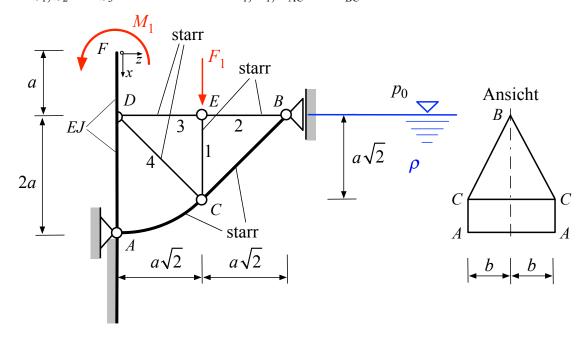
Familienname: Vorname: Kenn- u. Matr.Nr.:

### **1. Beispiel** (12 Punkte)

# Gegeben:

Mechanisches System gem. Skizze (Längenmaße a und b):


- Träger ADF mit konstanter Biegesteifigkeit EJ
- Dehnstarre Fachwerkstäbe 1 4
- ullet Flüssigkeitsbehälter bestehend aus der starren, ebenen Behälterwand BC sowie der starren, zylindrischen Behälterwand AC
- ullet Homogene, inkompressible, schwere Flüssigkeit der Dichte ho

#### Belastung:

- Einzelmoment  $M_1$  im Punkt F
- Einzelkraft  $F_1$  im Knoten E
- Flüssigkeitsüberdruck (Referenzdruck p<sub>0</sub>)

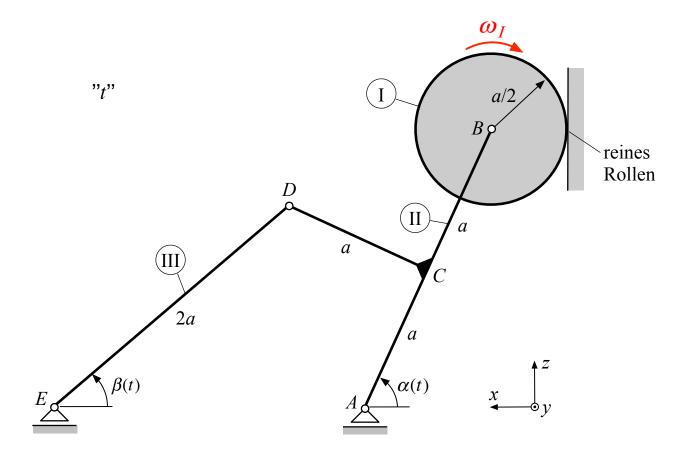
#### Gesucht:

- 1) Durchbiegung und Tangentenneigung der Biegelinie im Punkt F mit dem Mohrschen Verfahren:
  - 1.1) Grafische Darstellung des Momentenverlaufs für den Biegträger *ADF* mit Angabe der Werte in den Punkten *A*, *D* und *F* (*Hinweis*: Nehmen Sie dafür im Punkt *D* ein vertikal verschiebliches Auflager an.)
  - 1.2) Skizze vom *Mohr*schen Ersatzträger mit Ersatzbelastung (Auf nachfolgender Seite darstellen)
  - 1.3) Durchbiegung und Neigung der Tangente an die Biegelinie im Punkt F
- 2) Verlauf des Flüssigkeitsüberdrucks auf die Behälterwände AC und BC (Skizze mit Werten)
- 3) Teilresultierende  $R_{AC}$  und  $R_{BC}$  zufolge des Überdrucks auf die Wände AC und BC
- 4) Lage der Wirkungslinien der Teilresultierenden (Skizze)
- 5) Auflagerreaktion im Punkt B als Funktion von  $M_1$ ,  $F_1$ ,  $R_{AC}$  und  $R_{BC}$
- 6) Stabkräfte  $S_1$ ,  $S_2$  und  $S_3$  als Funktion von  $M_1$ ,  $F_1$ ,  $R_{AC}$  und  $R_{BC}$



Familienname: Vorname:

Kenn- u. Matr.Nr.:


### 2. Beispiel (8 Punkte)

### Gegeben:

- Momentanlage des ebenen Systems laut Skizze (Längsabmessung *a*), bestehend aus einer starren Scheibe (I) und zwei starren Stäben (II, III)
- Winkelgeschwindigkeit der Scheibe I:  $\vec{\omega}_I = -\omega_I \vec{e}_y$

## Gesucht:

- 1.) Anzahl der Freiheitsgrade
- 2.) Geschwindigkeitspole (grafisch) für die Momentanlage
- 3.) Kinematische Verträglichkeitsbedingungen:  $\dot{\alpha}(\alpha, \omega_I)$  und  $\dot{\beta}(\alpha, \beta, \omega_I)$
- 4.) Geschwindigkeiten  $\vec{v}_A$ ,  $\vec{v}_B$ ,  $\vec{v}_C$ ,  $\vec{v}_D$  und  $\vec{v}_E$  mit der Grundformel der Kinematik als Funktion von  $\alpha$ ,  $\beta$ ,  $\omega_I$  und  $\alpha$

