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Abstract—Direct drive tubular linear actuators (TLAs)
may be used in various applications that require fast move-
ments and high-precision positioning, e.g. pick-and-place
robots. This paper presents the analysis, dynamic elec-
tromechanical model derivation, controller design and sys-
tem operation of a TLA with integrated magnetic bearings
(MBs). Furthermore, the actuator operation is verified with
extensive measurements on the prototype, which include
axial position step response, standard deviation of the
steady-state positions and mover tilting control. Compared
to any conventional TLA, which may perform only linear
motion, the mover tilting control is possible due to inte-
grated MBs. This gives the new actuator a great advantage
in high-precision positioning systems, since any thermal
expansions of the parallel kinematics may be compensated.

Index Terms—Active Magnetic Bearings, Linear Motor,
Magnetic Levitation, MIMO System, Self-bearing, Tubular
Linear Actuator.

I. INTRODUCTION

IN applications that require repetitive linear motion, the
usage of direct drive tubular linear actuators (TLAs) is

beneficial compared to systems where gearboxes are used
to generate linear motion from a rotary actuator [1], [2].
Direct drive TLAs achieve higher dynamics, are more pre-
cise, and feature less moving parts that are subject to wear.
They are gaining attention in numerous applications, such as
actuators for pick-and-place robots in the semiconductor or
electronics manufacturing industries [3]–[5], active and semi-
active suspension systems [6], compressors [7], tubular linear
generators [8], steering systems [9] or rehabilitation robots
[10]. Nevertheless, in precision sensitive applications, accuracy
and fast motion control of the direct-drive actuators may be
affected by friction of the bearings and/or thermal expansions
(e.g. in robotic arms that move the actuator). As a step forward
in the actuator area, a contact-less TLA was proposed in
[11] that features integrated active magnetic bearings (AMBs).
With such an actuator, friction is removed and any thermal
expansion may be compensated by adjusting the radial position
of the AMB [12]. In addition, the stiffness of the bearings
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Fig. 1: MALTA prototype consisting of two stator modules that
contain the phase coils, a mover comprising permanent magnets,
and two PCB-integrated position sensors (SP1 and SP2). The shaft
diameter is 27 mm, while the actuator active length is 170 mm. The
machine design procedure is described in detail in [11]. The MALTA
modules (stator) can act onto the mover with the bearing (radial)
forces fx,B{1,2} and fy,B{1,2} in x- and y-direction and with the
drive (linear) force fD in z-direction.

and the tilting of the mover may be actively controlled. The
proposed actuator is called MALTA (Magnetically Levitated
Tubular Actuator) and its hardware prototype is shown in
Fig. 1. In addition to the linear motion and magnetic bearings,
to obtain the rotation, the MALTA concept may be extended
and adapted, e.g. by adding a rotary machine, cf. [13].

In [11], only the magnetic design and the manufacturing
aspects of the MALTA were analyzed, while this paper now
focuses onto the control system design. In industry, PID
position controllers are widely adopted for conventional TLAs
[14], which are in general well suited for single-input single-
output control schemes. However, they are unsuitable for the
considered MALTA system, as for the positioning of the
magnetically levitated mover five degrees of freedom have to
be controlled simultaneously (instead of just one), resulting
in a multiple-input multiple-output (MIMO) control problem.
The controlled five degrees of freedom refer to: forward-back,
right-left, up-down, pitch and yaw, whereas the sixth degree of
freedom of the MALTA’s mover, rotation, is not controllable.
Therefore, a dynamic model of the mechanical subsystem
of the MALTA is developed, which is used to design an
appropriate MIMO feedback controller structure, which is
assisted by additional feedforward compensation components.

The contributions of this manuscript are divided into the
following sections: In Sec. II, a system model of the MALTA
that considers the most relevant mechanical and electrical
dynamics is derived. In Sec. III, the mechanical system model

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIE.2020.2992943

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Electric
Model

(Sec. II-C)

Mechanical
Model

(Sec. II-A)

Position Sensor
Model

(Sec. II-B)

�pabcI �v

]

r�q
t�q

[

Fig. 2: Overview of the MALTA system models: the electric,
mechanical and position sensor model.

is analyzed by linearizing the system and deriving the unstable
poles. The position controller structure is proposed in Sec. IV,
where also the current controller design is outlined. The
system operation and measurement results, which verify the
actuator operation and the mover tilting control, are shown in
Sec. VI. Finally, Sec. VII concludes the paper.

II. MALTA SYSTEM MODEL

The MALTA system model consists of three parts: the
electric model, the mechanical model and the position sensor
model, as shown in Fig. 2.

The electric model elaborates the bearing and the drive force
generation from the phase currents Iabc. For the derivation of
the electric model of the MALTA, two electrical angles, the
linear electrical angle θ and the circumferential electrical angle
ϕ are used, whose directions are also shown in Fig. 3.

The mechanical model is a nonlinear dynamic model, which
allows to determine the mover’s position (output of the model)
depending on the total net forces ~v that act on the mover (input
of the model). The input of the mechanical model, the bearing
and the drive force that act onto the MALTA mover are written
in vector form as

~v =
[
fx,B1 fy,B1 fx,B2 fy,B2 fD

]>
(1)

whose components are denoted in Fig. 1.
The position sensor model relates the center of gravity

(COG) mover coordinates ~qt and ~qr (cf. equation (2)) to
the displacements ~p that are possible to measure with the
position sensor planes SP1 and SP2 (cf. Fig. 1). The mass
distribution of the mover is assumed to be even. Potential
influence of the picked component mass in pick-and-place
application is neglected, as the component mass is assumed
to be much smaller than the mass of the mover (for example,
this applies for SMD components to be mounted onto a printed
circuit board in case of a pick-and-place application). For the
derivation of the dynamic model, two coordinate reference
frames, the inertial I and the rotary R reference frame (cf.
Fig. 3) are used, which are described in more detail in the
following subsection.

