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Abstract—Rotary-linear electric machines can perform cou-
pled rotary and linear motion. Additionally, they can have
magnetic bearings (MBs) integrated and magnetically coupled
with the rotary, linear or rotary-linear machine operation. Since
rotary-linear machines with MBs have not been thoroughly ana-
lyzed in literature, the models that provide understanding of their
operation and give basis for the control system implementation
are not entirely covered. Hence, in this paper an enhanced
complex space vector based model of the rotary-linear machine
with MBs is derived and expressions for the torque, thrust force
and MB force are given. The rotary-linear machine complex
space vector of the voltage, current or flux linkage, is defined
using the proposed transformation with two complex frames,
one related to the rotation and MBs and another to the linear
motion. This results in complex space vectors with two complex
units, however, the techniques used for a conventional complex
space vector calculation can also be applied to the proposed
complex space vector description. This is also experimentally
validated on a hardware prototype of a magnetically levitated
linear tubular actuator (MALTA), whose position control system
is designed and implemented based on the enhanced space vector
modeling approach, with the dynamic operation of the MALTA
including linear motor operation with a axial stroke of 10 mm
and mechanical frequency of 17 Hz.

Index Terms—Active Magnetic Bearings, Complex Space Vec-
tor, Multiphase Machine, Rotary-Linear Motor, Synchronous
Machine.

I. INTRODUCTION

The actuators that can achieve rotary, linear or coupled

rotary-linear motion are used in many versatile applications

[1] such as pick-and-place robots [2], [3], active suspension

systems [4], compressors [5], wave energy harvesting [6],

to mention a few. One of the main parts that limits the

performance of the rotary-linear actuators are the bearings.

Most of the conventional actuators use mechanical bearings,

either ball or slider bearings. These bearings introduce draw-

backs such as particle generation and the need for lubrication,

which is a limiting factor for purity sensitive applications.

In high-precision applications (∼ nm range), the thermal
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expansions of the mechanical bearings limit the precision of

the system and make it temperature dependent. Moreover,

mechanical bearings limit the lifetime of the actuator [7]. In

order to partially overcome these issues, in some applications

air bearings are used [8], [9], which on the other hand increase

the system complexity due to the needed external air supply

and the operation in low pressure environments is not possible.

All the above mentioned issues may be solved with magnetic

bearings (MBs) [10], which are already largely employed

in high-purity [11], high-speed applications [12], ultra high-

speed systems [13] or nanometer precision planar actuators

[14]. However, the usage of MBs in rotary-linear actuator

systems has not been thoroughly studied in literature. In [15]

and [16], tubular linear actuators with separate and integrated

MBs are shown, but mainly focusing on the magnetic design

without extensive details about the models used for control

system design and implementation. In [16], the integration

of the two machines (the linear and the rotary MB machine)

results in a winding similar to the magnetically coupled rotary-

linear machine winding [17]. Such a machine, having the

winding used for the magnetic levitation that is at the same

time magnetically coupled with the linear motion, requires

a decoupling transformation that clearly indicates the current

components contributing only to the MB forces or only to the

thrust force. Only in this case, an independent and decoupled

control of the mentioned forces can be achieved. Therefore, in

this paper an enhanced complex space vector model is derived

which allows to control any rotary-linear machine with/without

MB based on only one space vector, which is actually rotating

in two complex planes, one for the rotary and one for the

linear movement. This model may also directly be applied to

a linear machine with integrated MBs [16], which is a special

case of the rotary-linear machine with zero rotational speed.

Moreover, in order to easily follow the derivations, standard

complex space vector models of the rotary and linear machines

with and without MBs are revisited and a general three-phase

machine model used throughout the paper is established. To

the authors best knowledge, for the first time in the literature,

a complex space vector of the coupled rotary-linear machine

is formulated and used to explain the torque, thrust force and

the magnetic bearing force generation principles.

In Sec. II the complex space vector models of the rotary

machine, rotary machine with MBs, linear machine, rotary-

linear machine, rotary-linear machine with MBs and the linear
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machine with MBs are established. In Sec. III a linear machine

with integrated MBs, also called MALTA (MAgnetically Lev-

itated Tubular Actuator) is further investigated. Namely, its

winding that has drive and bearing current components (called

combined winding) causes peculiar arrangement of these com-

ponents where the drive currents act as zero-sequence currents

from the bearing currents stand point of view. In Sec. IV the

realization of the MALTA hardware and the control system de-

sign and implementation are described. Finally, in Sec. V, the

decoupled control achieved with the enhanced complex space

vector modeling is verified with experimental measurements

obtained from the existing prototype. Sec. VI concludes the

paper and gives an outlook.

II. COMPLEX SPACE VECTOR MODEL

In general, complex space vector theory may be used to

model symmetric, asymmetric, sinusoidal and non-sinusoidal

steady state and transient phenomena of three-phase electric

machines [18]. Mainly, it is developed to describe the transient

behavior of electric machines, where traditional single-phase

equivalent circuit can not be used [19]. Especially in modern

actuator systems, where electric machines rarely operate in

steady-state sinusoidal regime with constant amplitude and

electrical frequency of the supply voltage. For the first time,

the space vector theory was introduced in [20] and their

purpose was to model alternating current (AC) machines in

direct online drives. Today, in modern industry, complex space

vector theory is used to model three-phase systems, such that

in three-phase power converters, which are either connected to

a three-phase electric grid [21] or to a three-phase electric ma-

chine [22]–[26], the phase currents and voltages are properly

controlled. Compared to the other approaches, e.g. generalized

machine theory where pure mathematical formalism is applied

and an electric machine is viewed ’from outside‘ as ’black

box‘, with electric currents at the input and torque and/or

force at the output, space vector theory allows to view machine

’from inside‘ and model spacial field distribution in the air gap

[27].

Based on this, in this section the complex space vector mod-

els of three-phase electric machines, focusing on the magnetic

coupling of the rotary and linear motion [17] with MBs, are

derived. In order to introduce a general three-phase electric

machine model, the derivation starts with the conventional

rotary machine and develops further towards the rotary-linear

machine with MBs.

For the sake of clarity, i and j are used to denote complex

units of the two different complex planes related to rota-

tion/magnetic levitation and linear motion, respectively. For

the notation of electric currents always either indices or the

complex space vector notation i or i is used.

A. Rotary Machine: Torque

An example of a three-phase electric machine with 6 teeth

in the stator and 8 poles in the rotor is shown in Fig. 1. For

different machines these numbers may differ, but they would

still have a three-phase system in the stator. In order to simplify

and generalize the analysis of three-phase electric machines, a
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Fig. 1: An example of a rotary machine realization with (a) 6
concentrated coils in the stator and (b) 8 poles in the rotor, i.e. the
number of the pole pairs is Npp,R = 4. The mechanical rotational
speed of the rotor is Ωmech, and it is related to the electrical angular
speed as ωR = Npp,RΩmech.
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Fig. 2: (a) The three-phase electric machine model with the 3 coils
spatially displaced by 120° and the 2-pole rotor. The mechanical
rotational speed of the rotor is equal to the electrical angular speed of
the modeled machine (for the rotary machine ωR). (b) The complex
space vector machine model represented either in the stationary
reference frame (�,�) or in the rotary reference frame (�dq,�dq).

model with 3 stator coils and a 2-pole rotor is used, as shown

in Fig. 2(a). It should be noted that this model can resemble

concentrated and distributed stator windings, with or without

iron teeth, i.e. slotted or slotless windings, which are spatially

displaced by 120°. Furthermore, also the electrical quantities

such as the voltages on the terminals u{a,b,c}, the currents in

the coils i{a,b,c} and the flux linkages of the coils ψ{a,b,c} are

shifted by 120° in time (cf. Fig. 2(a)). These quantities are

described by their amplitude X̂R and phase ωRt + ϕx as⎡
⎣xa

xb

xc

⎤
⎦ = X̂R ·

⎡
⎣cos (ωRt + ϕx + γa)

cos (ωRt + ϕx + γb)
cos (ωRt + ϕx + γc)

⎤
⎦ , (1)

where x can be any of the quantities u, i or ψ denoted as

x ∈ {u, i, ψ} with the amplitude X̂R ∈ {ÛR, ÎR, Ψ̂R}. The

initial phase angle is given as ϕx while γa = 0°, γb = −120°

and γc = 120° are the electrical angles that determine the

three-phase system, where the three phases for the rotation

are denoted with lowercase letters as ‘a’, ‘b’ and ‘c’. For

symmetric electric machines, the sum of the quantities is equal

to zero, i.e. xa + xb + xc = 0. Consequently, the three-phase

system {xa, xb, xc} is determined by knowing only 2 out of

3 quantities (e.g. if the first two quantities are given, the

third one is xc = −xa − xb). This allows to model the

three-phase system in a two-dimensional coordinate system,

i.e. the complex plane (�,�), which is extensively used in

the analysis of three-phase electric machines. As shown in

Fig. 2(a), the complex plane (�,�) is superimposed to the

general three-phase electric machine model. Based on that,

a complex space vector may be defined using the positions
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of the coils in the model and the instantaneous values of the

three-phase quantities as

x
Δ
=

2

3

[
1 a a2

] ⎡⎣xa

xb

xc

⎤
⎦ (2)

where a = ei(2π/3) is a complex number and i the imaginary

unit. This results in a space vector rotating in the complex

plane (�,�) which fully describes the three-phase quantities

present in the windings. The amplitude of the space vector is

the magnitude |x| = X̂R and its argument equals the phase

of the quantities arg(x) = ωRt + ϕx, which is graphically

represented in Fig. 2(b). This can be directly seen by writing

the space vector in its exponential form x = X̂eiϕxeiωRt.

The instantaneous values of the quantities are again simply

obtained as xa = �{x}, xb = �{a2 x} and xc = �{a x}.

