cells: for K, k ≥ 1 and A ⊂ Z2,

[A]k =
⋃
x∈A

(x+ {−k, . . . , k}2),

∆K = KU ∩ Z2, ∆′
K = [∆K ]ln(K)2 .

The scale parameter K will be picked large enough in the course of the proof.
As in [CIV08], we then coarse-grain the cluster of 0 using the next algorithm. Denote

∆ ≡ ∆K and ∆′ ≡ ∆′
K . For C a realization of C0 define Sk(C) via the next algorithm.

Set v0 = 0, SkV = {v0}, SkE = ∅, V = ∆′, i = 1;

while A =
{
z ∈ ∂exV : z

(z+∆)\V←−−−−→ ∂in(z +∆)
}
̸= ∅ do

Set vi = minA;
Let v∗ be the smallest v ∈ SkV such that vi ∈ ∂in(∆ + v∗);
Update SkV = SkV ∪ {vi}, SkE = SkE ∪ {{v∗, vi}}, V = V ∪ (vi +∆′),
i = i+ 1;

end
return (SkV , SkE);

Algorithm 1: Coarse graining of a cluster containing 0.
Denote Sk(C) = (SkV (C), SkE(C)) the output of Algorithm 1 applied to C ∋ 0.

This is a tree with vertices that are elements of Z2. Denote by |Sk(C)| the number of
vertices in the said tree.

7.4. Energy-Entropy estimates. The next step is to establish energy bounds which
control the probability to see a given tree as the skeleton of the cluster.

Lemma 7.2. For any 0 ∈ A ⊂ Z2, and K ≥ 1,

Φ1,1
[∆K∩A]

ln(K)2
(0

∆K∩A←−−→ ∂in∆K) ≤ e−K(1+oK(1)). (36)
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Where we used oK(1) for a quantity that goes to 0 as K goes to ∞. Note that the
wanted probabilities are zero whenever A ∩∆K does not contain a path going from 0
to ∂in∆K .

Proof. By the definition of U , the ratio weak mixing property (Theorem 4) and mono-
tonicity:

Φ1,1
[∆K∩A]

ln(K)2
(0

∆K∩A←−−→ ∂in∆K) ≤ (1 + CK2e−c′ ln(K)2)Φ0,0
[∆K∩A]

ln(K)2
(0

∆K∩A←−−→ ∂in∆K)

≤ 2Φ(0
∆K←→ ∂in∆K)

≤ C
∑

x∈∂in∆K

e−ν(x)(1+oK(1)) = C|∂in∆K |e−K(1+oK(1))

as soon as K is large enough. □

As a direct consequence of Lemma 7.2 and of the definition of the coarse-graining
procedure, one gets the following:

Lemma 7.3 (Energy bound). There exists K0 ≥ 0 such that, for any K ≥ K0, and
any T ⊂ Z2,

Φ
(
SkV (C0) = T

)
≤ e−K|T |(1+oK(1)),

where the oK is uniform over T

Indeed, every new vertex of the tree away from the boundary induces a connection
of the form (36) in the complement of the neighbourhood of the previously explored
vertices. We do not provide further details, see for example [CIV08, (2.2)] for the
implementation of the bound.

Recall that Sk(C) is a tree rooted at 0. Denote by TreeN the set of all possible
values of Sk(C) if |Sk(C)| = N . We now state a general combinatorial lemma that
bounds the size of TreeN.

Lemma 7.4 (Entropy bound). There exists a universal c > 0 such that

|TreeN| ≤ ec ln(K)N .

This Lemma follows from the fact that, for some C ≥ 0, the size of TreeN is smaller or
equal to the number of N -vertex connected sub-trees of the CK2-regular tree contain-
ing 0. The latter is bounded by ec ln(K)N for some c > 0 by Kesten’s argument [Kes82,
page 85].

7.5. Input from [CIV08, CIV03]: skeleton and cluster cone-points. The main
result that we import from [CIV08, CIV03] is [CIV08, Theorem 2.1] that describes a
typical geometry of skeletons ([CIV08] builds on [CIV03]). The result in [CIV08] is
stated for the FK-percolation, but the proof is general and relies only on Lemmata 7.3
and 7.4.

Lemma 7.5 (Skeleton Cone-points). Let C be a random finite connected subset of Z2

containing a fixed vertex v defined on some probability space (Ω,F , P ). Suppose that

P (Sk(C − v) = T ) ≤ e−K|T |(1+oK(1)).

Then, for any δ > 0, there are c1, c2 > 0, K0 ≥ 0 such that, for any K ≥ K0, t ∈ ∂W,
w ∈ Z2,

et·(w−v)P
(
w ∈ C, |CPtst,δ(Sk(C − v))| ≤ c1|w − v|/K

)
≤ e−c2|w−v|.

Moreover, by monotonicity, c1, c2, K0 can be taken uniform over δ ≥ δ0 > 0.
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The second result we import is a simple but notationally heavy use of finite energy.
One can find two different implementations of this argument in [CIV08, section 2.9],
and [AOV24, section 6.1]. Introduce a small variation on the notion of cone-points
which will be convenient later (one could work directly with cone-points, but the
equations become a bit heavier).

Recall e1 = (1, 0), e2 = (0, 1).

Definition 6 (Regular Cone-points). Let C = (V,E) be a connected sub-graph of
(Z2,E). Say that v ∈ V is a regular (t, δ)-cone-point of C if it is a (t, δ)-cone-point of
V and

• if {±e1}∩Y◀
t,δ ̸= ∅: {v, v+e1}, {v, v− e1} ∈ E and {v, v+e2}, {v, v− e2} /∈ E,

• if {±e2} ∩ Y◀
t,δ ̸= ∅ and {±e1} ∩ Y◀

t,δ = ∅: {v, v + e2}, {v, v − e2} ∈ E and
{v, v + e1}, {v, v − e1} /∈ E.

Denote rCPtst,δ(C) the set of (t, δ)-regular cone-points of C.

Note than when Y◀
t,δ contains exactly one element of {±e1,±e2}, all cone-points are

necessarily regular.

Lemma 7.6 (Cluster Cone-points). Let (Ω,F , P ) be probability space, on which the
following is defined. Let v ∈ Z2 be a vertex and ω be a random bond percolation
configuration on Z2, that is a random variable with values in {0, 1}E. The cluster of v
in ω is denoted by C = C(ω) Suppose that

• ω has uniform finite energy (for opening and closing edges): for e ∈ E, let Fec

be the sigma-algebra generated by (ωf )f ̸=e. Then, there is ϵ ∈ (0, 1) such that
for every e ∈ E,

ϵ < E(ωe | Fec) < 1− ϵ,

P -almost surely.
• the conclusion of Lemma 7.5 holds.

Then, for any δ > 0, there are c′1, c
′
2 > 0, L0 ≥ 1 such that, for any t ∈ ∂W such

that the interior of Y◀
t,δ contains an element of {±e1,±e2}, and any w ∈ Z2∩Y◀

t,δ with
|w − v| ≥ L0,

et·(w−v)P
(
w ∈ C, |rCPtst,δ(C)| ≤ c′1|w − v|

)
≤ e−c′2|v−w|.

By monotonicity, c′1, c′2, L0 can be taken uniform over δ ≥ δ0 > 0.

The idea for going from Lemma 7.5 to Lemma 7.6 is simple: when v ↔ w, up to
an exponentially small error, there must be at least c|v − w|/K cone-points of the
skeleton by Lemma 7.5. Up to anther exponentially small error, a positive fraction of
these cone-points must then be regular cone-points of C by uniform finite energy.

Remark 7.7. Note that both Lemmas hold directly when w is not in v + Y◀
t,δ: then

P (w ∈ C) ≤ e−ν(w−v)(1+o(1)) but t · (w − v) − ν(w − v) ≤ −δν(w − v) by definition
of Y◀

t,δ.

7.6. Cone-points and pre-renewal structure. The first needed result is the pres-
ence of many regular cone-points.

Theorem 10. Let δ ∈ (0, 1). There exist C ≥ 0, c1, c2 > 0 such that for any t ∈ ∂W
such that the interior of Y◀

t,δ contains an element of {±e1,±e2}, and any x ∈ Z2,

et·xΦ
(
0↔ x, |rCPtst,δ(C0)| ≤ c1|x|

)
≤ Ce−c2|x|.
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Proof. The result follows from Lemmas 7.5, and 7.6: Lemma 7.3 provides the required
bound on the probability of a given skeleton, and the model has finite energy, which
are the needed hypotheses for the Lemmas. As in these Lemmas, the claim is trivial
when x /∈ Y◀

t,δ. □

We now fix t0 ∈ ∂W , δ ∈ (0, 1) such that the interior of Y◀
t0,δ

contains and element
of {±e1,±e2}, and we set

rCPts ≡ rCPtst0,δ, Y◀ ≡ Y◀
t0,δ

, Y▶ ≡ Y▶
t0,δ

,

BL ≡ BL(t0, δ), BR ≡ BR(t0, δ), A ≡ A(t0, δ).
(37)

The idea is now to write C0 as a concatenation of “irreducible graphs” by splitting
it at its regular cone-points. This will lead to a structure that, graphically, looks like
a renewal structure. The last step will then be to extract a real renewal structure (at
the level of the measure) from this graphical one. To this end, introduce the notion of
irreducible graphs. Say that

• A marked backward-confined graph (γL, v
∗) is reducible if the diamond

Diamond(v∗,b(γL)) contains a regular cone-point of γL and irreducible if not.
I.e.: (γL, v

∗) is irreducible if
Diamond(v∗,b(γL)) ∩ rCPts(γL) = ∅.