A. Nonlinear Dynamic Model of the Rigid Mover
The inertial reference frame I is fixed to the origin O and

the zI axis is oriented along the axial direction of the MALTA
stator, whereas the rotary reference frame R is fixed to the
mover’s center of gravity (COG) OCOG and the zI axis is
aligned with its principal axis, as shown in Fig. 4. The tilting
of the mover in Fig. 4 is used to illustrate the position of the
R frame and it does not correspond to the tilting possible
in reality. The motion of the mover is described in terms of
translation and rotation of the frame R with respect to the
frame I. The translation and rotation may be parametrized
using a set of Cartesian coordinates ~qt and a set of Cardan
angles ~qr as

~qt =
[
x y z

]>
, ~qr =

[
α β γ

]>
. (2)
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Fig. 3: Mechanical setup of the MALTA with inertial (I) and rotary
(R) reference frames: (a) side view as denoted in Fig. 1; (b) front
view on the sensor plane 1 (SP1) as denoted in Fig. 1; (c) mover
construction showing the arrangement of the PMs and their flux
density directions.

The angles in ~qr are three subsequent elementary rotations
around the xR, yR and zR axes (cf. Fig. 4). Once the motion
of the mover is parametrized, the equations of motion can
be derived, for example by using the Newton-Euler equations
[15], which can describe combined translation and rotation of
a rigid body,

m
∂2~qt
∂t2

= I ~Ftot

RIm ·
∂R~ω

∂t
+ R~ω × RIm · R~ω = R ~Ttot,

(3)

where the translation is described in the inertial frame I and
the rotation in the rotary frame R. ~Ftot and ~Ttot are the total
force and the total torque acting on the mover, respectively.
The mass of the mover is m, while RIm = diag(Ixx, Iyy, Izz)
is the Moment of Inertia (MoI) diagonal matrix, expressed in
the mover frame R. The values of these parameters are given
in the Appendix. The angular speed in the rotary frame Rω is
given by the following angular rotations

R~ω =




0
0

Iωz


+ Rz




0

Iωy
0


+ RzRy



Iωx
0
0


 (4)

where Iωx = ∂α/∂t, Iωy = ∂β/∂t, Iωz = ∂γ/∂t.
Furthermore, a small angle approximation is used, i.e. for
any angle ξ it applies sin ξ ≈ ξ and cos ξ ≈ 1. The rotation
matrices Ry and Rz are given in [16].

The total force on the mover is a superposition of the two
net forces from the modules 1 and 2, acting at the points I ~P1

and I ~P2, which are in the middle of each module. These points
are shown in Fig. 4 and may be described analytically as

I ~P1 =



x− β(lB + z)
y + α(lB + z)

−lB


 , I ~P2 =



x+ β(lB − z)
y − α(lB − z)

lB


 . (5)
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Fig. 4: Simplified mechanical setup showing the bearing planes 1 and
2 (BP1 and BP2) in the center of the modules 1 and 2, respectively
(cf. Fig. 3(a)). The intersection points 1 and 2 are denoted by I ~P1

and I ~P2.

These expressions are derived from I ~P1 = I ~OCOG +
RIR R ~P1 and I ~P2 = I ~OCOG + RIR R ~P2, where R ~P1 =[
0 0 (−lB − z)

]>
and R ~P2 =

[
0 0 (lB − z)

]>
. The

3 × 3 transformation matrix RIR = R−1RI , where RRI =
RzRyRx (cf. [16]). Based on the position of these interaction
points, the total forces and torques applied to the mover are
discussed in the following.

1) Total Force in Inertial Reference Frame: The total force
~Ftot acting on the mover consists of three force types: the
drive, the bearing and the attraction force (also called magnetic
pull or detent force). As the inertial frame I is fixed to the
stator, the total force may be readily expressed in the I frame
as I ~Ftot, where I ~Ftot is composed of the two components
coming from both modules 1 and 2, acting as a net force in
the points I ~P1 and I ~P2,

I ~Ftot = I ~F1 + I ~F2. (6)
The forces of each module, I ~F1 and I ~F2, are further split
into a drive, a bearing and an attraction force type I ~F1 =

I ~FD1 + I ~FB1 + I ~FA1 and I ~F2 = I ~FD2 + I ~FB2 + I ~FA2. It
should be mentioned that these considered force vectors are
analyzed in the Cartesian coordinate system (with the axes x,
y and z) and, therefore, the vectors have a dimension of 3×1.

The drive force component is an active component con-
trolled by the drive currents in the stator and acts in the zI
axis direction. Therefore, it corresponds to the third component
of the drive force vectors I ~FD1 =

[
0 0 fD1

]>
and I ~FD2 =[

0 0 fD2

]>
. The total drive force may be expressed as a

superposition of the individual drive forces I ~FD1 and I ~FD2

as
I ~FD = I ~FD1 + I ~FD2

=




0
0

fD1 + fD2


 .

(7)

The bearing forces are also actively controlled by the bear-
ing current component in the stator windings. They act as net
forces in xI and yI directions at the interaction points I ~P1 and
I ~P2. Therefore, these forces constitute the first and the second
component of the force vectors I ~FB1 =

[
fx,B1 fy,B1 0

]>

and I ~FB2 =
[
fx,B2 fy,B2 0

]>
. The total bearing force may

be expressed as a superposition of I ~FB1 and I ~FB2 as

I ~FB = I ~FB1 + I ~FB2

=



fx,B1 + fx,B2

fy,B1 + fy,B2

0


 .