The space vector model of the three-phase electric ma-

chine can be further simplified by its representation in

the rotary complex frame (�dq,�dq), also known as ‘dq’

frame. The complex space vector in the ‘dq’ frame rotat-

ing with the angular frequency ωR removes the electrical

angular speed from its representation and it is equal to

xdq = x e−iωRt = X̂eiϕx (cf. Fig. 2(b)). Its real and imagi-

nary components (xdq = xd + ixq) are known as ‘dq’ com-

ponents and are related to the amplitude and phase angle as

X̂R =
√

x2
d + x2

q and ϕx = atan2(xq/xd), where atan2 is

the function that calculates the angle between the xdq and the

‘d’ axis considering also the periodicity between ±π/2 of the

tangent function [28].

In summary, the three-phase electric machine quantities may

be represented either with the three-phase electric machine

model shown in Fig. 2(a) in combination with the system of

equations given in (1), or with the complex space vector model

from Fig. 2(b), which is equal to x in the stationary complex

frame or xdq in the rotary reference frame.

The established three-phase electric machine complex space

vector representation may also be used to determine the

mechanical torque Tz of the machine. For this purpose,

in the first step the instantaneous input electric power

is determined. By using the three-phase quantities given

in (1), the instantaneous electrical power is calculated as

pel =
∑

k={a,b,c} ukik. The same power may be obtained by

using the complex space vectors of the voltage and current

as pel = �{3/2u i∗} = �{3/2udq i
∗
dq}, where ∗ denotes the

conjugate complex number. In both cases, it is necessary to

determine the voltage equation. The three-phase model will

have 3 voltage equations (i.e. one equation per coil), which can

be put together into a single complex space vector equation

by using the transformation defined in (2) as

u = Ri + L
di

dt
+

dψ

dt
, (3)

where R is the resistance of the coils and L is the inductance

(cf. Fig. 2(a)). It should be noted that the mutual inductance

between the coils in Fig. 2(a) is neglected in order to have

a clearer presentation, but can be easily included while (3)

would have the same form. By using (3), the electric power

is equal to

pel =
3

2
RÎ2R +

3

2
L�

{
di

dt
i∗
}

+
3

2
�
{
dψ

dt
i∗
}
. (4)

The first term 3/2RÎ2R models the copper losses in the stator

winding, the second term 3/2L�{di/dt i∗} represents the

power used to change the magnetic energy in the machine,

while the third term 3/2�{
dψ/dt i∗

}
is further analyzed.

The space vector of the flux linkage ψ can be expressed as

ψ = Ψ̂Re
iϕψeiωRt = (ψd + iψq)e

iωRt. Usually, the rotating

complex frame, the ‘dq’ frame, is positioned such that the ‘d’

axis �dq coincides with the flux linkage space vector ψ, which

leads to ϕψ = 0° (cf. Fig. 2(b)). Therefore, the flux linkage

space vector in the stationary complex frame is ψ = Ψ̂Re
iωRt,

while in the rotary ‘dq’ frame ψ
dq

= ψd = Ψ̂R. Similarly, the

conjugate complex space vector of the current in the stationary

complex frame is i∗ = (idqe
iωRt)∗ = i∗dqe

−iωRt, where the

complex conjugate in the ‘dq’ frame is i∗dq = id − i iq. Using

these expressions for ψ and i∗, the third term of (4) is further

developed as

3

2
�
{
dψ

dt
i∗
}

=
3

2

dΨ̂R

dt
id + ωR

3

2
Ψ̂R iq, (5)

where the first term only results when also a change in the

flux linkage magnitude Ψ̂R is considered. Hence, this term

represents the power necessary to change the flux linkage Ψ̂R,

e.g. used for field weakening operation of the electric machine

and may be changed with the ‘d’ component of the current

id. The second term represents the mechanical power of the

machine, which at the shaft is equal to pmech = ΩmechTz,

where Ωmech is the mechanical rotational speed of the rotor

in rad s−1 and Tz is the mechanical torque. Having in mind

the relation of the electrical angular speed and the mechanical

speed ωR = Npp,RΩmech, where Npp,R is the number of pole

pairs in the rotor, the mechanical torque is equal to

Tz =
3

2
Npp,R Ψ̂Riq. (6)

Therefore, the mechanical torque is controlled by the ‘q’

current component (iq).

B. Rotary Machine: Bearing Force

Rotary machines are mainly used to generate torque, but

may also be used to generate the bearing force if the winding

configuration, i.e. the interconnection between several phase

windings is accordingly adjusted. For a given number of

stator teeth and pole pairs Npp,R in the rotor, the winding

configuration for the torque generation can be optimized and

is well documented in literature [29] and there are even online

tools for the winding configuration calculation [30]. For the

bearing force generation the same winding arrangement as

for the torque generation can be used, while only the wind-

ing interconnections have to be reconfigured. This actually

results in a different virtual number of pole pairs of the

stator winding, which means that depending on the winding

interconnection a different stator field harmonic is pronounced
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by the three-phase currents. For example, if the number of the

pole pairs in the rotor is Npp,R, the winding configuration

optimized for the torque generation with Npp,B = Npp,R ± 1
pole pairs should be used to generate the bearing force. In

literature, this is known as the self-bearing motor Npp,R ± 1
type [10], [31]. To show this in an example, the winding

configuration of the machine shown in Fig. 1, which has con-

centrated windings with 6 teeth and a rotor with Npp,R = 4, is

analyzed and reconfigured, i.e. changing the interconnection of

phase windings, such that the rotary machine can also generate

the bearing force. Hence, in order to generate torque, the stator

winding should be connected such that the three-phase currents

in the coils have directions as denoted in Fig. 1(a), which can

be represented with the set as WT = {ia, ib, ic, ia, ib, ic}. As

already mentioned, to use the same winding for the bearing

force generation, a winding configuration for Npp,B = 4 ± 1
pole pairs should be used. Since it is not possible to have a

concentrated winding with 6 teeth and 3 pole pairs [30], a

winding configuration that is able to generate Npp,B = 5 pole

pairs has to be used, which in this case means that the coils are

connected as WB = {ia,−ib, ic,−ia, ib,−ic}. In contrast to

WT, the winding configuration WB actually means that now

the two corresponding phase windings are connected in anti-

series instead of being connected in series, thus by applying

the three-phase currents to the rotary electric machine shown

in Fig. 1, with the WB winding configuration the bearing force

onto the rotor is generated.

In order to control the magnetic bearing forces (Fx and Fy),

a three-phase model of the magnetic bearing machine similar

to the one shown in Fig. 2(a) is established. The difference

between the torque machine winding and the bearing machine

winding is that now due to this anti-series connection of the

phase windings the overall flux linkage in the bearing winding,

i.e. the sum of the flux linked with both phase coils, is equal

to 0 when the rotor is in its center position, i.e. when there

is no radial displacement of the rotor, x = 0 and y = 0,

independent from the angular position of the rotor. A nonzero

flux linkage in the bearing winding only appears when a radial

displacement of the rotor is present. To model this, the coils in

the three-phase electric machine model from Fig. 2(a) are split

in half, placed from both sides of the rotor and are connected

in anti-series as shown in Fig. 3(a). As will be explained in

the following, with this arrangement the total flux linkage in

all coils becomes nonzero when the rotor is displaced from

the center, i.e. x �= 0 and/or y �= 0, and can be calculated as

ψ{a,b,c} =
dΨ̂R

dx
x cos(ωRt + ϕψ + {γa, γb, γc})−

dΨ̂R

dy
y sin(ωRt + ϕψ + {γa, γb, γc}),

(7)

where dΨ̂R/dx and dΨ̂R/dy are the change of the flux linkage

with respect to the radial displacement. The deduction of

this radial displacement-dependent flux linkage given in (7)

is explained for phase ‘a’ based on Fig. 3(b-d).
In a first step, a displacement x in x−direction is assumed,

while the rotor flux is also pointing in positive x−direction.

As shown in Fig. 3(b), a displacement in positive x−direction

ai au
+

�
�

ai au
+

�
�

ai au
+

�
�

ai au
+

�
�

(a)

a-a

R,L
x

y

b

c

aψ

−

(c)

a-a

R,L
x

y

b

c

aψ

−

(d)

a-a

R,L
x

y

b

c

aψ

−

(b)

a-a

R,L
x

y

b

c

aψ

−

y

y

x

x

Fig. 3: (a) The three-phase electric machine bearing force model
where a radial displacement of the rotor in x− and y−direction is
allowed. It is derived from the three-phase machine model shown in
Fig. 2(a) by splitting the coils in half, placing them from both sides of
the rotor and connecting them in anti-series. This allows to model the
bearing winding, in which the flux linkage only exists when the rotor
is displaced from its center. (b) Radial flux density component of the
rotor PMs. The rotor is in the center and, therefore, the flux linkage
of the first phase ψa = 0. (c) The rotor is displaced in x−direction
by x with the rotary orientation (ωRt + ϕψ) = 0. Assuming the

constant sensitivity dΨ̂R/dx, the flux linkage of the first phase is

ψa = (dΨ̂R/dx)x. (d) The rotor is displaced in y direction by
y with the rotary orientation (ωRt + ϕψ) = π/2. Assuming the

constant sensitivity dΨ̂R/dy, the flux linkage of the first phase is

ψa = −(dΨ̂R/dy) y.

leads to an increased flux linkage in the right coil, while

the flux linkage with the left coil is reduced, thus the total

flux linkage with both coils is increasing. Assuming a certain

constant sensitivity dΨ̂R/dx = χpm,x the resulting flux

linkage can be calculated as (dΨ̂R/dx)x = χpm,x x. As

can be noticed, however, this is only true when the rotor’s

angular position is equal to (ωRt + ϕψ) = 0°. If e.g. the

rotor is rotated by 180°, the flux linkage would be the same

as with 0°, but in the negative direction, which means a

multiplication by −1. Furthermore, at the angular positions 90°

and 270° a displacement in x−direction ideally does not result

in any total flux linkage. Consequently, the arbitrary rotational

position of the rotor (cf. Fig. 3(c)) has to be considered,

which for an x−displacement can be done by multiplying

(dΨ̂R/dx)x = χpm,x x with cos(ωRt + ϕψ + γa).

