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A useful concept that allows for efficient signal processing is that the signals in question are sparse in an
(overcomplete) dictionary. A dictionary Φ is defined as a collection of K unit norm vectors φk ∈ Rd called
atoms. The atoms are stacked as columns in a matrix, which by abuse of notation is also referred to as the
dictionary, that is Φ = (φ1, . . . ,φK ) ∈ Rd×K . A signal y ∈ Rd is then called sparse in a dictionary Φ if up to a
small approximation error or noise η it can be represented as linear combination of a small (sparse) number
of dictionary atoms,

y = ∑
k∈I

φk xk +η=ΦI xI +η or y =Φx +η with ‖x‖0 = |I | = S, (1)

where ‖ · ‖0 counts the non zero components of a vector or matrix. The index set I storing the non zero
entries is called the support with the understanding that for the sparsity level S = |I | we have S ¿ d ≤ K and
that ‖η‖2 ¿‖y‖2 or even better η= 0.
While having an S-sparse approximations is useful for storing signals - store S values and S addresses in-
stead of d values - or for denoising signals - throw away η, looking through

(K
S

)
possible index sets to find

this best S-sparse approximation is certainly not practical. Therefore researchers have developed subopti-
mal but faster approximation routines, such as thresholding, (Orthogonal) Matching Pursuit and the Basis
Pursuit Principle, together with conditions when these routines will find a best approximation. For instance
if the dictionary is incoherent, that is

max
i 6= j

|〈φi ,φ j 〉| =µ¿ 1, (2)

then OMP/BP will recover any best S-sparse approximation as long as S . µ−1. Unfortunately this means
that either S or µ have to be unpractically small. Even more unfortunately this bound can be sharp. One
way to go around the coherence bound is to assume that the dictionary is a random matrix, which with
high probability satisfies a restricted isometry property. Under this additional assumption many algorithms
can be shown to work for S . d/log(K ), and this concept is widely used for compressed sensing. However,
for sparse approximation the dictionary is usually fixed and we cannot assume that is satisfies a restricted
isometry property.
Another way to characterise the performance of a sparse approximation algorithm is to consider its aver-
age performance. That is, if we assume a random model on the sparse signals we want to know how likely
an algorithm is to recover the best S-sparse approximation. The only two algorithms/schemes for which
such results are known are thresholding, [2], and the Basis Pursuit Principle, [4]. However, thresholding
only works for signals whose coefficients have small dynamic range, maxi∈I |xi | ≈ mini∈I |xi |, while the Ba-
sis Pursuit Principle is computationally costly and it is unknown how stable the results are in a noisy setting.
The goal of this project is to investigate the average sparse approximation properties of Hard Thresholding
Pursuit (HTP), an algorithm, which has theoretical recovery guarantees in the context of compressed sens-
ing, works also for larger dynamic ranges and has computational complexity between thresholding and BP.

Tasks:

• Read [1], implement the HTP algorithm and reproduce the simulation results in the paper.

• Deduce a worst case result for the performance of HTP for sparse approximation.

• Test the performance and stability of the HTP algorithm in the context of average sparse approxima-
tion on synthetic data.
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* Compare the performance of HTP to thresholding, [2], and OMP, [3], on synthetic data.

* Compare the performance of HTP to thresholding and OMP on image data.

L Derive a theoretical statement about the average case performance of HTP.
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