• A marked forward-confined graph (γR, v
∗) is reducible if the diamond

Diamond(f(γR), v
∗) contains a regular cone-point of γR and irreducible if not.

I.e.: (γR, v
∗) is irreducible if

Diamond(f(γR), v
∗) ∩ rCPts(γR) = ∅.

• A diamond-confined graph γ is reducible if it contains a regular cone-point,
and irreducible if not. I.e.: γ is irreducible if

rCPts(γ) = ∅.

In words: irreducible graphs are those that cannot be written as the concatenation of
two non-trivial graphs, so that the concatenation point is a regular cone-point. We
will denote the sets of irreducible marked graphs in, respectively, BL, BR, A by

Bir

L, Bir

R, Air.

For x ∈ Y◀ ∩ Z2, and a connected component C0 ∋ 0, x containing at least two
regular cone points v1, v2 with 0 ∈ vi+Y▶, x ∈ vi+Y◀, we can introduce the splitting
into irreducible components:

C0 = ηL ⊔ η1 ⊔ · · · ⊔ ηM ⊔ ηR,

where M ≥ 1, (ηL, 0), (ηR, x), η1, . . . , ηM are all irreducible, confined, (marked) graphs,
and ⊔ means disjoint union of edges (there are sites overlap at cone-points). Now, as
mentioned in the end of section 7.1, there is a bijection between pairs (γ̃, v) ∈ A× Z2

and diamond-confined connected graphs (translate γ̃ by v to obtained the graph γ =
v + γ̃). Similar considerations hold for marked forward/backward confined connected
graphs. In particular, for ηi in the above decomposition, there is a unique wi ∈ Z2 and
a unique η̃i ∈ Air such that ηi = wi + η̃i. Similarly for ηL, ηR. As the marked point of
ηL is 0, one has directly

wL = 0, w1 = X(η̃L), w2 = X(η̃L ◦ η̃1), . . . wR = X(η̃L ◦ η̃1 ◦ . . . ◦ η̃M),

and the equivalent writing of C0:
ηL ⊔ η1 ⊔ · · · ⊔ ηM ⊔ ηR = η̃L ◦ η̃1 ◦ . . . ◦ η̃M ◦ η̃R, X(η̃L ◦ η̃1 ◦ . . . ◦ η̃R) = x,



44 MORITZ DOBER, ALEXANDER GLAZMAN, AND SÉBASTIEN OTT

with η̃1, . . . , η̃M ∈ Air, η̃L ∈ Bir
L, and η̃R ∈ Bir

R.
By our definition of “regular cone points”, for any η̃ ∈ Air, there is only one edge in

η̃ containing f(η̃), and the same for b(η̃). Denote these edges fe(η̃),be(η̃) (and define
similarly be(η̃L) and fe(η̃R)).

For η̃, η̃L, η̃R as above, and v ∈ Z2, introduce the percolation events Av(η̃) to be the
event that

• the edges in (v + η̃ \ {fe(η̃),be(η̃)}) are open in ωτ ,
• v + fe(η̃), and v + be(η̃) are open in ωττ ′ and closed in ωτ ,
• ∂ex(v + η̃) are closed in ωτ .

Define similarly Av(η̃L), Av(η̃R).
Now, swapping an edge e which links two clusters in ωτ from open to close generate

a weight 2121

2220
= 1 as edges have weight two (21 in the numerator), as do have clusters

(21 in the numerator), and closing the edge (20 in the denominator) makes the config-
uration pass from one to two distinct clusters (22 in the denominator). Every edge of
the form be, fe always separates two distinct clusters of ωτ , so one has

Φ(C0 = ηL ⊔ η1 ⊔ · · · ⊔ ηM ⊔ ηR) = Φ
(
AwL

(η̃L), Aw1(η̃1), . . . , AwR
(η̃R)

)
.

Slightly abusing notation, we will write

η̃L ◦ η̃1 ◦ . . . ◦ η̃M ◦ η̃R ≡ AwL
(η̃L) ∩ Aw1(η̃1) ∩ · · · ∩ AwR

(η̃R),

and
Φ(η̃ | η̃L ◦ η̃1 ◦ . . . ◦ η̃k) ≡ Φ

(
AX(η̄)(η̃) | η̃L ◦ η̃1 ◦ . . . ◦ η̃k

)
where η̄ = η̃L ◦ η̃1 ◦ . . . ◦ η̃k.

This leads to the following conditional probability decomposition:

Φ(η̃L ◦ η̃1 ◦ . . . ◦ η̃M ◦ η̃R) = Φ(η̃L)Φ(η̃1 | η̃L)Φ(η̃2 | η̃L ◦ η̃1) . . . . (38)

Let us describe informally the last step: one has represented the probability of
a given cluster participating to the event 0 ↔ x as a product of dependent kernels
(which are not probability kernels). The idea is now to represent this product of
dependent kernels as an alternative product of independent (factorized) kernels defined
on diamond-confined graphs, which will then be suitably normalize by a factor et0·X(γ)

to obtain probability kernels. We will strongly borrow from [AOV24], so we only
present the necessary modifications and refer to the relevant section once everything
is in place.

7.7. Mixing for weights and renewal structure. We will use the same procedure
as [AOV24, section 7] with the tricks from [OV18, Appendix C] to compensate for the
lake of monotonicity in the conditional kernels. We only describe the needed inputs,
and will refer to [AOV24, section 7] once we arrive at a stage where the remaining
arguments is a copy-pasting of [AOV24, section 7].

We start by proving a mixing result for the conditional probabilities.

Lemma 7.8. Let δ ∈ (0, 1), t0 ∈ ∂W be the values fixed in (37), and use the notations
of (37). Then, there exist ρ > 0, C ≥ 0, c > 0, such that

• for every γ ∈ Bir
R, one has that

inf
n≥0

inf
η̃0∈Bir

L

inf
η̃1,...,η̃n∈Air

Φ(η̃ | η̃0 ◦ . . . ◦ η̃n) ≥ ρ|η̃|; (39)
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• for any n, k, k′ ≥ 0, any η̃0, η̃
′
0 ∈ Bir

L, any η̃ ∈ Bir
R ∪ Air, and any

η̃1, . . . , η̃k+n, η̃
′
1, . . . , η̃k′ ∈ Air∣∣∣ Φ(η̃ ∣∣ η̃0 ◦ η̃1 . . . ◦ η̃k ◦ η̃k+1 . . . ◦ η̃k+n

)
Φ
(
η̃
∣∣ η̃′0 ◦ η̃′1 . . . ◦ η̃′k′ ◦ η̃k+1 . . . ◦ η̃k+n

) − 1
∣∣∣ ≤ Ce−cn. (40)

Proof. The first point is finite energy. Focus on the second. Let η̃′k′+i ≡ η̃k+i for
i = 1, . . . n. For l ≥ 1, let

vl = X(η̃l), v′l = X(η̃′l), wl = X(η̃0 ◦ η̃1 . . . ◦ η̃l), w′
l = X(η̃′0 ◦ η̃1 . . . ◦ η̃′l).

Let also
ul = wk+l − wk = X(η̃k+1 ◦ . . . ◦ η̃k+l) = w′

k′+l − w′
k′ .

For v ∈ Z2, introduce the (translations of) the events corresponding to a given chain
of irreducible graphs:

BL,v = Av(η̃0) ∩
k⋂

i=1

Av+wi−1
(η̃i), B′

L,v = Av(η̃
′
0) ∩

k′⋂
i=1

Av+w′
i−1

(η̃′i),

Bv =
n⋂

l=1

Av+ul
(η̃k+l), BR,v = Av+un(η̃).

Now, using translation invariance of Φ,

Φ
(
η̃
∣∣ η̃0 ◦ . . . ◦ η̃k+n

)
Φ
(
η̃
∣∣ η̃′0 ◦ . . . ◦ η̃′k′+n

) =
Φ
(
BR,wk

∣∣BL,0 ∩Bwk

)
Φ
(
BR,w′

k

∣∣B′
L,0 ∩Bw′

k′

) =
Φ
(
BR,0

∣∣BL,−wk
∩B0

)
Φ
(
BR,0

∣∣B′
L,−w′

k′
∩B0

)
=

Φ
(
BR,0 ∩BL,−wk

∣∣B0

)
Φ
(
BR,0

∣∣B0

)
Φ
(
BL,−wk

∣∣B0

)Φ(BR,0

∣∣B0

)
Φ
(
B′

L,−w′
k′

∣∣B0

)
Φ
(
B′

L,−w′
k′
∩BR,0

∣∣B0

) . (41)

Now, BR,0 is supported on the edges with at least one endpoint in un + Y◀, denoted
E◁(un), whilst BL,−wk

, B′
L,−w′

k′
are supported on the edges with at least one endpoint

in −Y◀, denoted E▷. The claim will follow from suitable exponential ratio mixing
of P (·) := Φ(· |B0). Divide the proof of ratio mixing into two claims. We start by
proving mixing of P . We will use the following observation: let γ be the simple closed
dual path surrounding the connected graph η̃1 ◦ . . . ◦ η̃n. Let ∗γ be the set of primal
edges that are crossed by γ, and denote Vγ the set of sites surrounded by γ. Then,

P |E\EVγ
= ATRC1,1

E\EVγ

( ∣∣ωτ |∗γ = 0
)
= ATRC0,1

E\EVγ

( ∣∣ωτ |∗γ = 0
)
, (42)

where ωτ |∗γ is the restriction of ωτ to ∗γ.