In analogy to the x displacement, the influence of a y
displacement can be analyzed. As it may be imagined based on

Fig. 3(d), when the rotor flux is pointing in y−direction, the

resulting flux linkage is (−dΨ̂R/dy) y = −χpm,y y, if again

a certain constant sensitivity dΨ̂R/dy = χpm,y is assumed.

Furthermore, the flux linkage again depends on the rotating

position, which for a y displacement has to be considered

with sin(ωRt + ϕψ + γa) and thus leads to the second term

of (7). By applying now the transformation given in (2) and

assuming that χpm,x = χpm,y = χpm,R, the complex space
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Fig. 4: (a) A three-phase electric linear machine stator realization
with 6 teeth single layer winding. (b) Rotor (also called ’mover’ for
linear machines) with 4 poles. The pole pair width (twice the pole
pitch) is denoted as τpp.

vector of the bearing flux linkage in the stationary complex

frame is obtained

ψ = χpm,R (x + iy) eiϕψeiωRt, (8)

where x and y equal the radial displacements [32]. The com-

plex space vector of the flux linkage in the rotary ‘dq’ frame

is ψ
dq

= χpm,R (x + iy) eiϕψ . Since the rotating ‘dq’ frame

is positioned such that ϕψ = 0, the complex space vector of

the flux linkage is then equal to ψ
dq

= χpm,R (x + iy).

To obtain the expressions for the mechanical bearing forces

Fx and Fy, similar as for the mechanical torque, the expression

of the instantaneous electric power pel is analyzed. The electric

power may be obtained by using the complex space vectors

as pel = �{3/2u i∗} = �{3/2udq i
∗
dq}, which results in the

same expression found in (4). Accordingly, for the mechanical

bearing force analysis only the last term given in (4) is needed,

which leads to

3

2
�
{
dψ

dt
i∗
}

=
3

2
χpm,R (vxid + vyiq) +

3

2
χpm,R ωR (xiq − yid) ,

(9)

where vx = dx/dt and vy = dy/dt are the rotor velocities

in x− and y−direction. The total mechanical power with the

allowed radial displacement of the rotor is pmech = vx Fx +
vy Fy+ΩmechTz. Comparing the terms of pmech with the terms

in (9), the bearing forces are

Fx =
3

2
χpm,R id, Fy =

3

2
χpm,R iq. (10)

As can be noted, the radial force components can be inde-

pendently controlled with id and iq current components of

the bearing winding. In addition, there is a parasitic torque

created when the rotor radial displacement is nonzero, which

is equal to Tz = (3/2)Npp,R χpm,R (xiq− yid) and has to be

compensated by the controller.

C. Linear Machine: Thrust Force

An example of the three-phase electric linear machine

realization is shown in Fig. 4. It should be noted that instead

of the pole pair number for the rotary machine, the pole pair

width τpp is given for the linear machine.

From the perspective of the electrical machine analysis,

the three-phase linear electric machine is similar to the ro-

tary machine, i.e. the stator winding is characterized by the

three-phase voltage, current and the flux linkage⎡
⎣xA

xB

xC

⎤
⎦ = X̂L ·

⎡
⎣cos (ωLt + θx + γA)

cos (ωLt + θx + γB)
cos (ωLt + θx + γC)

⎤
⎦ , (11)

where X̂L ∈ {ÛL, ÎL, Ψ̂L} is the amplitude, ωL is the linear

machine electrical angular speed, θx is the phase angle and

γA = 0°, γB = −120° and γC = 120° are the electrical

angles that determine the three-phase system, where the three

phases for linear motion are denoted with uppercase letters

as ‘A’, ‘B’ and ‘C’. Therefore, the same model from Fig. 2
may be used for the linear machine analysis. In the rotary

machine the rotational mechanical speed Ωmech is related to

the electrical angular speed ωR, while for the linear machine

the linear mechanical speed vz is related to the linear machine

electrical angular speed as

ωL =
2π

τpp
vz. (12)

Similar to the rotary machine, where the electrical power is

analyzed based on (4) to get the expression for the mechanical

torque, for the linear machine the same expression can be used,

just with the linear machine quantities. Therefore, the last term

of (4) is

3

2
�
{
dψ

dt
i∗
}

=
3

2

dΨ̂L

dt
id + ωL

3

2
Ψ̂L iq, (13)

where Ψ̂L is the flux linkage of the linear machine. The

first term again describes the magnetic power to change

the flux linkage (flux weakening), while the second term is

related to the mechanical output power. By using (12) and the

mechanical power pmech = vzFz, the thrust force is obtained

as

Fz =
3π

τpp
Ψ̂Liq (14)

In analogy to the mechanical torque obtained in a rotary

machine, the thrust force is controlled by the ‘q’ current

component iq.

D. Linear Machine: Bearing Force

In order to generate and control the bearing force onto

the rotor of a linear machine, the air gap flux density has

to be controlled around the rotor circumference such that a

‘radial pull’ is created in the desired direction. However, the

three-phase linear machine has a winding that is circumferen-

tially homogeneous (cf. Fig. 4(a)). Consequently, the air gap

flux density around the circumference cannot be adjusted with

the linear machine winding. Therefore, the conventional linear

machine cannot be used as a bearing machine.

E. Rotary-Linear Machine: Torque + Thrust Force

A rotary-linear machine may be realized by coupling a ro-

tary and a linear machine either mechanically or magnetically.

The analysis of the rotary-linear machine with the mechanical

coupling may be split into the separate analyses of the rotary

and linear machines explained in Sec. II-A and Sec. II-C,
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respectively. The analysis of the rotary-linear machine with

the magnetic coupling is clarified in this section. A realization

example of such a machine is shown in Fig. 5. Since the stator

windings have to be able to generate torque and thrust force at

the same time, concentrated stator coils are needed, which can

be seen as a combination of the winding arrangements used for

the rotary machine (denoted with lowercase letters {a,b,c}) and

the linear machine (denoted with uppercase letters {A,B,C}).

As illustrated in Fig. 5(a), the concentrated coils of the rotary-

linear machine resemble the rotary machine in rotary direction

and the linear machine in linear direction. Similarly, the

rotor’s PM arrangement results from a combination of the

PM arrangement needed for the rotary machine and the linear

machine, which leads to a checkerboard-type PM arrangement

(cf. Fig. 5(b)). Therefore, the number of pole pairs in rotary

direction is again Npp,R, and the pole pair width in linear

direction is τpp.

Finally, also the voltages and currents which have to be

applied to the magnetically coupled rotary-linear machine

windings can be seen as a combination of the quantities needed

for the rotary machine and the linear machine. Compared to

a conventional rotary machine, for example, this means that

for the rotary-linear machine also a rotating flux density has

to be generated by the stator windings in order to produce

torque, however, in this case also the linear position of the

rotor has to be considered, since for each rotary three-phase

winding set (e.g. {aA, bA, cA} compared to {aB, bB, cB}) the

PM alignment below each three-phase winding set is different

and therefore different torque-generating currents have to be

injected into the rotary three-phase windings. Accordingly,

the same is also true in linear direction, which means that

for the generation of thrust force, for each linear three-phase

winding set (e.g. {aA, aB, aC} compared to {bA, bB, bC}) the

rotation angle has to be considered, since the PM alignment

for each linear three-phase winding set is different. This can

be achieved by multiplying the rotary three-phase quantities

(e.g. cos(ωRt)) with the linear three-phase quantities (e.g.

cos(ωLt)), which corresponds to a modulation of the rotary

quantities in linear direction with the electrical angular speed

ωL and a modulation of the linear quantities in rotary direction

with the electrical angular speed ωR. Therefore, the phase

quantities of the rotary-linear machine have the following form

x{a,b,c}{A,B,C} = X̂RL cos (ωRt + ϕx + {γa, γb, γc})×
cos (ωLt + θx + {γA, γB, γC}) ,

(15)

where X̂RL ∈ {ÛRL, ÎRL, Ψ̂RL} is the amplitude, ϕx is the

rotary initial phase angle and θx is the linear initial phase

angle. It should be noted again that the lowercase letters

{a, b, c} denote the rotary component, while the uppercase

letters {A,B,C} denote the linear component.

In order to unify the analysis of the rotary-linear machines

and apply the same techniques as for the rotary and linear ma-

chines, the complex space vector of the magnetically coupled

rotary-linear machine is defined. Hence, two complex planes

are needed, one for the rotary component (with the complex

unit i) and another for the linear component (with the com-

(a) (b)
z

r ϕ

North
PM Pole

South
PM Pole

ppτ

aAi
aBi

bBi

aAi

bAi

bAi

cAi

cAi

aCi

bCi

Fig. 5: (a) A rotary-linear machine stator realization with 6 teeth for
the rotation and 3 teeth for the linear motion. (b) The rotor of the
rotary-linear machine with Npp,R = 4 pole pairs for the rotation and
with a pole pair width of τpp for the linear motion.

plex unit j). The complex space vector for the magnetically

coupled rotary-linear machine is defined with the following

transformation

x
Δ
=

4

9

[
1 a a2

] ⎡⎣xaA xaB xaC

xbA xbB xbC

xcA xcB xcC

⎤
⎦
⎡
⎣ 1
b

b2

⎤
⎦ , (16)

where x ∈ {u, i, ψ}, a = ei(2π/3) and b = ej(2π/3) are com-

plex numbers. It should be noted that the ‘double underline’

x denotes the complex space vector with the two different

complex units. This results in the space vector rotating si-

multaneously in two complex planes, (�i,�i) and (�j ,�j),
and fully describing the phase quantities of the rotary-linear

machine. The amplitude of the complex space vector is the

magnitude |x| = X̂RL and its arguments are the rotary and

linear phases of the phase quantities, i.e. argi(x) = ωRt+ϕx

and argj(x) = ωLt + θx. This can be seen by writing the

complex space vector in its exponential form as

x = X̂RLe
iϕxejθx︸ ︷︷ ︸
x
dq

eiωRtejωLt, (17)

where x
dq

is the complex space vector in the double-rotary

‘dq’-frame. The defined complex space vector (16) has 4
components

x
dq

= xdd + ixqd + jxdq + ijxqq, (18)

which may be obtained by applying the Euler’s formula (e.g.

eiωRt = cos(ωRt) + i sin(ωRt)) on each of the exponents in

(17). The first index of each component belongs to the rotary

and the second index to the linear machine. Accordingly, the

component xdd equals in both complex planes, i.e. for the

rotary and linear machine, to a real component and thus in both

complex planes is pointing in d−direction. The component

ixqd is purely imaginary for the rotary machine (first index

‘q’) and purely real for the linear machine (second index ‘d’),

while for the component jxqd it is exactly opposite. Finally,

the component ijxqq is a component which in both complex

planes is purely imaginary, therefore in both frames points in

q−direction.

