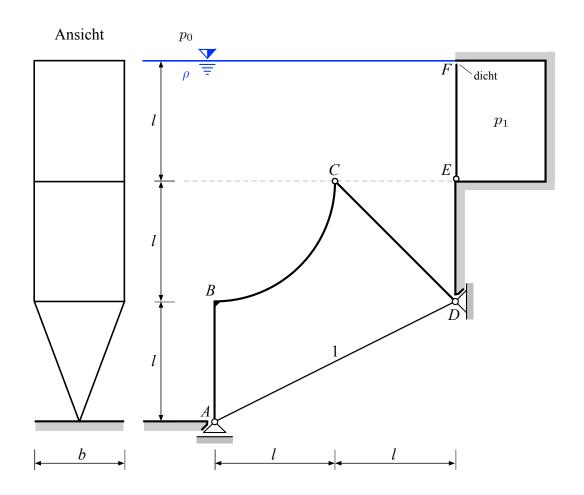
1. Teil (Vorbereitung) 09.04.2021 Familienname: Vorname:

Kenn- u. Matr.Nr.:


1. Beispiel (10 Punkte)

Gegeben:

- Mechanisches System lt. Skizze: Längenmaß *l*, Breite *b*
- Ebene Wände AB und CD
- Kreiszylindrisch gekrümmte Wand BC
- Ebene, rechteckförmige Klappe EF
- Pendelstütze 1
- Homogene, inkompressible, schwere Flüssigkeit der Dichte ρ
- Gasdruck $p_1 > p_0$, Gas<u>über</u>druck $p^* = p_1 p_0$
- Referenzdruck p_0

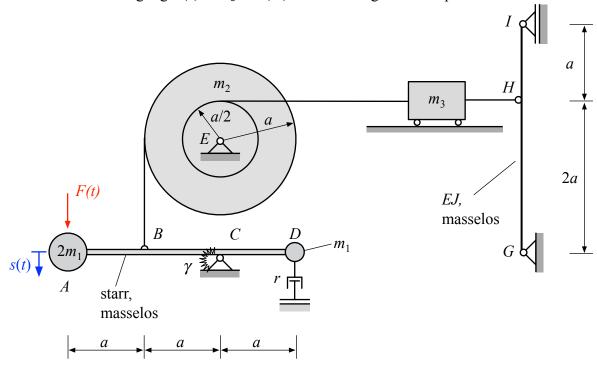
Gesucht:

- 1. Verlauf des Flüssigkeits<u>über</u>drucks auf die Wände AB, BC, CD und auf die Klappe EF als auch der Verlauf des Gas<u>über</u>drucks p^* auf die Klappe EF (Skizze mit Werten)
- 2. Teilresultierende zufolge des Flüssigkeits<u>über</u>drucks auf die Wände *AB*, *BC* und *CD* sowie die Teilresultierenden zufolge des Flüssigkeits- und Gas<u>über</u>drucks auf die Klappe *EF*
- 3. Lage der Wirkungslinien der Teilresultierenden (Skizze)
- 4. Der Gas<u>über</u>druck p^* , sodass die Klappe in der dargestellten Lage verbleibt
- 5. Moment im Punkt *B* mit dem Prinzip der virtuellen Arbeit (Skizze der Kinematik)

1. Teil (Vorbereitung) 09.04.2021 Familienname: Vorname:

Kenn- u. Matr.Nr.:

2. Beispiel (10 Punkte)


Gegeben:

Ebenes schwingungsfähiges System lt. Skizze in entspannter Federlage (Längenmaß a):

- Starrer masseloser Stab AD: Länge 3a
- Punktmassen: $2m_1$, m_1 und m_3
- Starre homogene Kreisscheibe: Masse m_2 , Innenradius a/2, Außenradius a
- Linear elastischer, masseloser Biegestab: Länge 3a, Biegesteifigkeit EJ
- Linear elastische Feder: Drehfedersteifigkeit γ
- Geschwindigkeitsproportionaler Dämpfer: Dämpfungskonstante r
- Gewichtslose, ideale Seile, die auf den Scheiben reibungsfrei haften
- Kraftanregung: Kraft F(t)

Gesucht:

- 1. Effektive Federsteifigkeit k_{eff} des Biegestabs im Punkt H mit Hilfe des Mohrschen Verfahrens als Funktion von EJ und a
- 2. Anzahl der Freiheitsgrade des Ersatzsystems und mechanische Deutung der Lagekoordinate s(t)
- 3. Bewegungsgleichung des Systems für kleine Schwingungen, formuliert in s(t), mit Hilfe des Schwerpunkt- und des Drallsatzes
- 4. Statische Gleichgewichtslage s_{stat} und Bewegungsgleichung für Schwingungen um die statische Gleichgewichtslage
- 5. Für das ungedämpfte System (r = 0):
 - a) Eigenkreisfrequenz ω
 - b) Maximales Moment in der Drehfeder in Punkt C im eingeschwungenen Zustand für die harmonische Anregung $F(t) = F_0 \cos(vt)$ mit der Erregerkreisfrequenz v