Claim 1. There exist C ≥ 0, c > 0 such that, for any n ≥ 0, any η̃1, . . . , η̃n ∈ Air,
any finite sets of edges F1 ⊂ E▷, F2 ⊂ E◁, any F1-measurable event A and any F2-
measurable event B,

|P (A,B)− P (A)P (B)| ≤ CP (A)
∑
e∈F1

∑
f∈F2

e−cd(e,f),

where P is defined as above the claim.

Proof. Looking at (42), P |E\EVγ
has the l-path decoupling property of section 6.1. One

can therefore use Theorem 8 to obtain the claim (see remark 6.1 after Theorem 8 for
how to get from the statement of Theorem 8 to the present exponential decay). □

We then turn this into ratio mixing using Appendix A.1.
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Claim 2. There exists C ≥ 0, c > 0 such that for any n ≥ 0, any v ∈ Z2, any
η̃1, . . . , η̃n ∈ Air with X(η̃1 ◦ . . . ◦ η̃n) = v, any F▷ ⊂ E▷, F◁ ⊂ E◁(v) finite, and any
α ∈ {(0, 0), (0, 1), (1, 1)}F◁,

sup
ξ,ξ′

∣∣∣ P (XF◁ = α |XF▷ = ξ)

P (XF◁ = α |XF▷ = ξ′)
− 1
∣∣∣ ≤ Ce−c|v|,

where the sup is over ξ, ξ′ having positive probability, P is as defined before Claim 1,
and XF = (ωτ |F , ωττ ′|F ).

Proof. The proof will be an application of Lemma A.1. Recall (42). We first prove
the claim for |v| large (larger than some number depending on the angular aperture
of Y◀). We also implicitly work in a large finite volume, ΛN = {−N, . . . , N}2, with
0, 1 boundary conditions and take limits afterwards (everything being uniform over
the volume).

Let ϵ0 > 0, and let ∆ be the set of edges with an endpoint in ΛN \ (23v + Y
◀
t0,δ+ϵ0

∪
1
3
v + Y▶

t0,δ+ϵ0
). We apply Lemma A.1 with

• Ω1 = ({0, 1}2)F◁ , Ω2 = ({0, 1}2)∆,
• µ = Φ( | η1 ◦ . . . ◦ ηn, XF▷ = ξ)|F◁⊔∆, ν = Φ( | η1 ◦ . . . ◦ ηn, XF▷ = ξ′)|F◁⊔∆,
• D ⊂ Ω2 is the event that there is an open path in ωττ ′ from the top boundary

of ΛN to its bottom boundary staying in ∆, and that there is a dual path of
open edges in ω∗

τ from the top boundary of ΛN to its bottom boundary using
only edges dual to edges in ∆.

The hypotheses of Lemma A.1 hold with ϵ = e−c|v| (when |v| is large enough) by the
strong mixing property of Φ( | η1 ◦ . . . ◦ ηn), see Claim 1, and the uniform exponential
decay of ω∗

ττ ′ , ωτ .
Remains to deal with ∥v∥∞ less than some constant K. Let M ≥ K be some

fixed large number. Then, for any η̃1, . . . , η̃n with X(η̃1 ◦ . . . ◦ η̃n) = v, and ξ, ξ′ ∈
{(0, 0), (0, 1), (1, 1)}F▷ , α ∈ {(0, 0), (0, 1), (1, 1)}F◁ , one can find events AL, A

′
L, BL, B

′
L,

and A0, AR, such that

{XF▷ = ξ} ∩ {XF◁ = α} ∩ η̃1 ◦ . . . ◦ η̃n = AL ∩BL ∩ A0 ∩ AR,

{XF▷ = ξ′} ∩ {XF◁ = α} ∩ η̃1 ◦ . . . ◦ η̃n = A′
L ∩B′

L ∩ A0 ∩ AR,

{XF▷ = ξ} ∩ η̃1 ◦ . . . ◦ η̃n = AL ∩BL ∩ A0,

{XF▷ = ξ′} ∩ η̃1 ◦ . . . ◦ η̃n = A′
L ∩B′

L ∩ A0,

and with AL, A
′
L supported on F▷ \ EΛM

, AR supported on F◁ \ EΛM
, and A0, BL, B

′
L

supported on EΛM
(here, we used η̃1◦. . .◦ η̃n to mean the associated percolation event).

Then, by the ratio weak mixing property of Φ (Theorem 4) and finite energy (for M
large enough),

2−1 ≤ Φ(AL, AR)

Φ(AL)Φ(AR)
≤ 2, 2−1 ≤ Φ(AL, A

′
R)

Φ(AL)Φ(A′
R)
≤ 2,

Φ(BL, A0 |AL),Φ(B
′
L, A0 |A′

L, AR) ≥ e−cM2

,

with c > 0. Putting these together,

Φ(XF◁ = α | η̃1 ◦ . . . ◦ η̃n, XF▷ = ξ)

Φ(XF◁ = α | η̃1 ◦ . . . ◦ η̃n, XF▷ = ξ′)
=

Φ(AL, BL, A0, AR)Φ(A
′
L, B

′
L, A0)

Φ(AL, BL, A0)Φ(A′
L, B

′
L, A0, AR)

≤ Φ(AL, AR)Φ(A
′
L)

Φ(AL)Φ(BL, A0 |AL)Φ(A′
L, AR)Φ(B′

L, A0 |A′
L, AR)

≤ 4e2cM
2

,
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which concludes the proof. □

We can now apply Claim 2 to (41) to obtain the result by noting that the displace-
ment of η̃1 ◦ . . . ◦ η̃n is, at least, a strictly positive multiple of n. □

For k > l ≥ 1, η̃0 ∈ Bir
L, η̃1, . . . , η̃k−1 ∈ Air, and η̃ ∈ Air ∪Bir

R, set

a0(η̃ | η̃0, . . . , η̃k−1) ≡ a0(η̃) = inf
n≥0

inf
ζ0∈Bir

L

inf
ζ1,...,ζn∈Air

Φ
(
η̃
∣∣ ζ0 ◦ ζ1 ◦ . . . ◦ ζn),

ak(η̃ | η̃0, . . . , η̃k−1) = Φ(η̃ | η̃0 ◦ . . . ◦ η̃k−1),

and

al(η̃ | η̃0, . . . , η̃k−1) ≡ al(η̃ | η̃k−l, . . . , η̃k−1)

= inf
n≥0

inf
ζ0∈Bir

L

inf
ζ1,...,ζn∈Air

Φ
(
η̃
∣∣ ζ0 ◦ . . . ◦ ζn ◦ η̃k−l ◦ . . . ◦ η̃k−1

)
In worlds: ak records the minimal mass given by a conditional probability to an

irreducible graph for a fixed frozen “recent” past, and any “less recent” possible past.
Introduce then the mass increments (pk has the same definition domain as ak)

p0 = a0, pk = ak − ak−1.

Note that by definition of the ak’s, the pk’s are always non-negative. This property is
what compensates the lake of monotonicity of Φ(η̃ | η̃0◦. . .◦η̃k−1), which is the quantity
corresponding to q(γk | γ0, . . . , γk−1) in [AOV24] (monotonicity is property P6 there).
One can now duplicate [AOV24, section 7] to conclude the proof of Theorem 9 with
the following adaptations: use the pk’s defined above in place of the ones defined
in [AOV24], and use Lemma 7.8 as a replacement for [AOV24, properties P5, P7].

7.8. OZ asymptotics. As a first application of Theorem 9, one obtains Ornstein-
Zernike asymptotics for the two-point function of the AT model (Theorem 3).

Proof of Theorem 3. Theorem 9 gives, in particular, that for s ∈ S1, one can find
t ∈ ∂W , δ ∈ (0, 1) such that (sums are over pieces confined in the cones/diamonds
obtained using Y◀

t,δ)

∣∣∣C ∑
γL,γR

pL(γL)pR(γR)
∑
k≥0

∑
γ1,...,γk

1X(γ̄)=ns

k∏
i=1

p(γk)

− enν(s)ATRCJ,U(0
ωτ←→ ns)

∣∣∣ ≤ C1e
−c1n,

which is a comparison between enν(s)ATRCJ,U(0 ↔ ns) and the Green functions of a
directed random walk on Z2 (the push-forward of pL, pR, p by X). One can then use
the local limit theorem in dimension 2 as in [AOV24, section 8.1] to obtain

enν(s)ATRCJ,U(0↔ ns) =
c(s)√
n
(1 + on(1)), (43)

which is the wanted asymptotics for the ATRC model. The claim for the AT model
follows from the coupling (5) between AT and ATRC, . □
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8. Invariance principle

8.1. Notations and main result of the section. As in section 7, we will describe
the geometry of the cluster of vL under mATRCn,m( | vL ↔ vR) (defined in section 4)
using a coupling with a random walk bridge in such a way that the cluster is included
in diamonds with endpoints at the random walk steps. We will focus on direction e1
for simplicity, but the analysis can easily be adapted to other directions at the cost of
slightly heavier notations.

Recall the setup of section 4: let Λ = Λn,m = {−n, . . . , n} × {−m, . . . ,m},
E = EΛ ∪ {e ∈ ∂edgeEΛ : e ⊂ H+},

V = Vn,m = VE, E+
b =

{
{i, j} ∈ E : i, j /∈ Λ, i, j ∈ V

}
.

Recall also
∂−Λ = {i ∈ ∂inΛ : i ∈ H−}.