In order to obtain instantaneous values given with (15)

from the complex space vector x, a similar procedure as for

the complex space vector x is applied. Namely, depending

on the desired instantaneous component (x{a,b,c}{A,B,C}) the

complex space vector is multiplied at first with either 1, a, a2, b
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and/or b2 and then the real part � is taken, which can be

written as⎡
⎣xaA xaB xaC

xbA xbB xbC

xcA xcB xcC

⎤
⎦ = �

⎧⎨
⎩
⎡
⎣ 1
a2

a

⎤
⎦ x

[
1 b2 b

]⎫⎬⎭ . (19)

After defining the complex space vector of the rotary-

linear machine, further calculations are similar as for the

rotary or linear machines. Hence, in order to obtain the

expressions for the torque and the thrust force of the rotary-

linear machine, again the power balance, i.e. the conversion

from electrical input power to mechanical output power, is

analyzed. The input electrical power is the sum of the pow-

ers of each phase, which can be written using the double

sum operators pel =
∑

m={a,b,c}
∑

n={A,B,C} umnimn. It

also can be calculated using the complex space vectors as

pel = �{9/4u i∗} = �{9/4u
dq

i∗
dq
}, which together with the

voltage space vector equation given in (3) results in

pel =
9

4
RÎ2RL +

9

4
L�

{
di

dt
i∗
}

+
9

4
�
{
dψ

dt
i∗
}
. (20)

Similar to the analysis of the electric power expression for the

rotary machine (cf. (4)), the first two terms do not contribute

to the mechanical power but consider either the losses in the

windings or the change in magnetic energy. Therefore, the

third term 9/4�
{
dψ/dt i∗

}
is further analyzed. As the ‘dq’

frames are oriented in such a way that ϕψ = 0 and θψ = 0,

the complex space vector of the flux linkage is then equal

to ψ = Ψ̂RLe
iωRtejωLt. The conjugate complex space vector

of the current is equal to i∗ = ÎRLe
−iϕie−jθie−iωRte−jωLt =

i∗
dq
e−iωRte−jωLt, where i∗

dq
= idd− iiqd−jidq+ ijiqq. Using

these expressions, the last term in (20) is equal to

9

4
�
{
dψ

dt
i∗
}

=
9

4

dΨ̂RL

dt
idd + ωR

9

4
Ψ̂RLiqd + ωL

9

4
Ψ̂RLidq.

(21)

The first term is the power used to change the flux linkage

Ψ̂RL, e.g. used for field weakening. The other two terms cor-

respond to the mechanical power of the rotation and the linear

motion. Considering the expression for the total mechanical

power obtained at the shaft pmech = ΩmechTz + vzFz and the

ratios between the electrical and mechanical angular speeds

ωR = Npp,RΩmech and ωL = 2π/τpp vz, the torque and the

thrust force are calculated as

Tz =
9

4
Npp,RΨ̂RL iqd, Fz =

9π

2τpp
Ψ̂RL idq. (22)

As can be noted, the mechanical torque and the thrust force

in the rotary-linear machine can be fortunately controlled with

two independent current components iqd and idq, which for

the corresponding machine part, i.e. rotary or linear machine,

equals to the q−current (torque or force generation) and

in the other machine part results in a d−component (field

weakening/amplification). It should be mentioned that this

result agrees with the torque and the thrust force expressions

derived in [17].

F. Rotary-Linear Machine: Bearing Force

Similar to the rotary machine discussed in Sec. II-B,

the bearing force may also be generated with the

rotary-linear machine. In analogy to the rotary machine,

for the rotary-linear machine the winding configuration

has to be adjusted. Consequently, in order to gener-

ate the torque, the winding configuration in rotary direc-

tion is WT = {iaX , ibX , icX , iaX , ibX , icX}, where ‘X’

in the index denotes any of the linear phase compo-

nents X ∈ {A,B,C}, and to generate the bearing force,

the winding configuration in rotary direction should be

WB = {iaX ,−ibX , icX ,−iaX , ibX ,−icX} (cf. Sec. II-B).

The flux linkage modeling considerations are similar as for

the rotary machine given with (7) and shown in Fig. 3, while

for the rotary-linear machine in addition to the rotation angle,

which is already considered in (7), also the linear position

of the rotor has to be taken into account. Hence, (7) has to

be multiplied with cos (ωLt + θψ + {γA, γB, γC}), which in

other words corresponds to a modulation of the flux linkage

in linear direction, and results in the following expression

ψ{a,b,c}{A,B,C} = χpm,RL

(
x cos(ωRt + ϕψ + {γa, γb, γc})−
y sin(ωRt + ϕψ + {γa, γb, γc})

)
×

cos (ωLt + θψ + {γA, γB, γC}) ,
(23)

where χpm,RL is the flux linkage radial sensitivity of the

rotary-linear machine. By applying the proposed complex

space vector transformation for the rotary-linear machines (cf.

(16)), the bearing flux linkage vector is

ψ = χpm,RL (x + iy) eiϕψejθψeiωRtejωLt. (24)

The complex space vectors of the voltage u and the current i
are the same as for the rotary-linear machine (cf. (17)).

To determine the bearing forces Fx and Fy of the rotary-

linear machine, similar to the previous analysis for the rotary

machine, the expressions for the electrical and mechanical

powers are used. The electric power may be calculated using

the complex space vectors (cf. (20)). Similar as for the torque

and the thrust force calculation, the last term in (20) is further

analyzed

9

4
�
{
dψ

dt
i∗
}

=
9

4
χpm,RL

(
vxidd + vyiqd+

ωR(xiqd − yidd) + ωL(xidq + yiqq)
)
,

(25)

where vx = dx/dt, vy = dy/dt, ωR = Npp,RΩmech

and ωL = 2π/τppvz. The mechanical power is equal

to pmech = vxFx + vyFy + vzFz + ΩmechTz. By comparing

these coefficients with (25), the bearing forces of the rotary-

linear machine are obtained as

Fx =
9

4
χpm,RL idd, Fy =

9

4
χpm,RL iqd. (26)

Again, the radial force components of the rotary-linear

machine can be independently controlled with idd and

iqd current components of the bearing winding, which
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Fig. 6: (a) Stator winding arrangement of the MALTA with 9 phase
windings. (b) The MALTA rotor is similar to the rotor of a linear
machine (cf. Fig. 4). Due to simpler manufacturing, the MALTA rotor
has axially magnetized PMs in combination with iron rings.

in both cases means that the bearing forces are gener-

ated with the linear d−current component. In addition,

there are parasitic torque and thrust force components cre-

ated when the rotor radial displacement is nonzero. They

are equal to Tz = (9/4)Npp,R χpm,RL (xiqd − yidd) and

Fz = (9π/2τpp)χpm,RL (xidq + yiqq) and have to be com-

pensated by the controller.

G. Linear Machine: Thrust Force + Bearing Force

As shown in Sec. II-D, the linear machine analyzed in

Sec. II-C cannot generate any bearing forces and, therefore,

cannot be operated as a self-bearing machine.

In contrast, the linear machine analyzed in this section can

be operated as a self-bearing machine and can be derived

either from the standard linear machine shown in Fig. 4, by

interrupting the linear machine winding in circumferential di-

rection and creating the three new coils as shown in Fig. 6(a),
or from the rotary-linear machine discussed in the previous

section. Hence, the resulting machine is a combination of a

rotary-linear machine winding and a linear machine rotor (cf.

Fig. 6).

This machine type, also called MALTA (MAgnetically

Levitated Tubular Actuator), is for the first time proposed in

[16], where the magnetic design and hardware realization are

discussed.

The achievable thrust and the bearing forces of the MALTA

are determined by using the complex space vector models

derived for the linear and rotary-linear machines. It should be

noted that they are first analyzed separately, i.e. it is assumed

that the MALTA winding is carrying only the thrust force

current or only the bearing force current, which in the literature

is known as separate winding arrangement [33]. In a second

step, the superposition of the thrust and bearing force currents

is analyzed in Sec. III.

1) MALTA Thrust Force Generation: From the thrust force

generation point of view, the MALTA winding (cf. Fig. 6(a))
behaves the same as the winding of the linear machine

analyzed in Sec. II-C (cf. Fig. 4(a)). Therefore, the currents

in the MALTA winding are equal in circumferential (rotary)

direction, i.e. iaX = ibX = icX , where X ∈ {A,B,C}.

Consequently, it is enough to analyze one third (one circumfer-

ential third) of the MALTA winding (e.g. coils {aA, aB, aC}).

Accordingly, the findings can afterwards also be applied to the

rest of the windings.