(8)

The attraction forces are radial reluctance forces, which
only generate a resulting attraction force on the mover if it
is displaced from its center position, otherwise they cancel
each other out. Thereby, it can be assumed that for a small

displacement the resulting attraction force acting at the in-
teraction points I ~P1 and I ~P2 are proportional to the radial
displacement at these points. Therefore, the modules 1 and
2 are producing the attraction forces I ~FA1 = KA · I ~P1 and
I ~FA2 = KA · I ~P2 which can be written as

I ~FA1 = KA



x− β(lB + z)
y + α(lB + z)

0


 , (9)

and

I ~FA2 = KA



x+ β(lB − z)
y − α(lB − z)

0


 . (10)

There, KA equals the attraction constant per module, whose
measured value of the prototype is given in Tab. IV in the
Appendix. The total attraction force is then given as the
superposition of the forces I ~FA1 and I ~FA2, i.e.

I ~FA = I ~FA1 + I ~FA2. (11)
2) Total Torque in Rotary Reference Frame: By its mag-

netic design, the MALTA is designed as a linear motor (with
integrated MBs). Therefore, it is not able to generate any drive
torque (the torque around z-axis, which ‘drives’ the rotation
of conventional rotary machines). Consequently, the total drive
torque component is equal to zero. On the other hand, certain
net forces (drive, bearing and attraction) may act on the mover
at the interaction points I ~P1 and I ~P2 points, which may
generate a certain net torque ~Ttot on the mover. This net total
torque is first determined in the I frame, and then transformed
into the R frame.

In a first step, the lever arms are determined at the in-
teraction points I ~P1 and I ~P2. The lever arms are vectors
describing the distance between the force interaction point and
the mover’s center of gravity OCOG. In the inertial reference
frame I, for the MALTA mover two lever arms are defined
as I~L1 = I ~P1 − IOCOG and I~L2 = I ~P2 − IOCOG, which
results in the following expressions

I~L1 =



−β(lB + z)
α(lB + z)
−lB − z


 , I~L2 =



β(lB − z)
−α(lB + z)
lB − z


 . (12)

The net torques I ~T1 and I ~T1 produced by the MALTA
modules 1 and 2, may be calculated then as

I ~T1 = I~L1 × I ~F1, I ~T2 = I~L2 × I ~F2. (13)
Finally, the total torque acting on the mover in rotary R
reference frame is obtained as

R ~Ttot = RRI(I ~T1 + I ~T2). (14)

B. Position Sensor Model

In order to realize a closed-loop position control of the
MALTA mover, the axial and radial positions have to be mea-
sured. There, it should be mentioned that the radial position
has to be measured at two distinct axial locations, such that
any tilting of the mover can be controlled. Therefore, two
PCB integrated sensors are located at a certain distance lS in
z-direction from the origin O of the inertial frame I, as shown
in Fig. 3(a). The position measurement vector of SP1 and SP2
(which are denoted in Fig. 1 and Fig. 3) may then be written
as ~p =

[
x1 y1 x2 y2 z

]>
, and the position of the mover

described in terms of translation and rotation of the COG, may
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be related to the measured positions as ~p = P0(z)
[
~q>t ~q>r

]>
,

where

P0(z) =




1 0 0 0 −(lS + z) 0
0 1 0 (lS + z) 0 0
1 0 0 0 (lS − z) 0
0 1 0 −(lS − z) 0 0
0 0 1 0 0 0



, (15)

can be deduced in analogy to the relations given in (5)
for the two force interaction points, where in this case the
measurement points lS instead of lB have to be used.

The hardware implementation of the two eddy-current sen-
sors, which output a voltage that is proportional to the radial
displacement, is shown in Fig. 1 and Fig. 11. Hence, the
two position sensors, denoted as SP1 and SP2 in Fig. 3(a),
can measure the radial positions of the mover at their axial
locations z = ±lS, i.e. x1 and y1 are measured by SP1 at
−lS and x2 and y2 are measured by SP2 at lS. Furthermore,
the axial position of the mover z is measured with Hall-effect
sensors, as explained in Sec. V-B.

C. Electric Model

The drive force I ~FD and the bearing force I ~FB, are
controlled by the electric currents in the multiple three-
phase windings of the MALTA, as shown in Fig. 5(a). In
conventional linear machines, the appropriate drive current to
generate the desired thrust is typically obtained by performing
a dq-transformation out of the three-phase currents in the
axially arranged three-phase windings. The resulting q-current
component is proportional to the generated thrust, and the
resulting d-current component is used for field-weakening;
however, it is typically controlled to zero.

For electric machines like the MALTA, which can also
control the radial bearing forces on the mover (rotor), the
same principle, i.e. the dq-transformation, can be applied to
the radially arranged three-phase systems, whose obtained d-
and q-current components directly control the resulting bearing
forces in x- and y-direction. Hence, for electric machines
which can either simultaneously generate drive and bearing
forces or simultaneously rotate and move in linear direction,
a dq-transformation for both systems should be applied, i.e.
the rotational and the linear motion, which results in a so-
called two-directional dq-transformation [17], [18]. Such a
transformation has 4 components, dd, dq, qd and qq, where
the components dq, qd may provide decoupled torque and
axial force control (the first index is related to the rotation,
while the second index corresponds to the linear motion, e.g.
dq is the d-component for rotation and the q-component for
the linear motion). As explained in [18], the MALTA drive
current component is a zero-sequence component in rotary
direction, and therefore, its q-component is denoted as 0q in
the two-directional transformation, which is also shown in
Fig. 5(b). The bearing components have only d-component
in axial direction and both d- and q-components in rotary
direction, which gives dd- and qd-components for control of
the bearing forces in x- and y-direction.