As in the previous section, Φ ≡ ATRC. We will denote (for notational convenience, we
will only stress the m dependence, as the n one is obvious)

Φm ≡ Φn,m = mATRCn,m|E∪E+
b

the measure mATRCn,m restricted to E ∪ E+
b . Φm is supported on

Ωm = {(0, 0), (0, 1), (1, 1)}E × {(0, 0), (1, 1)}E+
b . Denote also for F ⊂ E ∪ E+

b , and
(a, b) ∈ Ωm,

Φa,b
m;F := Φm

(
| ξτ (e) = ae, ξττ ′(e) = be ∀e ∈ F c

)
|F (44)

its conditional version. Recall its main properties:
(1) The probability of a given pair a, b ∈ Ωm is given by

Φm(a, b) ∝
∏
e∈E

2ae(c − 2)be−ae
∏
e∈E+

b

( 2

cb − 1

)ae
· 2κ+(a)

∏
C∈cl(b)

(
1C⊂Λ + c

∑
i∈∂−Λ∩C di

b

)
where:
• di = 1 for all i in ∂−Λ but the lower corners, and equals 2 at the corners;
• κ+(a) is the number of connected components in the graph (VE∪E+

b
, a);

• cl(b) is the set of connected components in the graph (VE∪E+
b
, b).

(2) Φm is strong-FKG (satisfies the FKG-lattice condition).
(3) Φa,b

m;E ≼ ATRC1,1
E .

In particular, for any F ⊂ EΛn−1,m−1 , F ′ ⊂ E, and any (a, b) ∈ Ωm one has

ATRC0,0
F ≼ Φa,b

m;F , Φa,b
m;F ′ ≼ ATRC1,1

F ′ . (45)

For the lower comparison: use the monotonicity for Φm to closed edges in F c and
note that when all edges of F c are closed, the measure on F is ATRC0,0

F . The upper
comparison follows from strong-FKG and Φm ≼ ATRC1,1

E .
Recall that vL = (−n − 1, 0) and vR = (n + 1, 0), and that we wish to study the

cluster of vL under Φm

(
| vL

ξτ←→ vR
)
. For the sake of readability, all connections will

be understood to take place in ξτ if not specified otherwise. We denote (ξτ , ξττ ′) a
sample from Φm, and C the cluster of vL in the ξτ marginal.

We will use the probabilistic description of long clusters from Theorem 9 with a
suitable choice of cones. First, note that by symmetry the (unique by Theorem 9)
t ∈ ∂W dual to e1 is t = ν1e1. Then, by strict convexity and symmetry, the cones
Y◀

ν1e1,δ
are invariant under reflection through {x : x2 = 0}, and have an angular
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aperture continuous in δ, strictly increasing, which converges to 0 as δ → 0 and to π
as δ → 1. In particular, for any θ ∈ (0, π/2) there is a unique δ ∈ (0, 1) such that
Y◀

θ = Y◀
ν1e1,δ

where

Y◀
θ = {x ∈ R2 : sin(θ)x1 ≥ |x2|}

is the symmetric cone with angular aperture 2θ. Similarly to section 7, say that x is
a θ-cone-point of A if A ⊂ x+ (Y◀

θ ∪ Y▶
θ ). We (re-)introduce

Y▶
θ = −Y◀

θ , Diamondθ(u, v) = (u+ Y◀
θ ) ∩ (v + Y▶

θ ),

CPtsθ(A) = {x ∈ A : x is a θ-cone-point of A}.

When omitted from the notation, θ is set to be π/4. Denote BL,BR,A the sets of
backward-confined, forward-confined, diamond-confined graphs (see section 7.1). Let
then pL, pR, p be the measures given by Theorem 9 for (δ, ν1e1) with δ associated to
θ = π/4. Denote Q the positive measure (not probability measure) on length +
sequences given by

Q(M ; γL, γ1, . . . , γM , γR) = CpL(γL)pR(γR)
M∏
i=1

p(γi)

where C is the constant given by Theorem 9. If is worth stressing that whenever f
vanishes when the displacement of γL ◦ γ1 ◦ . . . ◦ γM ◦ γR becomes larger than some
constant, integrating f against Q is just a finite sum. We will write∫

dQf(M ; γL, γ1, . . . , γM , γR)

= C
∑
M≥0

∑
γL∈BL

∑
γR∈BR

∑
γ1,...,γM∈A

f(M ; γL, . . . , γR)pL(γL)pR(γR)
M∏
i=1

p(γi). (46)

Let γ1, γ2, . . . be an i.i.d. sequence of random diamond-confined graphs with law p,
and define

Tv = inf{k ≥ 1 : X(γ1 ◦ . . . ◦ γk) = v},
where the inf of an empty set is set to be +∞ by convention. Let Qv be the law of
(γ1, γ2, . . . , γTv) conditioned on {Tv <∞}.

The main Theorem of this section is the following “representation as a mixture of
random walk bridges”.

Theorem 11. There are c > 0, C0 ≥ 0, n0 ≥ 1 such that for any n ≥ n0, m ≥ C0n,
there is a probability measure Men,m on BL ×BR such that

(1) Men,m is supported on pairs of graphs with displacement sup-norm at most
2 ln9(n);

(2) for any f function of C,∣∣∣ ∑
ζL,ζR

Men,m(ζL, ζR)EQv(ζL,ζR)

(
f(vL + ζL ◦ γ1 ◦ . . . ◦ γM ◦ ζR)

)
− Φm

(
f(C)

∣∣ vL ↔ vR
)∣∣∣ ≤ ∥f∥∞e−c ln3(n)

where (γ1, γ2, . . . , γM) ∼ Qv(ζL,ζR), EQv denotes expectation with respect to Qv,
and v(ζL, ζR) = vR − X(ζR)− vL − X(ζL).
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8.2. Basic properties of the measure. We start with some general observations
on Φm before going to the heart of the argument. As we will use this quantity several
times, it is worthwhile to define

ñ = n− ⌊ln2(n)⌋.
Lemma 8.1. There are c > 0, C ≥ 0 such that for every n,m ≥ 2, any F ⊂ EΛn−1,m−1,
and any event A supported on F with Φ(A) > 0,∣∣∣Φm(A)

Φ(A)
− 1
∣∣∣ ≤ C

∑
e∈F

e−cd∞(e,Λc
n−1,m−1).

Proof. This follows from the stochastic domination (45) and from the exponential ratio
weak mixing of ATRC (Theorem 4). □

Recall that a subset F of E is lattice simply connected if both (VF , F ) and the planar
dual of (VF c , F c) are connected. We import the following result of [Ale04].

Theorem 12 (Alexander, 2004). There is c > 0 such that for any simply connected
F ⊂ E, and any x, y ∈ VF ,

sup
η

Φ
(
x

F←→ y
∣∣ ξτ (e) = η(e)∀e ∈ F c

)
≤ e−c|x−y|.

Proof. This is [Ale04, Theorem 1.1]: the push-forward of Φ by ξτ is translation in-
variant, has finite energy for closing edges, exponential decay of connectivities, and is
exponentially weak mixing. □

From this result, we can deduce the exponential decay for Φm.

Lemma 8.2. There is c > 0 such that for any n,m ≥ 1, any simply connected
F ⊂ E ∪ E+

b , and any x, y ∈ VF ,

sup
η

Φm

(
x

F←→ y
∣∣ ξτ (e) = η(e)∀e ∈ F c

)
≤ e−c|x−y|.

In particular, there is an integer C0 ≥ 0 such that for any m ≥ C0n,

Φm(∃x ∈ C : |x2| ≥ C0n) ≤ e−3ν1n.

Proof. The second point follows from the first and a union bound. We focus on the
first. The claim with Φ = ATRC replacing Φm is Theorem 5. In particular, by the
stochastic domination (45), for any F ⊂ E,

Φm

(
·
∣∣ ξτ (e) = η(e)∀e ∈ F c

)
≼ ATRC1,1

F = Φ( | ξτ (e) = 1∀e ∈ F c),

so the first equation holds for Φm when F ∩ E+
b = ∅. Let us prove the case where

F ∩ E+
b = I ̸= ∅. □

Let Rk,l = {−k, . . . , k} × {−l, . . . , l}. Define
• Cross≥2

k,l the event that there is at least two disjoint clusters in (Rl,k, ξτ ∩ERl,k
)

crossing Rk,l from left to right;
• Cross1k,l the event that there is exactly one cluster in (Rl,k, ξτ ∩ ERl,k

) crossing
Rk,l from left to right.

Lemma 8.3. There is c > 0, n0 ≥ 1, such that for any n ≥ n0, m ≥ ln2(n), k ≤
min(m− ln2(n), n2), one has

Φm

(
Cross≥2

ñ,k

)
≤ 2(2k + 1)2e−ν12n−cn,

Φm

(
Cross1ñ,k

)
≤ 2(2k + 1)2e−ν12ñ.
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Proof. Note that the events Cross≥2
ñ,k, Cross

1
ñ,k are supported on Fk ≡ ERñ,k

. Given
the constraints on k, one can apply Lemma 8.1 to reduce the problem to proving the
same bound for Φ instead of Φm (the cost for passing from Φm to Φ is the factor 2 in
the claim). Now, by a union bound,

Φ(Cross≥2
ñ,k) ≤

∑
−k≤x2<u2≤k

∑
−k≤y2<v2≤k

Φ(x
Fk←→ y

Fk↮ u
Fk←→ v)

where connections are understood in ξτ , and x = (−ñ, x2), u = (−ñ, u2), y = (ñ, y2),
and v = (ñ, v2). Denote then Ck,x the cluster of x in the restriction of ξτ to Fk, and,
for C a realisation of Ck,x with y ∈ C, F+

k (C) the set of edges in Fk above the union
of C and its boundary. F+

k (C) is then a simply connected set, so by Theorem 5,

Φ(x
Fk←→ y

Fk↮ u
Fk←→ v) ≤

∑
C⊂Rñ,k

x,y∈C

Φ(Ck,x = C)ATRC1,1

F+
k (C)

(u↔ v)

≤ e−c|u−v|Φ(x↔ y) ≤ e−cne−ν(y−x).