Furthermore, the analysis concerning thrust force, which

was conducted for the linear machine (cf. Sec. II-C) can also

be applied to one third of the MALTA winding. Therefore,

the phase quantities in MALTA responsible for the thrust force

will have the same waveform as the ones for the linear machine

(cf. (11)). After transforming the three-phase currents into the

rotating ‘dq’ frame, the iq current component will contribute

to the thrust force generation as 3π/τpp Ψ̂Miq, where τpp is

the pole pair width in the MALTA rotor (cf. Fig. 6(b)) and

Ψ̂M is the flux linkage of the MALTA coil. However, since

only one third of the MALTA winding is considered, the total

thrust force of the MALTA is obtained by multiplying the

linear machine force expression by 3, which gives

Fz =
9π

τpp
Ψ̂M iq. (27)

This expression is verified with measurements on the

MALTA prototype [16]. The term (9π/τpp) Ψ̂M represents

the MALTA thrust force constant. The pole pair width in

the MALTA prototype is τpp = 30mm and the measured

flux linkage is Ψ̂M = 8.35 mWb. By using these two val-

ues, the MALTA thrust force constant is calculated to be

(9π/τpp) Ψ̂M = 7.8NA−1. On the other hand, using the ex-

ternal force sensor in the test bench, the value of the MALTA

thrust force constant is measured to be 7.6NA−1 (cf. (6)
in [16]). The calculated and the measured value differ by

≈ 2.6 %, which verifies (27).

2) MALTA Bearing Force Generation: The generation of

the bearing forces in the MALTA is very similar to the rotary-

linear machine analyzed in Sec. II-F. The waveforms of the

MALTA bearing voltage and current match with (15), while

only ωR = 0. Applying the transformation (16), the complex

space vector of the voltage and the current is

x = X̂M,be
iϕxejθx ejωLt = x

dq
ejωLt (28)

where x ∈ {u, i} and x
dq

= X̂M,be
iϕxejθx . Similarly, for the

flux linkage, (23) may be used, where ωR = 0. With (16) this

results in the complex space vector of the MALTA bearing

flux linkage as

ψ = χpm,M (x + iy) eiϕψejθψejωLt, (29)

where χpm,M is the MALTA flux linkage radial sensitivity.

In order to determine the bearing forces Fx and Fy of the

MALTA, similar to the rotary-linear machine, the electric

power and the mechanical power expressions are compared.

The term of the electric power that contributes to the mechan-

ical power is the same as for the rotary-linear machine (cf.

(25)), just replacing ωR = 0. Therefore, the radial forces of

the MALTA are generated as

Fx =
9

4
χpm,M idd, Fy =

9

4
χpm,M iqd, (30)

which are same bearing forces as obtained in (26) and

are again independently controlled with the idd and iqd
current components of the MALTA winding. In addition,

a parasitic thrust force component is created when the

rotor radial displacement is nonzero, which is equal to

Fz = (9π/2τpp)χpm,M (xidq + yiqq) and has to be compen-

sated by the controller.
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In order to verify (30) and to estimate the impact of the

parasitic thrust force, the flux linkage radial sensitivity for the

MALTA prototype from [16] is estimated with FEM. For the

MALTA prototype, where each coil has 205 turns, the average

flux linkage radial sensitivity is χpm,M ≈ 2.56 Wb m−1.

Using (30), the term (9/4)χpm,M ≈ 5.75 NA−1 is the

MALTA average bearing constant, since the effective value

also depends on the displacement direction, i.e. whether the

rotor is displaced either towards a stator tooth or towards

the stator winding, as explained and measured in [16]. The

average thrust force constant is then 5.94 Nm−1, which is

very close to the value calculated using (30). The value

for the flux linkage radial sensitivity χpm,M may also be

used to check for the expected parasitic thrust force. For the

MALTA prototype τpp = 30mm and if a radial displacement

of x = 10 μm and an electrical current of idq = 6A
are assumed, the parasitic thrust force is calculated to be

Fz = (9π/2τpp)χpm,M (xidq + yiqq) = 0.07 N, which is neg-

ligible compared to the MALTA continuous forces ∼ 20 N (cf.

[16]). For the sake of clarity, the assumed current idq = 6 A
is double the continuous current allowed by the thermal limit,

and only occurs e.g. during transients.

III. MALTA WITH COMBINED WINDINGS

After deriving the force and torque generation from the

enhanced complex space vector modeling for all different

kind of machine realizations, now the proposed modeling

concept is verified based on a hardware prototype of a MALTA

with combined windings. In general, in electric machines that

can generate torque and/or thrust force in combination with

magnetic bearing force, the windings are realized either as sep-

arate or combined windings [33], [34]. The separated winding

arrangement contains a drive winding dedicated to the torque

and/or thrust force generation and a bearing winding dedicated

to the bearing force generation (i.e. a bearing winding). On

the other hand, the combined winding has only one winding,

where the drive and bearing currents are superimposed. Usu-

ally, the separated winding is more difficult to manufacture

than the combined winding, as the two different winding

systems have to be implemented onto the same magnetic core.

On the other hand, with the separated winding the control

system implementation is simpler compared to the combined

winding, as the drive and bearing quantities (voltages, currents

and flux linkages) are inherently decoupled.
Nevertheless, the MALTA used as an example in this paper

is realized with combined winding, since it mainly offers

benefits concerning the hardware effort, e.g. the number of

phase legs and switches in the inverter, and due to the fact

that the copper cross-section is better utilized with combined

windings. Consequently, the two components of the voltage,

current and the flux linkage, the drive component (for the

thrust force generation) and the bearing component (for the

magnetic bearing force generation) are superimposed to each

other, and the MALTA phase quantities may be written in the

following form

Xabc =

⎡
⎣xA + xaA xB + xaB xC + xaC

xA + xbA xB + xbB xC + xbC

xA + xcA xB + xcB xC + xcC

⎤
⎦ , (31)

where x{A,B,C} is the drive component and x{a,b,c}{A,B,C}
is the bearing component. According to a conventional linear

machine, the drive component of the MALTA phase quantities

is equal to

x{A,B,C} = X̂M cos (ωLt + θx + {γA, γB, γC}) , (32)

where x ∈ {u, i, ψ}, X̂M ∈ {ÛM, ÎM, Ψ̂M} is the drive

amplitude, ωL is the electrical angular speed and θx is the

initial drive phase angle. As can be noted, the drive component

results in an offset, i.e. a zero-sequence component, added

to the bearing components of each rotary three-phase system

(cf. each column in (31)). These zero-sequence components

actually appear due to the combined winding, since the sta-

tor current in each winding of the MALTA has quantities

alternated in two directions, with two electrical angles, rotary

ϕx and linear θx, cf. (28), and in this case have to be

handled carefully using mathematical objects of linear algebra

such as vectors and matrices, rather then complex numbers.

The bearing component of the MALTA voltage and current

quantities is given as

x{a,b,c}{A,B,C} = X̂Mb cos (ϕx + {γa, γb, γc})×
cos (ωLt + θx,b + {γA, γB, γC}) ,

(33)

where x ∈ {u, i}, X̂Mb ∈ {ÛMb, ÎMb} is the bearing

amplitude and ϕx is the direction in which the current space

vector has to point in order to counteract the displacement,

which together with X̂Mb is later defined by the bearing

current controller. Furthermore, since not all stator windings

are facing the same PM in axial direction, the linear position

of the rotor has to be considered for the bearing current

and voltages, which is achieved by the multiplication with

cos (ωLt + θx,b + {γA, γB, γC}) in (33). Hence, the superpo-

sition of the three bearing components to the drive component

can be interpreted as a redistribution of the drive current

to the three radial windings of one linear phase in order to

generate bearing forces, while at the same time the average

drive component in linear direction is not changed.

As already discussed in Sec. II-G2, in contrast to the

bearing components of the current and voltage, the bearing

component of the flux linkage also depends on the radial

displacement. Since for the MALTA there is no dependency

on the rotation angle, i.e. ωRt + ϕψ = 0, based on (23) the

flux linkage can be written as

ψ{a,b,c}{A,B,C} = χpm,M (x cos{γa, γb, γc} − y sin{γa, γb, γc})
× cos (ωLt + θψ + {γA, γB, γC}) ,

(34)

where χpm,M is the MALTA flux linkage radial sensitivity.

A. MALTA Transformation

As shown in Sec. II-G, for the MALTA only the currents

iq, idd and iqd have to be controlled to generate the thrust

and the bearing force, respectively. Furthermore, as shown in

the following, also the id component must be controlled to

zero such that the drive current is kept to a minimum and

is not weakening the PM field. Hence, In order to obtain
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these quantities, first the 9 MALTA phase quantities (‘abc’

quantities) have to be transformed into the 9 stationary ‘dq0’

quantities as

Xdq0 = KR0 ·Xabc ·KL0, (35)

where KR0 is the rotary electrical angle transformation

KR0 =
2

3

⎡
⎣ cos γa cos γb cos γc
− sin γa − sin γb − sin γc

1/2 1/2 1/2

⎤
⎦ , (36)

and KL0 is the linear electrical angle transformation

KL0 =
2

3

⎡
⎣cos(ωLt + γa) − sin(ωLt + γa) 1/2

cos(ωLt + γb) − sin(ωLt + γb) 1/2
cos(ωLt + γc) − sin(ωLt + γc) 1/2

⎤
⎦ . (37)

It should be noted that these transformation matrices also

consider the zero sequence components for rotation and for

linear motion, since, as already seen, e.g. the drive component

in linear direction is a zero-sequence component for the

bearing component (cf. (31)). Hence, the ‘dq0’ quantities have

the following components

Xdq0 =

⎡
⎣xdd xdq xd0

xqd xqq xq0

x0d x0q x00

⎤
⎦ , (38)

where in the double index notation x{d,q,0}{d,q,0}, the first

index denotes the respective rotary component (‘d’, ‘q’ or

‘0’) while the second index denotes the linear component,

i.e. the rows in Xdq0 represent the rotary direction while the

columns represent the linear direction. Furthermore, it should

be noted that three types of the zero sequence components may

be identified: (1) rotary zero sequence components x0d and

x0q, (2) linear zero sequence components xd0 and xq0 and (3)

rotary-linear zero sequence component x00. By transforming

the ‘abc’ quantities of the MALTA voltage and the current

into the ‘dq0’ quantities, i.e. inserting (32) and (33) into (31)

and applying the transformation given in (35), the following

components are obtained

Xdq0 =

⎡
⎣X̂Mb cosϕx cos θx,b X̂Mb cosϕx sin θx,b 0

X̂Mb sinϕx cos θx,b X̂Mb sinϕx sin θx,b 0

X̂M cos θx X̂M sin θx 0

⎤
⎦ .