The MALTA drive and the bearing current components are
separated from the 9-phase currents of each module by the

(a) (b)
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Fig. 5: Electrical system of the MALTA: (a) The winding system
of a single module consisting of 9 concentrated coils. The complete
MALTA prototype with module 1 and module 2 has 2×9 = 18 coils.
(b) Mover with labelled two-directional dq-transformation axes (the
first index for radial direction (bearing) and the second index for
linear direction).

two-directional dq-transformation
[
x0d x0q
xbd xbq

]

︸ ︷︷ ︸
Xdq

= KR(ϕ)



x11 x12 x13
x21 x22 x23
x31 x32 x33




︸ ︷︷ ︸
Xabc

KL, (16)

where x denotes any phase quantity (voltage, current or flux).
The transformation matrices KR(ϕ) and KL are given in [18].
The inverse transformation is derived from (16) by simply in-
verting the transformation matrices Xabc = K−1R (ϕ)Xdq K−1L .

The drive (propulsion) force of both modules is controlled
by the q-component of the drive current i0q. Therefore, for the
modules 1 and 2 the drive force components are

fD1 = KDi0q1, fD2 = KDi0q2, (17)

where fD1 and fD2 are part of the I ~FD force vector from
the mechanical model given (7) and KD is the MALTA drive
constant. The drive constant value is measured in [11] and its
value is given in Tab. IV in the Appendix.

The bearing force components are controlled with the
bearing current components as

fB1 = KBibd1, fB2 = KBibd2, (18)

where fB1 =
√
f2x,B1 + f2y,B1 and fB2 =

√
f2x,B2 + f2y,B2.

The force components f{x,y}B{1,2} are part of the I ~FB force
vector from the mechanical model given in (8) and KB is
the bearing constant whose value is measured and given in
Tab. IV in the Appendix. It should be noted in (18) that only
the amplitude of the bearing force is controlled. The direction
of the bearing force control is achieved by commanding the
angle ϕ in the transformation (16) for modules 1 and 2 as
ϕ1 = atan2(fy,B1/fx,B1) and ϕ2 = atan2(fy,B2/fx,B2),
respectively.

III. MALTA MECHANICAL MODEL LINEARIZATION

The nonlinear mechanical model given with the equa-
tions of motion (3), together with the model of the po-
sition sensor and the electrical model, may be used for
numerical simulation of the MALTA dynamics. To use
the nonlinear mechanical model for the position controller
design, the model is linearized at first. The lineariza-
tion is performed around the steady-state point ~qss =[
x = 0 y = 0 z = zss α = 0 β = 0 γ = 0

]>
. At the

steady-state point, the mover can be displaced in axial direc-
tion, but should be in the radial center and not tilted. The per-
formed linearization results in a system of 6 linear differential
equations. At this point, since rotation of the MALTA mover
can not be actively controlled, the last equation that describes
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TABLE I: Poles (eigenvalues) of the linearized MALTA system.
Symbol Mode Eigenvalue
λ1,2 x ±218.92
λ3,4 y ±218.92
λ5,6 z 0
λ7,8 α ±157.53
λ9,10 β ±157.53

the dynamics of the angle γ is removed from the further
analysis. This gives a system of 5 linear differential equations,
which can be written in a vector form as M (∂2~q/∂t2) =
S~q + V~v and represent linearized equations of motion. The
position vector is equal to ~q =

[
x y z α β

]>
and

the input vector is ~v =
[
fx,B1 fy,B1 fx,B2 fy,B2 fD

]>
,

where fD = fD1+fD2, cf. (17). Due to limited space, matrices
M, S and V are not shown.

The most favorable form of the MIMO system for the
controller design is the state-space form of the linear equa-
tions, where the first derivatives of the states are expressed as
functions of the states itself and the inputs (drive and bearing
forces). In order get the state-space form, the second deriva-
tives from the linearized equations of motions are removed by
augmenting the state vector as ~ξ =

[
~q ∂~q/∂t

]>
, which gives

the system in a standard state-space form
∂~ξ

∂t
= A10×10~ξ + B10×5~v,

~p = C5×10~ξ,

. (19)

The second equation in (19) is the output equation, where C =[
P5×5(z0) 05×5

]
. The matrix P5×5(z0) is obtained from (15)

by removing the last column and 05×5 is the zero matrix.
From the linearized state-space system representation (19),

the poles of the system are determined as the eigenvalues of
the matrix A, which are given in Tab. I for the case zss = 0.
The linearization was also studied for zss ∈ [−15, 15] mm,
revealing that the pole locations do not vary significantly. The
system is open-loop unstable, since there exist positive poles.
These are caused by the destabilizing attraction forces, which
act on the mover in a ‘negative-stiffness spring’ fashion. The
largest unstable pole imposes a minimum requirement on the
closed-loop bandwidth of the position control system (as a rule
of thumb, the closed-loop system bandwidth should be twice
the frequency of the largest unstable pole [19]). For example,
from Tab. I the largest frequency is 218.92 rad s−1 and it is
associated to the unstable pole λ1 = 218.92.

IV. CONTROLLER DESIGN

The overall MALTA control scheme is presented in Fig. 6.
It features a cascaded structure, with the inner current control
loop and the outer position control loop. This is a com-
mon choice for control of electromechanical actuators as the
mechanical time constants are typically much greater than
the electrical ones, thus exhibiting a dynamic separation in
frequency domain. This allows independent design of the
outer, slower control loop and the inner, faster one. In the
following, first the position controller and hence the current
controller are described.

A. Position Controller
For the outer position loop a COG control strategy [12] is

chosen, which consists in controlling position and orientation

Fig. 6: Overview of the cascaded MALTA control structure. The
current controller is in the inner control loop, while the position
controller is in the outer control loop.
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Fig. 7: Structure of the MALTA position controller. From the output
measurements ~p, the state ~ξ is estimated with the state estimator
(Kalman Filter) and used for LQR feedback control. To enhance
performances, the feedforward force commands ~vFF (for tracking)
and ~v0 (steady-state compensation) are added to the feedback-only
component ~vFB obtaining the total force command ~v. This is finally
converted into the desired dq currents ~idq∗

of the mover frame R, rather than axial and radial positions ~p
sensed at the sensor planes (i.e. output control or decentralized
approach). As COG coordinates ~q make part of the state of the
system ~ξ, a multi-input multi-output (MIMO) Linear Quadratic
Regulator (LQR) [20] based on full state feedback is ultimately
chosen. Given the state error signals ~eξ, computed as the
difference from the state reference ~ξ∗ and the current state
~ξ, the controller provides the force commands ~vFB to apply to
the mover. The complete structure of the position controller is
shown in Fig. 7.