Now, by convexity and symmetry, ν(y − x) ≥ 2ñν((y − x)/|y − x|) ≥ 2ñν1, so for n
large enough,

Φ(Cross≥2
ñ,k) ≤ (2k + 1)2e−cne−2nν1 ,

which is the first half of the claim. The second follows from the same argument:

Φ(Cross1ñ,k) ≤
∑

−k≤x2,y2≤k

Φ(x
Fk←→ y) ≤ (2k + 1)2Φ(x↔ y) ≤ (2k + 1)2e−2ñν1 .

□

Lemma 8.4. There is c ≥ 0 such that for any ϵ > 0 there is n0 ≥ 1 such that for any
n ≥ n0, m ≥ ϵn+ ln2(n),

Φm(vL ↔ vR) ≥ e−c ln2(n)e−2nν1 .

Proof. Let wL = (−ñ, 0), wR = (ñ, 0). Then, by inclusion of events and FKG inequal-
ity,

Φm(vL ↔ vR) ≥ Φm(wL ↔ vL)Φm(wR ↔ vR)Φm(wL

Rñ,⌊ϵn⌋←−−−→ wR)

≥ 2Φ(wL

Rñ,⌊ϵn⌋←−−−→ wR)Φm(wL ↔ vL)Φm(wR ↔ vR)

where we used Lemma 8.1 and n large enough in the second line.

We can then use Theorem 9 to lower bound the first probability: Φ(wL

Rñ,⌊ϵn⌋←−−−→ wR)
is equal to e−2ν1ñ times the probability for a random walk with step distribution
supported on the whole of Y◀ ∩ Z2, having exponential tails, and mean proportional
to e1 to hit wR − wL while having second component less (in modulus) than ϵn. This
has probability greater than C/

√
n (and we only need e−c ln2(n)).

Finally, we use finite energy to bound the last two probabilities: let FL =
{
{x, x+

e1} : x1 = −n − 1, . . . , ñ − 1
}
. Opening the edges of FL has probability at least

e−c|FL| = e−c ln2(n) for some c > 0. So Φm(wL ↔ vL) ≥ e−c ln2(n). Same with wR ↔
vR. □

This leads us to a first notion of “good configurations”:

Good1
n = {vL ↔ vR} ∩ Cross1ñ,C0n

∩ {∀x ∈ C : |x2| < C0n}, (47)
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where C0 is given by Lemma 8.2. Then, by Lemmas 8.4, 8.3, and 8.2, there is c >
0, n0 ≥ 1 such that for any n ≥ n0, m ≥ C0n+ ln2(n),

Φm(Good1
n | vL ↔ vR) ≥ 1− e−cn. (48)

Define Ccr to be the unique crossing cluster of Rñ,C0n when there is a unique cluster,
and Ccr = Rñ,C0n else. Under Good1

n, one has Ccr ⊂ C. The general plan from now on
will be to study C by first proving that it is close (in Hausdorff distance) to Ccr, and
then by studying Ccr using the infinite volume study of section 7.

8.3. Geometry of crossing cluster. We start with the proximity between Ccr and
C. Introduce

LL(C) = C ∩ {−ñ} × Z, LR(C) = C ∩ {ñ} × Z, L(C) = LL(C) ∪ LR(C).

Lemma 8.5. Let C0 be given by Lemma 8.2. There is c > 0, n0 ≥ 1, such that for
any n ≥ n0, m ≥ C0n+ ln2(n), one has

Φm

(
∃x ∈ C \ Ccr : d∞(x,L(Ccr)) ≥ ln3(n)

∣∣Good1
n

)
≤ e−c ln3(n).

Proof. Let C ̸= ∅ be a realisation of Ccr. Now, under the event Ccr = C, x /∈ C is
connected to C only if x is connected to LL(C) ∪ LR(C). So, by Lemma 8.2,

Φm(x↔ C | Ccr = C) ≤
∑

y∈L(C)

e−c|d∞(x,y)|.

In particular, for C a realisation of Ccr such that C ⊂ Rñ,C0n, and n large enough,

Φm(∃x : d(x,C) ≥ ln3(n), x↔ C | Ccr = C)

≤
∑

y∈L(C)

∑
x∈Z2:d∞(x,y)≥ln3(n)

e−c|d∞(x,y)| ≤ e−c ln3(n)/2,

as |L(C)| ≤ 2C0n. In particular,

Φm

(
∃x : d(x,C) ≥ ln3(n), x↔ C |Cross1ñ,C0n

∩ {∀x ∈ Ccr : |x2| < C0n}
)

≤
∗∑
C

Φm

(
Ccr = C |Cross1ñ,C0n

∩ {∀x ∈ Ccr : |x2| < C0n}
)
e−c ln3(n)/2

= e−c ln3(n)/2.

where
∑∗

C is over realisation of Ccr such that C ⊂ Rñ,C0n. To conclude,

Φm

(
∃x ∈ C \ Ccr : d∞(x,L(Ccr)) ≥ ln3(n),Good1

n

)
Φm(Good1

n)

≤
e−c ln3(n)Φm(Cross

1
ñ,C0n

∩ {∀x ∈ Ccr : |x2| < C0n})
Φm(Good1

n)
≤ e−c ln3(n)ec

′ ln2(n)

where the numerator is bounded using the bound we just derived, inclusion of events,
and Lemma 8.3, and the denominator is bounded using Lemma 8.4, and (48). □

We then turn to the geometry of Ccr. Introduce

Good2
n = {∀x ∈ C \ Ccr : d∞(x,L(Ccr)) ≥ ln3(n)} ∩Good1

n.

By Lemma 8.5,
Φm(Good2

n |Good1
n) ≥ 1− e−c ln3(n). (49)
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Introduce the slabs: for l ∈ Z, k ≥ 0,

Sl,k = {l, l + 1, . . . , l + k} × Z.

Lemma 8.6. Let C0 be given by Lemma 8.2. There are c > 0, n0 ≥ 1 such that for
any n ≥ n0, m ≥ C0n+ ln2(n),

Φm

(
∃k ≥ ln4(n),−n− 1 ≤ l ≤ n+ 1− k : Sl,k ∩ CPts(C) = ∅

∣∣Good2
n

)
≤ e−c ln3(n).

Proof. Let

AL = {LL(Ccr) ∩ Λ⌈ln3(n)⌉(vL) ̸= ∅}, AR = {LR(Ccr) ∩ Λ⌈ln3(n)⌉(vL) ̸= ∅},
A = AL ∩ AR ∩ Cross1ñ,C0n

∩ {∀x ∈ Ccr : |x2| < C0n},

where Λl(x) = x + {−l, . . . , l}2. Start by proving that for any Kn ≥ ln3(n) (and n
large enough)

Φm

(
∃k ≥ Kn, ñ ≤ l ≤ ñ : Sl,k ∩ CPts(Ccr) = ∅, A

)
≤ e−cKne−2nν1 . (50)

By Lemma 8.1 and a union bound, the above probability is upper bounded by (for n
large enough),

2

⌈ln3(n)⌉∑
x2,y2=−⌈ln3(n)⌉

Φ
(
∃k ≥ Kn, ñ ≤ l ≤ ñ : Sl,k ∩ CPts(Cx) = ∅, x↔ y

)
where x = (−ñ, x2), y = (ñ, y2). By Theorem 9 (exponential tails for the size of the
steps gives exponential tails for the distance between cone-points), for every x, y as in
the above sum,

e2ñν1Φ
(
∃k ≥ Kn, ñ ≤ l ≤ ñ : Sl,k ∩ CPts(Cx) = ∅, x↔ y

)
≤ e−cKn .

Plugging this in the previous display gives (50). Now, for n large enough, the event

{∃k ≥ ln4(n),−n− 1 ≤ l ≤ n+ 1− k : Sl,k ∩ CPts(C) = ∅} ∩Good2
n

is included in the event {∃k ≥ ln3(n), ñ ≤ l ≤ ñ : Sl,k ∩ CPts(Ccr) = ∅} ∩ A
(the cones grove linearly, so, under Good2

n, the presence of cone-points of Ccr in
S−n+3 ln4(n)/4,ln4(n)/4 and in S−n+ln4(n)/4,ln4(n)/4 implies the presence of a cone-point of C
in S−n+3 ln4(n)/4,ln4(n)/4). In particular, one has (for n large enough)

Φm

(
∃k ≥ ln4(n),−n− 1 ≤ l ≤ n+ 1− k : Sl,k ∩ CPts(C) = ∅,Good2

n

)
Φm

(
Good2

n

)
≤ e−2ñν1e−c ln3(n)2e2nν1ec ln

2(n) ≤ e−c ln3(n)/2

where the numerator is upper bounded using what we just derived, and the denomi-
nator is lower bounded using Lemma 8.4, (48), and (49). □

Finally, introduce

Good3
n = {∀k ≥ ln4(n),−n− 1 ≤ l ≤ n+ 1− k : Sl,k ∩ CPts(C) ̸= ∅} ∩Good2

n.