(39)

This expression clearly shows that the drive components of the

voltage and the current (X̂M cos θx and X̂M sin θx) are ‘seen’

as a zero component (x0d and x0q) for the rotary direction,

which also corresponds to (31) where the drive component is

the same in all rows of the matrix Xabc. Accordingly, also

the ‘abc’ flux linkage Ψabc is transformed into the ‘dq0’ flux

linkage which results in

Ψdq0 =

⎡
⎢⎢⎣
xχpm,M cos θψ xχpm,M sin θψ 0

yχpm,M cos θψ yχpm,M sin θψ 0

Ψ̂M cos θψ Ψ̂M sin θψ 0

⎤
⎥⎥⎦ . (40)

The ‘dq’ frame is usually oriented such that θψ = 0°, which

leads to only three nonzero flux linkage components

Ψdq0 =

⎡
⎢⎢⎣
xχpm,M 0 0

yχpm,M 0 0

Ψ̂M 0 0

⎤
⎥⎥⎦ . (41)

As already done in Sec. II-G for separate windings, in order

to identify the ‘dq0’ current components that contribute to the

radial forces (Fx and Fy) and the thrust force (Fz) generation

in matrix notation for the combined winding, the electrical and

mechanical powers are compared. The electrical power of the

MALTA winding is pel =
∑

m={a,b,c}
∑

n={A,B,C} umnimn,

which can be expressed by the Frobenius inner product [35] of

matrices, i.e. the sum of the element by element multiplication,

as

pel = 〈Uabc, Iabc〉F, (42)

where the MALTA voltage Uabc is given as

Uabc = RabcIabc + Labc
dIabc
dt

+
dΨabc

dt
. (43)

The resistance Rabc and the inductance Labc matrices are

diagonal matrices, i.e. Rabc = diag(R,R,R) and Labc =
diag(L,L, L). Hence, the electrical power is equal to

pel =
9

4

{
RÎ2Mb + L

dÎMb

dt
ÎMb+

χpm,M (vxidd + vyiqd) + ωLχpm,M(xidq + yiqq)

}
+

9

2

{
RÎ2M + L

dÎM
dt

ÎM +
dΨ̂M

dt
i0d + ωLΨ̂Mi0q

}
,

(44)

where dχpm,M/dt = 0 is assumed. From (44), the power

parts that contribute to the copper losses (contain R), change

of the magnetic energy (contain L or dΨ̂M/dt) and the

mechanical power (contain vx, vy or ωL) can be easily

identified. It should be noted that ωL = (2π/τpp) vz. On the

other hand, the mechanical power of the MALTA is equal to

pmech = vxFx + vyFy + vzFz. Therefore, the thrust force in

the MALTA with the combined winding is generated as

Fz =
9π

τpp
Ψ̂Mi0q, (45)

while the bearing forces are generated as

Fx =
9

4
χpm,Midd, Fy =

9

4
χpm,Miqd, (46)

which agrees with the analysis conducted using the

complex space vector (cf. (26) and (27)). Addition-

ally, the parasitic thrust force is created when the ro-

tor radial displacement is nonzero, which is equal to

Fz,par = (9π/2τpp) Ψ̂M(xidq + yiqq) which has to be com-

pensated by the controller.
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B. MALTA Reduced Transformation

In a second step, now a transformation has to be found

which transforms the 9 ‘dq0’ quantities into only the 4 ‘dq0’

quantities, which are needed to control the forces generated

in the MALTA. From (45) and (46) it can be seen that the

thrust force Fz and the bearing forces Fx and Fy are controlled

with three different ‘dq0’ current components. The rest of the

current components have to be kept to zero by the current

controller. Hence, the Idq0 has the following form

Idq0 =

⎡
⎣idd → Fx/KB idq → 0 id0 → 0
iqd → Fy/KB iqq → 0 iq0 → 0

i0d → 0 i0q → Fz/KL i00 → 0

⎤
⎦ , (47)

where KL = (9π/τpp) Ψ̂M and KB = (9/4)χpm,M are the

MALTA drive and bearing constants (cf. (45) and (46)). It

should be noted that by keeping the current components in

(47) to zero, the electrical angles ϕx, θx and θx,b of the

phase currents have to be controlled. Comparing (47) and

(39), it can be seen that when controlling i0d → 0, the drive

current phase angle θi = π/2 is achieved and when controlling

idq → 0 or iqq → 0, the bearing current phase angle

θi,b = 0 results. Finally, the phase angle ϕi is determined

by the current components idd and iqd ( idd = ÎMb cosϕi and

iqd = ÎMb sinϕi) as ϕi = atan2(iqd, idd), which can be also

obtained as ϕi = atan2(Fy, Fx) due to the proportionality

between the currents iqd, idd and Fy, Fx, respectively, (cf.

(46)).

Since Idq0 has nine current components, the control system

of the MALTA would need nine independent current con-

trollers per MALTA module (the complete MALTA system

consists of two such independently controllable modules,

since a possible tilting of the long MALTA rotor has to be

counteracted). In order to reduce the number of the required

current controllers, a reduced transformation that requires only

four current controllers per MALTA module is proposed.

Since there is no rotation in the MALTA (ωR = 0), the

three-phase system in the rotary direction resembles ‘DC’

quantity. Therefore, it is enough to control only its amplitude

ÎMb, while the information about the phase and the electrical

angle ϕi is given by the radial position controllers that output

the bearing forces Fx and Fy. Hence, the angle ϕi is always

pointing in the direction in which the bearing force has to

act. The transformation that gives only 4 ‘dq’ components is

defined as

Xdq =

[
X̂M cos θx X̂M sin θx

X̂Mb cos θx,b X̂Mb sin θx,b

]
= KR(ϕx)·Xabc ·KL,

(48)

where the transformation matrices KR(ϕx) and KL are

KR(ϕx) =
2

3

⎡
⎣1/2 − sin(ϕx − π/2 + γa)

1/2 − sin(ϕx − π/2 + γb)
1/2 − sin(ϕx − π/2 + γc)

⎤
⎦�

, (49)

and

KL =
2

3

⎡
⎣cos(ωLt + γa) − sin(ωLt + γa)

cos(ωLt + γb) − sin(ωLt + γb)
cos(ωLt + γc) − sin(ωLt + γc)

⎤
⎦ . (50)

PCB Integrated 
Radial and Axial
Position Sensor

Mover

Module 1

Module 2

27 mm

Sensor Data
Connector

6 cm

Phase Connectors

Fig. 7: The realized MALTA prototype. Each of the two modules
(Module 1 and Module 2) contain the 9-phase winding system as
shown in Fig. 6(a). The rotor realization is shown in Fig. 6(b), where
τpp = 30mm.

Comparing the new ‘dq’ components in Xdq given with (48)

to the ‘dq0’ components in Xdq0 given with (39), it can be

seen that the rotary zero sequence components x0d and x0q

are moved to the first row of the Xdq. In the second row

the components proportional to the bearing amplitude X̂Mb

are found. In order not to generate any thrust force Fz with

the bearing current component, the electrical angle θi,b = 0.

Similarly, to maximize the thrust force generation with the

drive current component X̂M, the electrical angle θi = π/2.

In order to achieve these electrical angles, the components

Xdq(1, 1) and Xdq(2, 2) are controlled to zero

Idq =

[
i0d → 0 i0q → Fz/KL

ibd → FB/KB ibq → 0

]
, (51)

where ibd = ÎMb cos θx,b, ibq = ÎMb sin θx,b and

FB =
√

F 2
x + F 2

y . The force angle ϕi = atan2(Fy/Fx) is

calculated from the bearing force references Fx and Fy, which

are provided from the radial position controller as shown in

the following section.

IV. MALTA SYSTEM IMPLEMENTATION

In order to verify the complex space vector modeling

approach conducted in Sec. III on the basis of a MALTA

with combined windings, the MALTA prototype and the

corresponding power electronic inverter drive are implemented

in hardware. In the following, each part of the magnetically

levitated linear motor drive system is described.

A. MALTA Prototype

The implemented MALTA prototype is shown in Fig. 7. In

order to be able to also control the tilting of the long MALTA

rotor, the prototype consists of two modules, i.e. Module 1 and

Module 2, where each of the modules has 9-phase windings as

shown in Fig. 6(a) and can generate thrust and bearing forces.

Therefore, the implemented prototype has 18-phases in total.

It should be noted that the number of the MALTA modules

may be arbitrary, but must be larger than two.

The rotor of the MALTA is realized with axially magnetized

PM rings, stacked together with iron rings as shown in
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MALTA
Module

45V
DC Link

aA bA cA aB bB cB aC bC cC

+

-

S

aAi bAi cAi aBi bBi cBi aCi bCi cCi

aAu bAu cAu aBu bBu cBu aCu bCu cCu Integrated
Half-Bridge

Fig. 8: Circuit diagram of the 9-phase MALTA module drive system.
The two-level inverter is implemented with galium nitride (GaN) half-
bridges (Texas Instruments LMG5200).

Xilinx Zynq Z-7020 SoC
1 GB DDR3 Memory

45V DC-Link

Sensor Data
Connectors (2x)

High-Speed
Optical Interface

Integrated GaN 
Half-Bridges (24x)
TI LMG5200, 80V, 10A

Three-Phase Output 
Connectors (8x)

Shunt-Based
Current Sensors 

and ADCs (12-Bit, 24x)

18.5 cm

Fig. 9: Two-level MALTA inverter that consists of 24 chip integrated
half-bridges, control board and digital interfaces for position sensors.