The current state ~ξ is estimated from the output measure-
ments ~p with a state observer. A steady-state Kalman Filter,
a particular form of the more general Luenberger observer,
is chosen. The (Kalman) gain of the observer is obtained by
solving a quadratic optimization problem which corresponds
to the dual problem of LQR control. The design weights Qobs

and Robs are obtained from the variances of the process and
sensor noise, respectively, which are assumed to be normally
distributed. Their values, given in Tab. II(a), are determined
from open-loop measurements in order to prevent correlation
of the two kinds of noise. As without feedback control
the mover cannot levitate, position sensors are statistically
characterized with no phase currents, i.e. with the mover
resting on the touchdown bearing. Concerning input forces, it
is equivalent to statistically characterize input currents, as they
are directly proportional. In this case the mover is removed
from the machine and DC currents of 1A in dq-frame for the
bearing and the drive force generation are applied (cf. (17)
and (18)). This way, the variances in Tab. II(a) are obtained.

It should be mentioned that a state observer is not mandatory
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for COG control. In fact, in most AMBs setups the measure-
ment matrix is square and invertible. Hence, it is possible
to explicitly map measurements back into COG coordinates
as ~q = P−10 (z) ~p. For the MALTA, as P0(z) in (15) is not
invertible, the Moore-Penrose pseudoinverse P†0(z) should be
used instead. Nevertheless, the use of the (full) state estimate
for feedback control is advantageous. Not only it allows
filtering out noise from measurement data in an optimal sense,
but also it provides speed estimates, which can be used to
implement derivative control action. This is highly beneficial,
as it avoids the direct computation of discrete derivatives
from the measurement data, which would result in noise
amplification for noisy signals.

The LQR position controller is tuned by choosing the design
weights Q and R as reported in Tab. II(b). LQR design often
includes some trial and error, as it is a matter of trade-off
between penalization of large state or large input magnitudes.
In this case, in order to gain some insight on the closed
loop system, the controller is tuned iteratively by shaping the
singular value decomposition of the complementary sensitivity
function (i.e. the closed loop transfer function), using the
established linearized dynamic model.

The modes x and y, as well as α and β are tuned in the
same way, whereas different weights are chosen specifically
for z. With these choices, the resulting MIMO position con-
troller closed-loop bandwidth is around 400 rad s−1. To further
increase the bandwidth of the position controller, an increased
bandwidth of the inner current controller is required such that
dynamic decoupling between the inner and outer control loops
is guaranteed.

In order to suppress steady-state errors and provide re-
sponsive disturbance rejection, integral action is added to the
position controller. The levitated mover is originally modelled
as a pure double integrator. This would make the loop gain type
2 (i.e. with 2 poles in the origin), which implies that both step
and ramp responses can already be tracked with zero steady
state error. However, this would be only an ideal condition. In
practice, additional physical phenomena impact the levitated
mover, such as cogging force, with the result that the two
poles are moved away from the origin. Therefore, additional
integral action is required. This is included in the LQR design

by augmenting the state as ~ξaug =
[
~ξ ~ep = ~p∗ − ~p

]>
, i.e. by

adding the output error dynamics to the state and regulating it
to zero. The LQR design weights for the augmented system
become then as in Tab. II(c).

The performances of the position controller are enhanced
with feedforward components ~vFF, which are added directly
after feedback control action computation. More specifically,
feedforward control is provided along the axial direction z
in order to improve transient responses to known references.
This is possible with an appropriate force component fD,FF
obtained through inversion of the plant’s dynamics. If z∗ is
the axial position reference to be tracked, then fD,FF = mz̈∗.
With the feedforward component, the controller knows in
advance how to act to follow the commanded reference,
instead of reacting after it has already changed. This allows
speeding up transient response and tracking faster references,
leveraging the feedback part from this task. The feedforward
control in radial direction may be provided via the first four

TABLE II: LQG Control weights: (a) LQR control, (b) LQR
augmented control, (c) SS-KF observer.

Qobs = Bdiag(σ2
fx1, σ

2
fy1, σ

2
fx2, σ

2
fy2, σ

2
fz)B>

Robs = diag(σ2
x1, σ

2
y1, σ

2
x2, σ

2
y2, σ

2
z )

σ2
x1, σ

2
x2 7.06 · 10−10 σ2

fx1, σ
2
fx2 2.5 · 10−3

σ2
y1, σ

2
y2 4.53 · 10−10 σ2

fy1, σ
2
fy2 2.5 · 10−3

σ2
z 1.55 · 10−8 σ2

fz 4.9 · 10−3

(a)
Q = diag(qx, qy, qz, qα, qβ , qdx, qdy, qdz, qdα, qdβ)

R = diag(rfx1, rfy1, rfx2, rfy2, rfz)
qx, qy 3.25 qdx, qdy 10 rfx1, rfy1 1
qα, qβ 15 qdα, qdβ 12 rfx2, rfy2 1
qz 0.3 qdz 0.3 rfz 0.1

(b)

Qaug = diag(Q, qex1,
qey1, qex2, qey2, qez)
qex1, qey1 80
qex2, qey2 80
qez 30

(c)

components of ~vFF, which can be used to counter any known
radial disturbances, e.g. when the MALTA is moved with
parallel kinematics in pick-and-place robots.