By Lemma 8.6, (48), and (49),

Φm(Good3
n | vL ↔ vR) ≥ 1− e−c ln3(n). (51)

Note that all the arguments we made to obtain the above bound work exactly in the
same fashion (are even substantially easier) for Φ.
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8.4. Density swapping. Under Good3
n, the slabs

S−n+2⌈ln4(n)⌉,⌈ln4(n)⌉, Sn−3⌈ln4(n)⌉,⌈ln4(n)⌉,

both contain a cone-point of C. Let
• WL = WL(C) be the leftmost cone-point of C in the slab S−n+2⌈ln4(n)⌉,⌈ln4(n)⌉,
• WR = WR(C) be the rightmost cone-point of C in the slab Sn−3⌈ln4(n)⌉,⌈ln4(n)⌉.

One can then uniquely decompose a realisation C of C contributing to Good3
n as

C = vL + ηL ◦ η ◦ ηR
with ηL ∈ BL, ηR ∈ BR, η ∈ A, X(ηL) = WL(C) − vL, X(ηR) = vR −WR(C). Now,
notice that by the cone constraint, b(ηL) has degree one in ηL, b(ηR) has degree one
in ηR, and f(η),b(η) both have degree 1 in η. Let

fe(η) = {f(η), f(η) + e1}, be(η) = {b(η),b(η)− e1},
fe(ηR) = {f(ηR), f(ηR) + e1}, be(ηL) = {b(ηL),b(ηL)− e1}.

Introduce percolation events associated with ηL ∈ BL, ηR ∈, η: let uR = vR−X(ηR)
and define

• AL(ηL) is the event that edges of vL + ηL are open in ξττ ′ , edges of (vL + ηL) \
be(vL + ηL) are open in ξτ , edges of (vL + ∂exηL) ∩ (E ∪ E+

b ) are closed in ξτ ,
be(v + ηL) is closed in ξτ ;
• AR(ηR) is the event that edges of uR+ ηR are open in ξττ ′ , edges of (uR+ ηR) \
fe(uR + ηR) are open in ξτ , edges of (uR + ∂exηR) ∩ (E ∪ E+

b ) are closed in ξτ ,
fe(uR + ηR) is closed in ξτ ;
• Av(η) is the event that edges of v+η are open in ξττ ′ , edges of (v+η)\{be(v+
η), fe(v+η)} are open in ξτ , edges of ∂ex(v+η) are closed in ξτ , be(v+η), fe(v+η)
are closed in ξτ .

Using the same trick as in section 7.6 (swapping the state of fe(η),be(η), fe(ηR),be(ηL)

from open to close in ξτ brings a weight 2421

2025
= 1: four open edges giving one connected

component, versus zero open edges and five connected components: the left, middle,
and right graphs as well as the two cone-points that become isolated), one gets

Φm(C = vL + ηL ◦ η ◦ ηR) = Φm

(
AL(ηL) ∩ AvL+X(ηL)(η) ∩ AR(ηR)

)
.

Now, define the infinite volume events corresponding to the pieces ηL, ηR:
• ÃL(ηL) is the event that edges of vL + ηL are open in ξττ ′ , edges of (vL + ηL) \
be(vL + ηL) are open in ξτ , edges of vL + ∂exηL are closed in ξτ , be(v + ηL) is
closed in ξτ ;
• ÃR(ηR) is the event that edges of uR+ ηR are open in ξττ ′ , edges of (uR+ ηR) \
fe(uR + ηR) are open in ξτ , edges of uR + ∂exηR are closed in ξτ , fe(uR + ηR) is
closed in ξτ .

Let C0 be given by Lemma 8.2. Define, for i = 1, 2, 3

∆i
n = {−n+ i⌈ln4(n)⌉, . . . n− i⌈ln4(n)⌉} × {−C0n+ i⌈ln4(n)⌉, . . . C0n− i⌈ln4(n)⌉}.

In particular, for any C = vL + ηL ◦ η ◦ ηR contributing to Good3
n, WL(C),WR(C) ∈

∆2
n \∆3

n, and WL(C) + η is a subset of the edges in E∆2
n
.

Lemma 8.7 (Density swapping). There are c > 0, n0 ≥ 1 such that for any n ≥ n0,
m ≥ C0n+ ln2(n), any ηL ∈ BL, ηR ∈ BR with {vL +X(ηL), vR −X(ηR)} ⊂ ∆2

n \∆3
n,
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and any event B with support in E∆2
n
, one has∣∣∣Φm

(
B |AL(ηL) ∩ AR(ηR)

)
Φ
(
B | ÃL(ηL) ∩ ÃR(ηR)

) − 1
∣∣∣ ≤ e−c ln4(n).

Proof. This follows by standard mixing arguments, Lemma A.1 (ratio mixing) and
finding contours in ∆1

n \∆2
n. □

Introduce the set of good clusters

GCl = {C ∋ vl, vR : C ⊂ Vn,m, C = vL + ηL ◦ η ◦ ηR}
with η ∈ A, ηL ∈ BL, ηR ∈ BR so that WL(C) = vL +X(ηL), WR(C) = vR − X(ηR).

One directly has
Good3

n ⊂ {C ∈ GCl}. (52)
For ηL, ηR as before, introduce the shorthand rm(ηL, ηR) ≡ Φm

(
AL(ηL) ∩ AR(ηR)

)
.

Looking back at what we obtained: for any f function of C with ∥f∥∞ ≤ 1, we obtain
by applying Lemma 8.7∣∣∣Φm

(
f(C)1GCl(C)

)
−
∑
ηL,ηR

rm(ηL, ηR)Φ
(
f(C)1GCl(C)1C∼ηL,ηR | ÃL(ηL) ∩ ÃR(ηR)

)∣∣∣
≤ e−c ln4(n)Φm

(
C ∈ GCl

)
, (53)

where the sum is over ηL, ηR with the same displacement constraints as before (it is
in particular less than 4 ln4(n) in sup-norm), and 1C∼ηL,ηR is 1 if C = vL + ηL ◦ η ◦ ηR
for some diamond-confined η, and 0 else.

We now turn to the study of

Φ
(
f(C)1GCl(C)1C∼ηL,ηR | ÃL(ηL) ∩ ÃR(ηR)

)
=

Φ
(
f(C)1C∼ηL,ηR

)
Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) .
First, by Theorem 9 and translation invariance of Φ, there is c > 0 independent of n
such that (recall (46))∣∣∣ ∫ dQf(vL + γ̄)1vL+γ̄∼ηL,ηR − e2ν1nΦ

(
f(C)1C∼ηL,ηR

)∣∣∣ ≤ e−cn, (54)

where γ̄ = γL◦γ1◦ . . .◦γM ◦γR (we used that if 1vL+γ̄∼ηL,ηR = 1, then X(γ̄) = vR−vL).
Introduce

TL = max
{
k ≥ 0 : ∥X(γL ◦ γ1 ◦ . . . ◦ γk)∥∞ ≤ ln9(n)

}
,

and
TR = max

{
k ≥ 0 : ∥X(γM−k+1 ◦ . . . ◦ γR)∥∞ ≤ ln9(n)

}
,

where γ0 ≡ γL, γM+1 ≡ γR, and we put −∞ for the max of an empty set by convention.
From the exponential tails of pL, pR, p, one obtains (γ̄ = γL ◦ . . . ◦ γR)∫

dQ1TL=−∞1X(γ̄)=vR−vL ≤ e−c ln9(n), (55)

and the same for TR, and∫
dQ1TL≥01∥X(γTL+1)∥∞≥ln9(n)1X(γ̄)=vR−vL ≤ e−c ln9(n), (56)

and the same for TR, γTR−1.
Let then Bn be the set of sequences (γL, γ1, . . . , γM , γR) such that
• TR ≥ 0, TL ≥ 0,
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• ∥X(γTL+1)∥∞ < ln9(n), and ∥X(γTR−1)∥∞ < ln9(n).
Introduce two weights that will be our new boundary weights: for ζL ∈ BL, and

ζR ∈ BR, define

bL(ζL; ηL) =
√
C
∑
γL

∑
k≥1

∑
γ1,...,γk

1∥X(γL◦...◦γk−1)∥∞≤ln9(n)1∥X(γk)∥∞<ln9(n)1∃l:γL◦...◦γl=ηL

· 1γL◦...◦γk=ζL · pL(γL)
k∏

i=1

p(γi), (57)

and

bR(ζR; ηR) =
√
C
∑
γR

∑
k≥1

∑
γk,...,γ1

1∥X(γk−1◦...◦γ1◦γR)∥∞≤ln9(n)1∥X(γk)∥∞<ln9(n)

· 1∃l:γl◦...◦γ1◦γR=ηR1γk◦...◦γ1◦γR=ζR · pL(γL)
k∏

i=1

p(γi). (58)

Also introduce one measure (which, after normalization, will be our Random Walk
bridge measure): for v ∈ Z2 \ 0, M ≥ 1,

Q̃v(M ; γ1, . . . , γM) = 1X(γ1◦...◦γM )=v

M∏
i=1

p(γi), Zv =

∫
Q̃v, Qv = Q̃v/Zv. (59)

One has that bL, bR are supported on graphs with sup-norm less than 2 ln9(n), and∫
dQf(vL + γ̄)1vL+γ̄∼ηL,ηR1Bn(γL, . . . , γR)

=
∑

ζL∈BL

∑
ζR∈BR

bL(ζL; ηL)bR(ζR; ηR)

∫
dQ̃v(ζL,ζR)f(vL + ζL ◦ γ1 ◦ . . . ◦ γM ◦ ζR). (60)

where v(ζL, ζR) = vR − X(ζR)− vL − X(ζL).