Fig. 6(b). With this realization, the iron rings create the PM

poles that magnetically interact with the MALTA winding. The

rotor is covered with a 0.3 mm thick aluminum shield, which

on the one hand provides a mechanical protection of the rotor

PMs and on the other hand is used as a conductive surface

for the radial, eddy-current based, position sensor, [32]. For

the axial position measurement, Hall-effect sensors are used,

which measure the PM axial field component.

More details about the MALTA design and measurements

can be found in [16].

B. MALTA Power Electronic Inverter Drive

The electrical schematic of a single MALTA module is

shown in Fig. 8.

The power electronics inverter is realized as a 24-phase two-

level converter that can drive all windings of two MALTA

modules, while on the other side the windings of each module

are connected to a single star point S. A picture of the

hardware of the inverter employing 24 chip integrated half-

bridges and a high-performance control board (Xilinx Zynq Z-
7020 SoC) is shown in Fig. 9. In each control interrupt routine,

in total 30 measurement signals (24 current measurements and

6 signals from the position sensors) are collected in parallel

with 12-bit external ADCs.

C. MALTA Control Algorithm

The MALTA control block diagram is shown in Fig. 10.

A cascaded control structure can be recognized, with inner

(faster) current control loop and outer (slower) position control

loop. For each control variable, an individual single-input

single-output (SISO) controller is used. Therefore, in total 8
current controllers (4 per module) and 5 position controllers

(4 for radial and 1 for axial positions) are needed.

The outer position controllers are realized as Proportional-

Integral-Derivative (PID) controllers which translate the posi-

tion error 
r∗ − 
r at the controller input into a corresponding

force 
Fc at the controller output. In particular, the radial posi-

tions x(1,2), y(1,2) sensed at each module are controlled with

the corresponding bearing forces F
(1,2)
x , F

(1,2)
y generated by

the same module. It should be pointed out that derivative action

is needed in order to stabilize the mechanical system, as it

shows second order double integrator dynamics. Furthermore,

this is implemented with a relocation on the feedback path, i.e.

it is computed directly from the output r rather than the control

error 
r∗ − 
r. This allows suppressing a zero in the resulting

closed loop transfer function, as it can be verified analytically,

with the advantage of reducing overshoot and ringing in the

response.

Based on the bearing and thrust force constants

KB =
9

4
χpm,M, KL =

9π

τpp
Ψ̂M (52)

the force commands are then converted into the corresponding

desired ‘dq’ current commands I
∗(1,2)
dq , which are the setpoints

for the inner current controllers. The advantage of the complex

space vector model of the MALTA presented in Sec. II-G is

now apparent, as it allows controlling a highly sophisticated

multi-phase machine with established control techniques. In

fact, each transformed ’dq‘ current component evolves then

like a first order RL network, which can be regulated with

a simple Proportional-Integral (PI) control. Moreover, with

a minimal number of only four controlled quantities, it is

possible at any moment in time to assign all of the nine phase

voltages.

The measured axial position z is used to compute the linear

electrical angle for the ‘dq’ transformation. Additionally, it

is used for the feed-forward action 
Fff(z) by the position

controller, which compensates for the gravity and other detent

forces such as cogging force and the radial pull force. The

function 
Fff(z) is experimentally recorded using the position

controller reference signal in steady-state.

Due to the cascaded control structure, the bandwidth spec-

ification for the current controllers can be directly derived

from the desired performances of the outer position control

loop. The requirements for radial and axial position control are

slightly different and are discussed separately in the following.

The needed dynamics of the radial position are determined

for x(1,2) and y(1,2) directions and are the same for both

modules (Module 1 and Module 2, (cf. Fig. 7)). Therefore,

in the following the module notation is omitted and only x
and y are used.

Furthermore, it is assumed that the radial subsystems of

Module 1 and Module 2 are totally independent and each

module is suspending one half of the rotor mass. If it is

further assumed that the x− and y−direction are completely
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Fig. 10: Cascaded MALTA position controller structure with the outer position controller loop and the inner current controller loop. In total
5 positions (4 radial and 1 axial) are independently controlled with the separate 5 PID controllers. All of them have the same gains that are

given in Tab. II in the Appendix. The electrical angles ϕ
(1,2)
i and ωLt needed for the reduced transformation are shown with red arrows.

In the feed-forward path, the steady-state disturbances (such as gravity and the radial pull forces caused by the manufacturing tolerances)

are compensated when the rotor is in the center. By adding the force reference from the controller �Fc and the feed-forward force reference
�Fff(z), the total force reference vector �F = �Fc + �Fff(z) = (F

(1)
x , F

(1)
y , F

(2)
x , F

(2)
y , Fz) is created. The components of �F are used to form

the current controller references and to calculate the radial force angles ϕ
(1,2)
i required for the rotary transformation matrix KR(ϕi) and its

inverse K−1
R (ϕi) (cf. Appendix). For the current control loop, 9 ‘abc’ phase currents are measured per MALTA module and transformed

into the ‘dq’ frame using the reduced MALTA transformation, (cf. Sec. III-B). In total, 2 × 4 = 8 PI current controllers are implemented
and tuned according to Tab. II.

decoupled, the accelerations are obtained as

ax =
2

m
Fx, ay =

2

m
Fy (53)

where ax = d2x/dt2 and ay = d2y/dt2 are the radial

accelerations and m is the rotor mass. In (53) the half mass

is accelerated as each of the modules lifts only a half of the

rotor, cf. Fig. 7. In the Laplace domain, the open loop transfer

function of the plant representing the radial positions is equal

to

GOL(s) =
{x(s), y(s)}
F{x,y}(s)

=
2

ms2
, (54)

where s = L(d/dt) is the Laplace transform of the time

derivative. The desired radial position is zero at all times,

i.e. the rotor is located in the center of the stator. Hence, the

main specification for x and y can be expressed in terms of

rejection of the external mechanical disturbing forces (gravity

force and the radial pull force) that deviate the rotor from its

center position. The most relevant are the radial pull forces

Fx,pull, Fy,pull between the rotor PMs and the stator. These

destabilizing radial pull forces are measured to be linearly

proportional within the possible mechanical air gap (small

signal) to the radial displacement according to the radial pull

constant Kpull

Fpull,x = xKpull, Fpull,y = y Kpull (55)

and represent an input disturbance for the radial subsystems

(53). The value of the radial pull constant for the MALTA is

measured to be Kpull = 8330N m−1 [16].
In a classic feedback control, the closed loop bandwidth

requirement of the control system may be imposed by the

disturbances as [36]

ωBW > ωD, ωD such that ‖Gpu
D (jωD)‖ = 1 (56)

where ωBW is the required closed loop bandwidth and Gpu
D is

the open loop disturbance transfer function in per units (unit-

magnitude scaled). Since the disturbance is the radial pull

force, the open loop disturbance transfer function is equal

to the radial position plant (54), i.e. GD = GOL. As the

requirement (56) is applied in per unit system, the transfer

function GD should be normalized. For example, for the x
radial direction the GD is normalized using the maximum

expected displacements x̂ and the pull force F̂pull,x as

Gpu
D (s) =

x(s)/x̂

Fx(s)/F̂x

=
2Kpull

ms2
, (57)

where F̂x = x̂Kpull. Using (56), the angular frequency ωD is

calculated as ωD =
√

2Kpull/m. Therefore, the closed loop

bandwidth of the radial position controller should be bigger

then

ωBW >

√
2Kpull

m
≈ 220 rad s−1, (58)

where the values for Kpull and m are given in the Appendix in

Tab. I. The same applies analogously for the radial subsystem

in y−direction.

In order to guarantee the appropriate dynamic decoupling

between the inner and outer control loops, the current control

bandwidth has to be at least 5 times higher than the outer

position controller bandwidth ωBW, i.e. at least 1100 rad s−1.

The axial position z evolves similarly according to the axial

subsystem dynamics az = Fz/m, where az = d2z/dt2 is the

axial acceleration and m is the mass of the MALTA rotor.

The specifications for z depend on the desired dynamics and

are usually specified in the time domain for a step response,

mainly in terms of the desired rise time tr. In order to tune

the inner current controller loop, the closed loop bandwidth
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should be given, which can be related to the rise time as

fBW tr = 1/3 [37], where fBW = ωBW/2π. Typical rise

times of tubular linear motors with similar size are in the range

of tr = 20ms [38]. Therefore, to achieve this rise time, the

closed loop bandwidth of the axial position controller should

be bigger then ≈ 110 rad s−1, which is half of the requirement

for the radial position controller that has to suppress the radial

pull disturbances (cf. (58)).

Finally, in order to achieve a proper dynamic decoupling

from the position controller, the current controllers are tuned

to a bandwidth of 3000 rad s−1, which gives some margin to

allow for faster position controller designs and it is useful to

suppress radial and axial deviations even under stronger exter-

nal disturbances. In fact, for this purpose, the final bandwidth

of the radial position controllers is chosen to be around two

times larger than the minimum required bandwidth ωBW in

(58), i.e. ωBW ≈ 400 rad s−1.

The corresponding position and current control PID gains

are listed in Tab. II in the Appendix.

V. MEASUREMENTS AND RESULTS

In this section the implemented control algorithm is ver-

ified with experimental measurements. All the signals are

measured with internal sensors, collected by the firmware

and transmitted to a user interface after the experiment is

concluded. The following expermiments are performed: (1)

the system is started and stable levitation of the rotor is

achieved (cf. Fig. 11); (2) linear motor operation is performed

by giving a sinusoidal reference along the axial direction

(cf. Fig. 13). The measurements show stable levitation and

successful decoupling of the bearing and thrust force control.