The feedforward action includes an additional component
~v0(z) to adjust in advance steady-state forces according to the
current axial position z. These include for example gravity
compensation with the two bearing forces fy,B1 and fy,B2 and
compensation of irregularities in the radial pull forces due to
asymmetries and manufacturing tolerances. Nevertheless, the
feedforward steady-state action ~v0(z) includes also a linear
(axial) cogging force component, which is already passively
significantly reduced to a very low values by choosing a dis-
tance between the two MALTA stator modules that minimizes
it. These components are recorded from the position controller
reference signal in steady-state.

It is of interest to investigate whether manufacturing tol-
erances and uncertainties in the system may compromise the
stability of the designed position controller. This is even more
relevant, as in pick-and-place applications the mass of the
mover varies according to the picked object. For this reason,
the LQR design is tested for robust stability in MATLAB.
By allowing a 20% uncertainty on m,KA,KD and KB, the
system is expected to tolerate up to around 300% of the
modeled uncertainty. In the case of the mass m, this means that
the expected maximum payload is around 0.2 kg. Nevertheless,
in pick-and-place of e.g. electronic components, the payload
mass could even be neglected as it is much smaller than the
mover’s mass, as already mentioned in Sec. II.

The total control forces are finally converted into the
appropriate dq currents responsible for force generation, as
discussed in Sec. II-C, cf. (17) and (18).

B. Current Controller

The structure of the current controller is shown in Fig. 8.
The control actions are the dq-voltages Udq, which are trans-
formed into the phase voltages Uabc according to the trans-
formation introduced in Sec. II-C. These are finally converted
into equivalent duty cycles dabc for pulse-width modulation.
The switching frequency of the MALTA inverter is fsw =
100 kHz.
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is considered for simplicity. There are 4 dq quantities to be controlled:
i0d, i0q, ibd, and ibq. Hence, 4 PI-controllers, all designed and tuned
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MALTA
Module

45V
DC Link

+

-

S

11u 21u 31u 12u 22u 32u 13u 23u 33u Integrated
Half-Bridge

11e 21e 31e

+ + +

12e 22e 32e

+ + +

13e 23e 33e

+ + +

R R R R R R R R R

L L L L L L L L L

Fig. 9: Power circuit schematic of a single MALTA stator module
supplied by the 45 VDC inverter. The resistance and the inductance
of a phase winding are R = 2.2 Ω and L = 2.8 mH. The induced
voltages e{1,2,3}{1,2,3} have the amplitude equal to Kind · vz, where
Kind = πΨ̂/Lp = 1.74 Vs/m, Ψ̂ = 8.3 mWb is the flux linkage,
Lp = 15 mm is the pole size and vz is the linear mechanical speed
of the MALTA mover.

The current controller is designed using the linearized
steady-state electrical model in stationary dq coordinates, i.e.
with ϕ̇ = 0 and θ̇ = 0. The model is of the form

dik(t)

dt
= −Rk

Lk
ik(t) +

1

Lk
uk(t), (20)

where k ∈ {0d, 0q,bd,bq} denotes the stationary coordinate
axes, cf. Fig. 5(b). The PI current controllers are tuned such
that the crossover frequency is ωcc

c = 3000 rad s−1, which
is considerably higher than the crossover frequency of the
position controller. The phase margin is 60° to ensure an ac-
ceptable overshoot of the transient response. The voltages u0q1
and u0q2 also include an additional feedforward correction
factor u0q,ind = Kindż, to compensate for the induced voltage
due to non-zero linear speed along the z axis during operation,
cf. Fig. 9.

Fig. 10: Two-level MALTA inverter, which consists of 24 chip inte-
grated half-bridges, control board and digital interfaces for position
sensors. The power circuit schematic for a single MALTA module is
shown in Fig. 9.

Fig. 11: (a) Illustration of the PM field lines used to sense the axial
position of the mover and the sensor planes SP1 and SP2, at axial
distance 2lS. (b) Front side of the sensor prototype with four Hall-
effect sensors, denoted as h1, h2, h3 and h4. The Hall-effect sensors
can sense z component (axial) of the PM field. The displacement
2lS is such that the sensed PM field from SP1 and SP2 Hall sensors
is shifted by a half the PM pole size Lp/2. (c) Back side of the
PCB integrated sensor prototype. The eddy current sensor coils for x
direction (x+, x−) are connected in anti-series, as well as (y+, y−)
for y direction. The physical size of sensor PCBs is 8× 8 cm.

V. HARDWARE REALIZATIONS OF INVERTER SUPPLY
AND POSITION SENSOR

A. MALTA Inverter Supply

The control system is discretized (with the backward Euler
method) and implemented in C code on the employed high-
performance digital signal processing platform (Xilinx Zynq
Z-7020, cf. Fig. 10). It is executed at a rate of 20 kHz, which
is limited by the available processing capability. The 18 inte-
grated gallium nitride (GaN) half-bridges (Texas Instruments
LMG5200) required to drive the MALTA are controlled by 18
individual pulse-width modulators implemented in the fabric
of the FPGA processing platform.

In MALTA operation, the mover exhibits accelerations and
decelerations, which reflects onto the electrical part of the
system by consumption or generation of electrical energy
that might cause oscillations of the DC-link voltage. There-
fore, a rather large capacitance of 4 × 22mF = 88mF
is used in the DC-link. For example, if the mover has a
linear speed of 5m/s, it has accumulated kinetic energy of
0.5 ·0.36 kg ·(5m/s)2 = 4.5 J. If the losses in the inverter and
the MALTA are neglected, this kinetic energy will be added
to the electric energy in the DC-link caps and would cause
a voltage oscillation of ∼ 1.12V, which is around 2.5% of
the 45VDC and it is an acceptable value. This issue could be
also addressed by e.g. adding a braking resistor in the DC-
link, which would allow to use a lower DC-link capacitance
value.