Claim 3. With the notations above, for any f with ∥f∥∞ ≤ 1,∣∣∣ ∑
ηL,ηR

∑
ζL,ζR

rm(ηL, ηR)e
−2ν1nbL(ζL; ηL)bR(ζR; ηR)

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) ∫
dQ̃v(ζL,ζR)f(vL+ζL◦γ1◦. . .◦γM◦ζR)

− Φm

(
f(C)1GCl(C)

)∣∣∣ ≤ Φm

(
1GCl(C)

)
e−c ln4(n) (61)

where the sum is over ηL, ηR with
∥∥X(ηL/R)∥∥∞ ≤ 4 ln4(n) and ζL, ζR with

∥∥X(ζL/R)∥∥∞ ≤
2 ln9(n).

Proof. Start by observing that by (51), the inclusion {C ∈ GCl} ⊃ Good3
n and

Lemma 8.4, one has
Φm(C ∈ GCl) ≥ e−2ν1ne−c ln2(n).

From (53), one has∣∣∣Φm

(
f(C)1GCl(C)

)
−
∑
ηL,ηR

rm(ηL, ηR)
Φ
(
f(C)1C∼ηL,ηR

)
Φ
(
ÃL(ηL) ∩ ÃR(ηR)

)∣∣∣
≤ e−c ln4(n)Φm

(
C ∈ GCl

)
,
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where the summation over the ηL, ηR are over graphs with displacement at most
4 ln4(n). Then, using (54), and

∑
ηL,ηR

rm(ηL, ηR)

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) ≤ ec ln
8(n),

as Φ
(
ÃL(ηL)∩ ÃR(ηR)

)
≥ e−c ln8(n) by finite energy (and control over the maximal size

of ηL, ηR: they contain at most c ln8(n) edges each), one has

∣∣∣ ∑
ηL,ηR

rm(ηL, ηR)
Φ
(
f(C)1C∼ηL,ηR

)
Φ
(
ÃL(ηL) ∩ ÃR(ηR)

)
−
∑
ηL,ηR

rm(ηL, ηR)e
−2ν1n

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) ∫ dQf(vL + γ̄)1vL+γ̄∼ηL,ηR

∣∣∣
≤ e−2ν1n−cn

∑
ηL,ηR

rm(ηL, ηR)

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) ≤ e−cn/2Φm(C ∈ GCl),

for n large enough. Then, using (55), and (56), one obtains

∣∣∣ ∑
ηL,ηR

rm(ηL, ηR)e
−2ν1n

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) ∫ dQf(vL + γ̄)1vL+γ̄∼ηL,ηR1Bn(γL, . . . , γR)

−
∑
ηL,ηR

rm(ηL, ηR)e
−2ν1n

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) ∫ dQf(vL + γ̄)1vL+γ̄∼ηL,ηR

∣∣∣
≤ e−2ν1n

∑
ηL,ηR

rm(ηL, ηR)

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

)e−c ln9(n) ≤ e−c ln9(n)/2Φm(C ∈ GCl),

for n large enough. A look at (60) and triangular inequality finishes the proof. □

We are now in position to conclude the proof of Theorem 11. Define a measure Men
on BL ×BR via

Men,m(ζL, ζR) = 1∥X(ζL)∥∞≤2 ln9(n)1∥X(ζR)∥∞≤2 ln9(n)

· e−2ν1n

Φm(C ∈ GCl)

∑
ηL,ηR

rm(ηL, ηR)bL(ζL; ηL)bR(ζR; ηR)

Φ
(
ÃL(ηL) ∩ ÃR(ηR)

) Zv(ζL,ζR) (62)

where the sum is over ηL, ηR with displacement less than 4 ln4(n), and v(ζL, ζR) =
vR − X(ζR)− vL − X(ζL) (Zv is defined in (59)). From (61) with f = 1, one obtains∣∣∣ ∑

ζL,ζR

Men,m(ζL, ζR)− 1
∣∣∣ ≤ e−c ln4(n). (63)

Letting

Men,m(ζL, ζR) =
1∑

ζL,ζR
Men,m(ζL, ζR)

Men,m(ζL, ζR), (64)
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one has the final “mixture of random walk bridges” representation: for f a function of
the cluster of 0,∣∣∣ ∑

ζL,ζR

Men,m(ζL, ζR)

∫
dQv(ζL,ζR)f(vL + ζL ◦ γ1 ◦ . . . ◦ γM ◦ ζR)

− Φm

(
f(C)

∣∣ C ∈ GCl
)∣∣∣ ≤ ∥f∥∞e−c ln4(n).

In particular, as Φm(C ∈ GCl | vL ↔ vR) ≥ 1− e−c ln3(n), for any f ,∣∣∣ ∑
ζL,ζR

Men,m(ζL, ζR)

∫
dQv(ζL,ζR)f(vL + ζL ◦ γ1 ◦ . . . ◦ γM ◦ ζR)

− Φm

(
f(C)

∣∣ vL ↔ vR
)∣∣∣ ≤ ∥f∥∞e−c ln3(n), (65)

which is the statement of Theorem 11.

9. Proofs of Theorems

9.1. Proof of Theorem 2. We will derive Theorem 2 from the analogous statement
for the cluster CvL,vR , Theorem 11, and the proximity statement, Lemma 4.9.

Proof of Theorem 2. To lighten the notation, we omit pc(q), q from the subscripts.
Recall the definition of the upper and lower envelopes Γ±,n

FK in Gn defined in Section 1,
and of Γ±,n,m

FK in G = Gn,m defined analogously. We will first show the statement for
the FK measure FK

1/0
Gn,Cn

for C sufficiently large, and then from it derive the statement
for FK

1/0
Gn

.
By Theorem 11 combined with [GI05] and Lemma 4.9, there exists C > 1 such that

the statement holds for Γ±,n,Cn
FK under the measure FK

1/0
Gn,Cn

. The derivation for Γ±,n
FK

under FK
1/0
Gn

follows from the FKG and spatial Markov properties of FK percolation,
and we only sketch the argument. Define the graphs G±

n,Cn = (V ±
n,Cn, E

±
n,Cn) by

Λ−
n,Cn := {−n, . . . , n} × {−Cn, . . . , n}, Λ+

n,Cn := {−n, . . . , n} × {−n, . . . , Cn},
V ±
n,Cn = Λ±

n,Cn ∪ (∂exΛ±
n,Cn ∩H+), E±

n,Cn = EV ±
n,Cn
\ E(Λ±

n,Cn)
c .

Then, by the FKG and spatial Markov properties of the FK measures, it holds that

FK
1/0
Gn,Cn

≥st FK
1/0

G+
n,Cn

≤st FK
1/0
Gn
≤st FK

1/0

G−
n,Cn

≥st FK
1/0
Gn,Cn

.

If ω is distributed according to FK
1/0
Gn,Cn

, by the statement for Γ±,n,Cn
FK under this mea-

sure, there exists a left-right crossing above [−n, n]× {0} in ω and one in ω∗ below it
at arbitrary small linear distance from [−n, n] × {0}. A chain of classical monotone
coupling arguments finishes the proof. □

9.2. Proof of Theorem 1. We will derive Theorem 1 from Theorem 2. Recall the
definition of the one-sided Hausdorff distance dH, and the notion of a subset of R2

being above or below a connected set in L• or L◦, introduced above Lemma 4.9.

Proof of Theorem 1. To simplify the notation, we omit n, q, Tc(q), pc(q) from sub and
superscripts. Consider the Edwards–Sokal coupling ES

1/0
Λ of σ ∼ Potts

1/f
Λ and ω ∼
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FK
1/0
Gn

described in the introduction; see [Gri06, Section 1.4] for details. By Theorem 2,
it suffices to show the existence of c, C > 0 for which, for any k ≥ 1,

ES
1/0
Λ (dH(Γ

±
Potts,Γ

±
FK) > k) < Cn2e−ck. (66)

Observe that the FK envelopes Γ±
FK are deterministically above the corresponding

Potts envelopes Γ±
Potts. In particular, Γ+

Potts is sandwiched between Γ−
Potts and Γ+

FK, and
it suffices to verify (66) for Γ−

Potts,Γ
−
FK.

Let C be the cluster of the lower boundary in {σ ̸= 1}, that is, the set of i ∈ Λ for
which there exists a path (i0, . . . , iℓ) in Λ with i0 = i, iℓ ∈ ∂inΛ∩H− and σ(ik) ̸= 1 for
0 ≤ k ≤ ℓ. By definition, each point in the lower enevlope Γ−

Potts is above C. Therefore,
it suffices to show that Γ−

FK is not far above C. Fix a realisation C of C, and define
ΛC = Λ \ (C ∪ ∂exC). By the coupling and the spatial Markov property of the Potts
model, it holds that

ES
1/0
Λ (σ|ΛC

∈ · | C = C) = Potts
1/f
Λ (σ|ΛC

∈ · | C = C) = Potts1ΛC
.

Let GC = (VC , EC) be defined by EC = EΛC
∪ ∂edgeΛC and VC = VEC

. Then, by the
above and by the coupling,

ES
1/0
Λ (ω|EC

∈ · | C = C) = FK1
GC

(ω|EC
∈ ·).

Now, conditional on C = C, if dH(C,Γ
−
FK) > k, then there exists a dual path of

length k in ω∗|∗EC
. Since FK1

GC
stochastically dominates the infinite-volume measure

FK1, which admits exponential decay of connection probabilites in its dual [DGH+21,
Theorem 1.2], the proof is complete. □

9.3. OZ asymptotics for the AT model.

Appendix A. Mixing to ratio mixing

We prove here a technical Lemma whose use is recurrent in the proof that mixing
implies ratio mixing under suitable conditions. It is a simplified version of the argument
in [Ale98, section 5].

