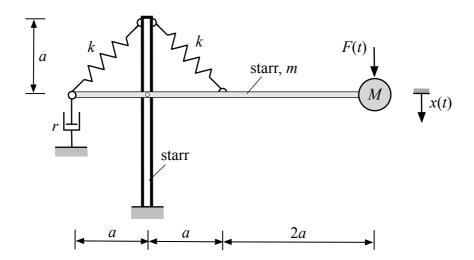
Familienname: Vorname: Kenn- u. Matr.Nr.:

1. Beispiel (10 Punkte)


Gegeben:

Ebenes schwingungsfähiges System lt. Skizze in entspannter Federlage:

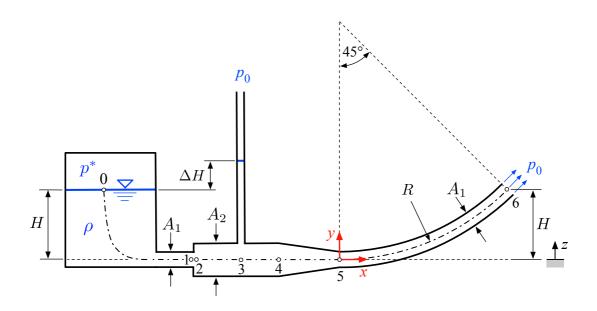
- Punktmasse M
- Starrer, homogener, reibungsfrei gelenkig gelagerter Balken: Länge 4a, Masse m
- Linear elastische Feder: Federsteifigkeit k
- Geschwindigkeitsproportionaler Dämpfer: Dämpferkonstante r
- Kraftanregung: Einzelkraft *F*(*t*)

Gesucht:

- 1. Anzahl der Freiheitsgrade
- 2. Darstellung der Kinematik des Systems (Momentanlage) in der unten dargestellten Skizze und Berechnung des Federwegs für beide Federn (*Hinweis*: Schreiben Sie den Federweg als Produkt der Lagekoordinate *x* und einer Konstanten an)
- 3. Bewegungsgleichung des Systems für kleine Schwingungen, formuliert in x(t), mit den Lagrangeschen Gleichungen
- 4. Kontrolle der Bewegungsgleichung für das ungedämpfte System (r = 0) mit dem Energiesatz
- 5. Statische Gleichgewichtslage x_{stat}
- 6. Eigenkreisfrequenz des Systems

Für dieses Beispiel haben wir uns von der Dubrovnik-Brücke (in Kroatien) inspirieren lassen:

Familienname: Vorname: Kenn- u. Matr.Nr.:


2. Beispiel (10 Punkte)

Gegeben:

- Stationärer Abfluss aus einem Druckbehälter über ein Rohrsystem mit abrupter Rohrerweiterung (Abschnitt 1-2) gemäß Skizze
- ullet Inkompressible, reibungsfrei strömende Flüssigkeit mit der Dichte ho
- Querschnittsflächen der Rohrleitung: A₁, A₂
- Stationäre Wasserspiegelhöhe *H*
- Rohrkrümmer (Abschnitt 5-6): Radius R
- Umgebungsdruck *p*₀
- Konstanter Überdruck $p^* = p_{abs} p_0$ im Hochbehälter

Gesucht:

- 1. Geschwindigkeit v_6 als Funktion von p^* , ρ , A_1 und A_2
- 2. Geschwindigkeiten v_1 und v_2 jeweils als Funktion von v_6 , A_1 und A_2
- 3. Überdruck p_3 als Funktion p^* , ρ , g, H, v_6 , A_1 und A_2
- 4. Höhenunterschied ΔH als Funktion von v_6 , g, A_1 und A_2
- 5. Qualitativ richtige Darstellung der Strom-, Druck- und Energielinie zwischen den Punkten 0 und 6 in der unten dargestellten <u>Skizze des Systems</u> und Bemaßung der entsprechenden Höhenanteile mit den unter 1. 4. berechneten Größen
- 6. Dynamische Momentenwirkung \vec{M}_W (bezüglich des Punktes 5) <u>auf den Rohrkrümmer (Rohrabschnitt 5-6)</u> zufolge der strömenden Flüssigkeit