B. MALTA Position Sensor

The MALTA position sensors are realized on PCBs (cf.
Fig. 1) and placed with respect to the stator modules as shown
in Fig. 11(a). For the axial position detection, the signals from
the Hall-effect sensors located on both sensor planes, SP1 and
SP2, are used. This is a very well known method where ‘sin’
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Fig. 12: Measurements of the MALTA response for a 10 mm axial
stroke. (a) Reference axial position, simulation and actual response.
The reference for z, shown as a black dashed line, is shaped with
a sigmoid profile to improve tracking performances. The actual z
response is shown in red and it tracks the reference with 16.2 ms
rise time and ≤1.5 % overshoot. (b) Axial position tracking error
stays below 0.6 mm (c) Axial speed profile. (d) Axial driving force
(total) and correspondent dq component (only for Module 1). It is
possible to verify the value of the drive constant of KD ≈ 5 N A−1.

and ‘cos’ of the PM field need to be measured such that
linear position can be detected [21]. In conventional linear
machines where the radial position of the mover is governed,
e.g. by mechanical bearings, the PM field sensed by the Hall-
effect sensors can change only if the mover moves in linear
z-direction. Since in the MALTA, the mover is capable also
to move radially (for the MALTA from approx. −0.6mm to
0.6mm), which is allowed by the integrated MBs, the change
of the PM field detected by the Hall-effect sensor due to radial
motion can not be differed from the PM field change due to
linear motion, which may lead to an inaccurate linear position
detection. Therefore, for the linear position detection of the
MALTA, the ‘sin’ and ‘cos’ signals are formed by the average
sum of the four Hall-effect sensors, i.e. (h1+h2+h3+h4)/4.
This mitigates the sensitivity of the sensed PM field change to
the radial motions of the MALTA mover. For example, if the
mover moves in the positive y direction (cf. Fig. 11(b)), the
PM field sensed by h2 would increase while the field for h4
reduces, i.e. their average sum stays approximately constant.
Finally, in total 8 Hall-effect sensors (4 per sensor plane) are
used for the linear position detection of the MALTA’s mover.

The radial position is detected by the PCB integrated eddy
current position sensor, shown in Fig. 11(c). Detailed expla-
nation about the sensor operating principles and its equivalent
circuit may be found in [22], [23].
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Fig. 13: Measurements of the MALTA response for a 10 mm axial
stroke corresponding to Fig. 12. (a-b) Radial responses in x and y
directions for Module 1 and Module 2. The maximum deviation is
contained within ±20 µm. According to simulation of the dynamical
model, deviations y1 and y2 are expected, whereas this is not the case
for x1 and x2. This mismatch can be explained by manufacturing
tolerances. (c-d) Commanded forces from the position controller for
Module 1 and Module 2. fy,B1 is larger than fy,B2 at steady-state as
the mover is unbalanced towards Module 1. Their sum compensates
the gravity force mg ≈ 3.25 N.

VI. MEASUREMENT RESULTS

The shown measurements are conducted on the MALTA
prototype with the controller structure described in Sec. IV.
In order to get the shown position controller performance, the
MALTA prototype was fixed in a stable test-bench where the
commissioning of the MALTA prototype (force and attraction
constants measurements, cf. Tab. IV) and position sensor is
done, which data is then used in the implemented controller,
either in the form of the constant parameter (cf. Tab. IV) or
the lookup table (cf. ~v0 in Fig. 7).

A. Axial Reference Tracking
The experimental setup of the MALTA actuator and its

inverter are shown in Fig. 1 and Fig. 10, respectively. In order
to demonstrate the operation of the MALTA, an axial 10mm
stroke is commanded to the position controller as shown in
Fig. 12(a). The non-zero steady-state force/current that can be
observed in Fig. 12(d) from around 40ms onwards is needed
to counteract the cogging force, guaranteeing average steady-
state errors in the order of 1 µm (cf. also Tab. III). Due to
feedforward control, the controller tracks the assigned sigmoid
position reference z without overshooting, which is seen from
the measurements in Fig. 12(a).

In Fig. 13, the radial position responses to the same axial
step of Fig. 12(a) are shown. The radial position control rejects
effectively the disturbances occurring during fast axial motion,
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Fig. 14: Measurement distribution of the steady-state radial positions
of the Module 1 and Module 2. Axial position reference is z∗ = 0,
i.e. mover is in the middle. From the 2000 samples, sensor resolution
is clearly visible to be around 1 µm.

maintaining the deviations within ±20 µm (cf. Fig. 13(a),(b)).
In Fig. 13(c),(d) the commanded radial forces are shown. Also
in this case, after reaching steady-state they have a non-zero
value. In particular, fy,B1 and fy,B2 are needed to keep the
mover levitated and their sum corresponds in fact to mg ≈
3.25N. As the mover is unbalanced towards the first stator
module (at the steady-state axial position of 5mm), fy,B1

is larger than fy,B2. It should be mentioned that additional
unknown radial disturbances, e.g. external vibrations, could
cause higher radial position deviations.

In both Fig. 12 and Fig. 13 the dashed lines are the sim-
ulated responses to the same smooth reference as obtained
from a MATLAB Simulink model. This is built according to
the modelling of Sec. II, derived from first physical principles.
By allowing for the expected differences between model and
measurements due to manufacturing tolerances, unmodeled
dynamics and noise, it can be assessed that the two are in
good agreement. An exception are the measured x1 and x2
positions, which according to the model should not be affected
by an axial motion. This mismatch can be explained both
with the irregular magnetic field distribution inside the two
stator modules and tolerances in the strengths of the permanent
magnets of the mover.

B. Steady-State Positioning Performance

Positioning performances in steady-state may be further
investigated with the measurements shown in Fig. 14, for the
case of z∗ = 0 (mover in the middle). It can be clearly
seen that the measured radial positions are very close to the
sensor resolution of ≈ 1 µm. This is a good result offered
by the chosen eddy current sensor technique. Tab. III finally
summarizes the statistical metrics of all the measured position
signals. The noticeably higher variance of the axial z position
is due to the Hall-effect sensor technique employed, which is
more prone to noise.