A. Soft Start-Up

Initially, the MALTA rotor is located in its rest position on

the touch-down bearing (x
(1)
0 = 0.1 mm, y

(1)
0 = −0.7 mm,

z0 = −1 mm). In order to avoid abrupt controller responses

and provide a smooth lift up instead, the reference is shaped

to guide the rotor from its start position to the center of the

machine (x(1)∗ = 0, y(1)∗ = 0) as shown in Fig. 11(c). The

selected reference is a filtered step with a cutoff frequency of

≈ 67 rad s−1, i.e. the step response of the first order system

R(s) =
1

0.015 s + 1
(59)

discretized at the sampling time Ts = 50 μs, which reaches

the final value in 0.1 s. This is then appropriately scaled to

reach the zero position starting from the initial x
(1)
0 and y

(1)
0

positions as

x(1)∗ = x
(1)
0 (1 − r(t)) (60)

y(1)∗ = y
(1)
0 (1 − r(t)) (61)

where r(t) = L−1 (R(s)/s) is the step response of (59) and

L−1 the inverse Laplace transform operator. The positions

x
(1)
0 and y

(1)
0 are measured during an offset calibration routine

executed once before the regular machine operation is started.

In order to overcome pull and gravity forces F
(1)
pull,y and

Fg = gm/2 = 3.53 N, with g = 9.8 m s−2 the gravity
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Fig. 11: Measurements of the MALTA start-up experiment where
the rotor in its initial position touches the touch down bearing

(x
(1)
0 = 0.1mm, y

(1)
0 = −0.7mm and z0 = −1mm) and lifts

up to the reference value (x(1)∗ = 0, y(1)∗ = 0 and z∗ = 0). Radial
positions of the first module (x(1), y(1)) and the axial position (z)
are shown. The shown force components are denoted in the control
block diagram shown in Fig. 10. The current ‘dq0’ components (cf.
(47)) responsible for the respective force components are labeled on
the right side of the plots.

acceleration, the integral part of the controller starts increasing

the commanded F
(1)
y (cf. Fig. 11(e)). As soon as the balance

condition

F (1)
y = F

(1)
pull,y + Fg ≈ 8.3 N (62)

is reached, the rotor lifts up. This happens at 0.005 s, when

the current component i
(1)
qd reaches the value 1.42 A, producing

the bearing force F
(1)
y = KB i

(1)
qd ≈ 8.3 N, which verifies the

derived bearing constant.

The rotor then approaches the center of the machine with

small overshoots (below 10 %) both in x and y directions and

finally reaches steady state at around 0.06 s, with an error

which remains confined within ±1 μm.

Simultaneously, also the axial position z reaches the zero

setpoint, with a steady state error of ±20 μm. The larger

deviation in axial direction comes from the higher amount of
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Fig. 12: Experimental verification of the Bode magnitude and
phase diagrams for the closed loop axial subplant of MALTA. The
solid blue line corresponds to the predicted, analytically derived
closed loop transfer function, whereas the red stars represent ex-
perimental measurements at the corresponding frequencies fz =
{1, 3, 5, . . . , 19, 21}Hz, i.e. regular intervals of 2Hz from 1 up
to 21Hz. The 17Hz experiment is shown in time in Fig. 13 (the
measurement highlighted in violet).

the axial sensor noise, which is due to the chosen Hall effect

sensing method.

Moreover, in Fig. 11(b) one can observe that Fz and the

corresponding current component i
(1)
0q show a non-zero average

value of ≈ 0.5 N and ≈ 0.05 A respectively, which are needed

in order to compensate the cogging force and to maintain the

rotor in the desired axial position. It should be noted that

the plotted Fz is the overall thrust force, i.e. the sum of the

individual forces produced by the two modules, whereas i
(1)
0q is

the corresponding current component only of the first module.

B. Linear Motor Operation

The linear motor operation is tested and verified with a

periodic sinusoidal axial movement, where mass of the mover

serves as a load. This kind of experiment is well justified

for applications such as pick-and-place robot in semicon-

ductor/electronics industry. In such cases, the mass of the

moved and placed components is much smaller then the mass

of the mover. In Fig. 12, the Bode magnitude and phase

diagrams for the closed loop axial subplant are shown. These

are derived analytically from the simplified axial model and

by using the PID gains of Tab. II. Furthermore, they are

experimentally validated with axial positions measurements

for different frequencies of the sinusoidal reference, and the

computed magnitudes and phases are reported on the diagram.

In particular, fz is chosen at regular intervals of 2 Hz from 1 up

to 21 Hz. As it can be observed, predicted and measured fre-

quency responses are in good agreement and the mismatches

appearing after 100 rad s−1 can be justified with the neglected

eddy current breaking effects and other nonlinearities.

The controlled axial system is capable of tracking sinu-

soidal references up to 10 rad s−1, whereas faster signals

would experience some amplification, which is however below

2 dB. After around 100 rad s−1, the gain of the system starts

rolling off with −40 dB/dec slope. Concerning the phase shift
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Fig. 13: Measurements of the MALTA linear motor operation,
where a sinusoidal reference for the axial position is given z∗ =
5mmcos(2π 17Hz). The response is attenuated by 0.707 (−3 dB)
as the closed loop axial position controller bandwidth is tuned to
17Hz. The radial position is slightly disturbed during the axial
movements of the rotor and stays between ±8 μm. The radial forces
are nonzero such that radial pull onto the rotor is compensated during
the linear motor operation.

between reference and measured signals, this reaches −90°

for frequencies at around 100 rad s−1 and keeps decreasing

towards −180°.

Therefore, the frequency of fz = 17 Hz ≈ 107 rad s−1 for

motor operation is chosen to verify the bandwidth of the axial

control system. In fact, in Fig. 13(a) it can be observed that

the amplitude of the measured axial position signal is reduced

by −3 dB with respect to the original Δz∗pp = 10 mm peak-

to-peak amplitude, resulting in Δzpp = 7 mm. Additionally,

as also expected a phase shift of φ ≈ 95° is observed (cf.

Fig. 13(a)).
The commanded Fz in Fig. 13(b) oscillates accordingly

with ΔFz,pp = 29.26 N to provide the required acceleration.

Meanwhile, the radial positions oscillate slightly around

their steady state position, but remain limited within ±8 μm
error thanks to the fast radial control tuning.

The corresponding bearing forces keep the rotor levitated

while reacting against the disturbances from the fast axial
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motion. In particular, the average value of F
(1)
y is 1.6 N, which

corresponds to the force required to balance the gravity force

Fg. Concerning F
(1)
x , an average value of −0.37 N instead

of the ideal zero can be observed. This is due to the radial

pull force created by manufacturing tolerances of the real

prototype.

VI. CONCLUSION

This paper focuses on the complex space vector modeling of

electric machines with permanent magnet (PM) rotor covering

all possible movements such as rotary, linear and radial, i.e.

magnetic bearing (MB). To the authors best knowledge, for

the first time in literature a complex space vector model of

the rotary-linear machine with MBs is formulated, allowing

to apply known complex space vector techniques used for

years for modeling of electric machines. For example, the

phase winding of the rotary-linear machine with 9 phases in

total may be described with a single complex space vector

voltage equation using the proposed transformation, which has

the same form as the complex space vector voltage equation

of the conventional rotary or linear machine. The torque, the

thrust force and the radial (bearing) forces onto the rotor can

be easily calculated using the proposed complex space vector

model, which is of interest for understanding the machine

operation and implementing the control system. In order to

verify the complex space vector models, a control system for

the linear actuator with MBs (so called MALTA) is success-

fully implemented and tested. As the MALTA has combined

winding (the same winding is used for the bearing and thrust

force generation), the components of the proposed complex

space vector are written in matrix form and further analyzed.

As shown in the paper, the quantities (voltage, current or

flux linkage) for the thrust force generation are zero-sequence

components in rotary direction for the bearing force quantities.

The MALTA combined winding in stationary frame (‘dq0’

frame) is represented with 9 different components clarified

in the paper. This would require 9 different current controllers

to be implemented, which was the motivation to propose a

reduced transformation that requires only 4 current controllers

for its implementation. The discussed models that decouple the

bearing force control and the thrust force control are verified

by measurements. Two different measurement experiments are

shown, start-up and linear motor operation. In the start-up

experiment, the rotor of the MALTA is successfully lifted from

rest to its center position. In the linear motor operation, the

MALTA axial position is varied with a sinusoidal reference

with a stroke of 10 mm and a mechanical frequency of 17 Hz.

During this operation mode, the radial position deviation

stayed below ±8 μm. These results verify the proposed models

and the position controller design.

The future work focuses on the implementation of the feed-

forward position controller, deeper analysis of the mechanical

model of the rotor and MIMO-LQR position controller devel-

opment, which should allow to perform high-dynamic high-

precision positioning tasks.

APPENDIX

MALTA Motor Parameters

The MALTA motor parameters are given in Tab. I.

TABLE I: MALTA Motor Parameters.

Symbol Quantity Value
Electrical

R phase winding resistance 2.2Ω
L phase winding inductance 2.0mH

Mechanical
m mover mass 0.360 kg

Force Constants
KL drive constant per module 5.2NA−1

KB bearing constant per module 5.2NA−1

Kpull radial pull constant per module 8330Nm−1

MALTA Controller Parameters

The MALTA controller parameters are given in Tab. II.

TABLE II: Position and current controller gains.

Variable KP KI KD

i0q, ibd 8.01VA−1 8.45 kVA−1 s−1 -

i0d, ibq 8.01VA−1 8.45 kVA−1 s−1 -

x(1), x(2) 39 kNm−1 1.8MNm−1 s−1 150N sm−1

y(1), y(2) 39 kNm−1 1.8MNm−1 s−1 150N sm−1

z 2.44 kNm−1 42.87 kNm−1 s−1 35.07N sm−1

Inverse MALTA Reduced Transformation

The inverse transformation matrices used in the control

system from Fig. 10 are equal to

K−1
R (ϕx) =

⎡
⎣1 − sin(ϕx − π/2 + γa)

1 − sin(ϕx − π/2 + γb)
1 − sin(ϕx − π/2 + γc)

⎤
⎦ , (63)

and

K−1
L =

⎡
⎣cos(ωLt + γa) − sin(ωLt + γa)

cos(ωLt + γb) − sin(ωLt + γb)
cos(ωLt + γc) − sin(ωLt + γc)

⎤
⎦�

. (64)
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