Lemma A.1. Let Ωi, i = 1, 2 be finite sets. Let Ω = Ω1 × Ω2 and Fi = {A ⊂ Ωi},
F = {A ⊂ Ω}. Let µ, ν be positive probability measures on (Ω,F). Let

πi : Ω→ Ωi, πi((ω1, ω2)) = ωi, µi = µ ◦ π−1
i .

Let ϵ1, ϵ2, ϵ3 ∈ [0, 1). Suppose that all of the following hold:
(1) Mixing of µ, ν: for every ξ, ξ′ ∈ Ω1, A ⊂ Ω2, ρ ∈ {µ, ν}

|ρ(Ω1 × A | {ξ} × Ω2)− ρ(Ω1 × A | {ξ′} × Ω2)| ≤ ϵ1

(2) Proximity between second marginals: dTV(µ2, ν2) ≤ ϵ2;
(3) Conditional equality: there exists an event D ⊂ Ω2 such that for ρ ∈ {µ2, ν2},

ρ(D) ≥ 1− ϵ3, and for any y ∈ D,

µ(x, y)

µ2(y)
=

ν(x, y)

ν2(y)
, ∀x ∈ Ω1.

Then, if ϵ = max(ϵ1,
√
ϵ2, ϵ3) ≤ 0.1, then, for any x ∈ Ω1,

1− 9ϵ ≤ µ1(x)

ν1(x)
≤ 1

1− 9ϵ
.
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Proof. The proof goes by constructing a suitable coupling of µ, ν. Let Q be a maximal
coupling of µ2 and ν2. Then, sample a random vector (X, Y ) =

(
(X1, X2), (Y1, Y2)

)
as

follows:
(1) sample (X2, Y2) using Q;
(2) sample X1 using µ( |Ω1 × {X2}) ◦ π−1

1 ;
(3) if X2 = Y2 ∈ D, set Y1 = X1. Else, sample Y1 ∼ ν( |Ω1 × {Y2}) ◦ π−1

1

independently of X1.
Denote Ψ the law of (X, Y ).

Claim 4. All the following points hold.
(1) Ψ is a coupling of µ and ν.
(2) (X2 = Y2 ∈ D) =⇒ (X1 = Y1).
(3) X1 and Y2 are independent conditionally on X2, and Y1 and X2 are independent

conditionally on Y2.

Proof. The second point is by construction. We check the first point. For x =
(x1, x2) ∈ Ω,

Ψ(X = x) =
∑
y2∈Ω2

Q(x2, y2)Ψ(X1 = x1 |X2 = x2, Y2 = y2)

=
∑
y2∈Ω2

Q(x2, y2)
µ(x1, x2)

µ2(x2)
= µ(x1, x2).

Also, for y = (y1, y2) ∈ Ω,

Ψ(Y = y) =
∑
x2∈Ω2

Q(x2, y2)Ψ(Y1 = y1 |X2 = x2, Y2 = y2)

=
∑
x2∈Ω2

Q(x2, y2)
(
1y2=x2∈D

µ(y1, x2)

µ2(x2)
+ (1− 1y2=x2∈D)

ν(y1, y2)

ν2(y2)

)
=
∑
x2∈Ω2

Q(x2, y2)
ν(y1, y2)

ν2(y2)
= ν(y1, y2),

as, by hypotheses on D, 1y2=x2∈D
µ(y1,x2)
µ2(x2)

= 1y2=x2∈D
µ(y1,y2)
µ2(y2)

= 1y2=x2∈D
ν(y1,y2)
ν2(y2)

.
Let us finally check the third point. First, for any x1 ∈ Ω1, x2, y2 ∈ Ω2,

Ψ(X1 = x1 |X2 = x2, Y2 = y2) =
µ(x1, x2)

µ2(x2)
= Ψ(X1 = x1 |X2 = x2).

Then, for any y1 ∈ Ω1, x2, y2 ∈ Ω2,

Ψ(Y1 = y1 |X2 = x2, Y2 = y2) = 1y2=x2∈D
µ(y1, x2)

µ2(x2)
+ (1− 1y2=x2∈D)

ν(y1, y2)

ν2(y2)

=
ν(y1, y2)

ν2(y2)
= Ψ(Y1 = y1 |Y2 = y2),

by hypotheses on D, as before. □

Introduce then g, h : Ω2 → R+ defined by

g(ξ) = Ψ(X2 ̸= Y2 |X2 = ξ),

h(ξ) = Ψ(X2 ̸= Y2 |Y2 = ξ).
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Define the event H by
H = {X2 = Y2} ∩ {X2 ∈ D} ∩ {Y2 ∈ D} ∩ {g(X2) ≤

√
ϵ2} ∩ {h(Y2) ≤

√
ϵ2}.

Claim 5. One has

max
x1∈Ω2

Ψ(Hc |X1 = x1) ≤ 9ϵ,

max
y1∈Ω2

Ψ(Hc |Y1 = y1) ≤ 9ϵ.

Proof. Let a =
√
ϵ2. First, let {g > a} = {x2 ∈ Ω2 : g(x2) > a}, one has

µ(Ω1 × {g > a}) = Ψ(g(X2) > a) ≤ a−1Ψ(g(X2)) = a−1Ψ(Ψ(X2 ̸= Y2 |X2))

= a−1Ψ(X2 ̸= Y2) ≤
ϵ2
a
,

as Ψ(X2 ̸= Y2) = Q(X2 ̸= Y2) = dTV(µ2, ν2) ≤ ϵ2, and the same for ν(Ω1 × {h > a}).
Now, by our first hypotheses,

Ψ(g(X2) > a |X1 = x1) = µ(Ω1 × {g > a} | {x1} × Ω2)

≤ µ(Ω1 × {g > a}) + ϵ1 =
ϵ2
a
+ ϵ1,

and the same for Ψ(h(Y2) > a |Y1 = y1). Also,
Ψ(X2 ∈ Dc |X1 = x1) = µ(Ω1 ×Dc | {x1} × Ω2) ≤ µ(Ω1 ×Dc) + ϵ1 = ϵ3 + ϵ1,

and the same for Ψ(Y2 ∈ Dc |Y1 = y1).
Then, as X1 and Y2 are independent conditionally on X2 (by Claim 4),

Ψ(X2 ̸= Y2, g(X2) ≤ a |X1 = x1)

=
∑

x2:g(x2)≤a

Ψ(X2 = x2 |X1 = x1)Ψ(Y2 ̸= x2 |X2 = x2)

=
∑

x2:g(x2)≤a

Ψ(X2 = x2 |X1 = x1)g(x2) ≤ a.

In the same fashion, Ψ(X2 ̸= Y2, h(Y2) ≤ a |Y1 = y1) ≤ a. Finally,
Ψ(X2 = Y2 ∈ D, h(Y2) > a |X1 = x1)

= Ψ(X2 = Y2 ∈ D |X1 = x1)Ψ(h(Y2) > a |X1 = x1, X2 = Y2 ∈ D)

= Ψ(X2 = Y2 ∈ D |X1 = x1)Ψ(h(Y2) > a |Y1 = x1, X2 = Y2 ∈ D)

=
Ψ(X2 = Y2 ∈ D |X1 = x1)

Ψ(X2 = Y2 ∈ D |Y1 = x1)
Ψ(X2 = Y2 ∈ D, h(Y2) > a |Y1 = x1)

≤ ϵ2/a+ ϵ1
1− 2ϵ1 − ϵ3 − ϵ2/a− a

,

where the second equality is because X2 = Y2 ∈ D =⇒ X1 = Y1, and the inequality
is the previous bounds, and a union bound on Ψ({X2 = Y2 ∈ D}c |Y1 = x1). Putting
things together,

Ψ(Hc |X1 = x1) ≤ Ψ(X2 ∈ Dc |X1 = x1) + Ψ(g(X2) > a |X1 = x1)

+ Ψ(X2 ̸= Y2, g(X2) ≤ a |X1 = x1)

+ Ψ(X2 = Y2 ∈ D, h(Y2) > a |X1 = x1)

≤ ϵ3 + ϵ1 +
ϵ2
a
+ ϵ1 + a+

ϵ2/a+ ϵ1
1− 2ϵ1 − ϵ3 − ϵ2/a− a

.
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One obtains the same bound on Ψ(Hc |Y1 = y1) in the same way (with h ↔ g and
Y2 ↔ X2). Plugging in a =

√
ϵ2 and using the definition of ϵ gives that the last display

is upper bounded by

5ϵ+
2ϵ

1− 5ϵ
≤ 9ϵ,

as ϵ ≤ 0.1 by hypotheses. □

Let us now see how Claims 4 and 5 imply the wanted result. As Ψ is a coupling,

µ1(ξ)

ν1(ξ)
=

Ψ(X1 = ξ)

Ψ(Y1 = ξ)
=

Ψ(X1 = ξ)Ψ(Y1 = ξ,H)

Ψ(Y1 = ξ)Ψ(X1 = ξ,H)
=

Ψ(H |Y1 = ξ)

Ψ(H |X1 = ξ)
,

where the second equality is because {X1 = Y1} under H (as {X2 = Y2 ∈ D} ⊂ H).
But now,

1− 9ϵ ≤ 1−Ψ(Hc |Y1 = ξ) ≤ Ψ(H |Y1 = ξ)

Ψ(H |X1 = ξ)
≤ 1

1−Ψ(Hc |X1 = ξ)
≤ 1

1− 9ϵ
.

□
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