TABLE III: Statistical metrics (mean and standard deviation (STD))
of the steady-state position measurements calculated from 2000
measured samples.

Position (Symbol) Mean (µm) STD (µm) Motion Range (µm)
Axial (z) −0.5224 15.4277 ±15× 103

Module 1
x-direction (x1) 0.0335 0.3883 ±600
y-direction (y1) −0.0212 0.5579 ±600
Module 2
x-direction (x2) 0.0579 0.4827 ±600
y-direction (y2) −0.0735 0.4956 ±600

Thermal
Expansions

Mover
Tilting

MALTA

Module 2

Module 1

(b)(a)
)1, y1x(

)2, y2x(

Fig. 15: (a) Setup of a typical application with MALTA mounted as
an end-effector of a robot arm. If the robot arm experiences thermal
expansions during operation, the overall precision of the positioning
system is compromised. (b) The active tilting and radial control to
provide an appropriate correction of the compromised position.

Fig. 16: Measurements of the mover tilting control. The assigned
reference is given with the expression (21).

C. Mover Tilting Capability

A special characteristic of the MALTA system is the
possibility of actively controlling the tilting of the mover,
cf. Fig. 15. This can be exploited for advanced positioning
systems. For instance, in a typical application, an actuator
like the MALTA would be mounted as an end-effector of a
robotic arm, cf. Fig. 15(a), for instance in a pick-and-place
robot application. If during the operation the whole setup
heats up, thermal expansions of the supporting robotic arm
occur. For example, a robotic arm of 0.5m length would
extend in length for around ≈ 65 µm, if the temperature rises
for 10 ◦C (temperature expansion coefficient of steel equal to
13× 10−6 ◦C−1 is assumed). This would totally compromise
precise positioning of the end-effector if no correction is ap-
plied. However, with the MALTA, these thermal disturbances
may be completely decoupled by active magnetic bearings and
the radial precision is determined by the precision of the radial
eddy-current position sensor. The thermal expansions may be
measured, e.g. by measuring the position of the MALTA mover
with a laser sensor mounted on a support that is not affected by
the thermal expansions. This feature may justify an effort of
integrating MBs into the actuators, as some of the conventional
solutions have water cooling systems in the robotic arms,
which limit temperature changes and thermal expansions.

This concept is demonstrated with the experiment shown in
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Fig. 16. In this case, a circumference of radius S = 200 µm
is assigned as a reference to be tracked along the SP1 plane,
whereas the mover should be kept fixed at the center of the
SP2. The reference
~p∗(t) =

[
S cos(2πfp∗t) S sin(2πfp∗t) 0 0 0

]>
(21)

is then directly used for integral control and transformed into
the appropriate state reference ~ξ∗ =

[
~q∗ ∂~q∗/∂t

]>
, with

~q∗ = P−10 (z) ~p∗ for full state feedback. The controller is
employed to track the circumference at fp∗ = 2Hz. The
measurements in Fig. 16 show the response of the system
for both modules. It can be seen how the radial motions
in the Module 1 affect the Module 2, where the controller
commands the forces fx,B2 and fy,B2 that keep the radial
position deviation from the reference center position below
4 µm.

VII. CONCLUSION

In this paper, dynamic operation of the Magnetically
Levitated Tubular Actuator (MALTA) is analyzed. The anal-
ysis starts with the dynamic mechanical modeling of the
MALTA system by using Newton-Euler equations that may de-
scribe combined translation and rotation of the MALTA rigid
mover. Each of the force types (drive, bearing or attraction)
that act on the mover are modeled, as well as the torques
that they create. As the mover position is described by the
translation and rotation of its center of gravity and the position
sensor provides measurements of the radial and axial positions,
sensor system is modeled and mapping with the center of
gravity coordinates is given. Control system is LQR feedback
controller assisted with the feed-forward compensation of
the nonlinearities due to the cogging force and the induced
voltage due to linear motion. It has cascaded structure with
inner (faster) current control loop and outer position control
loop. Additionally, a mechanical model based observer is
designed, which is used to provide information about the
states and state derivatives (speeds) such that high-frequency
noise amplification due to measurement signal differentiation
is avoided. In the measurement experiments, MALTA system
shows good axial reference tracking with the 10mm axial
stroke amplitude and 16.2ms of the rise time. During this axial
movement, the mover deviation from its center is below 20 µm.
By studying statistical metrics of the controlled positions in
the steady-state, the radial positions exhibit standard deviation
around 0.5 µm and the axial position around 15 µm. In the final
measurement experiment an application example is proven, in
which the mover tilting control of the proposed MALTA is
used to compensate for any thermal expansions that would
deteriorate positioning accuracy, e.g. in a pick-and-place robot
application.

Future work will include analysis of the disturbance rejec-
tion capabilities of the MALTA and an enhanced disturbance
rejection position controller design. Additionally, stability lim-
its with large radial and axial displacements of the mover will
be studied.

APPENDIX

MALTA Parameters
The parameters of the MALTA prototype, used in the dy-

namic model, are given in Tab. IV. The analyzed operation of

the MALTA considers linear region where the force constants
do not change with the amplitude of the phase currents.

TABLE IV: Mechanical Parameters of the MALTA.
Symbol Quantity Value
Mass and Moment of Inertia
m Mover Mass 0.360 kg
Ixx Mover x-Axis MoI 1.3805× 10−3 kgm2

Iyy Mover y-Axis MoI 1.3805× 10−3 kgm2

Izz Mover z-Axis MoI 4.7707× 10−5 kgm2

Force Constant
KD Drive Const. per Module 5.2NA−1

KB Bearing Const. per Module 5.2NA−1

KA Attraction Const. per Module 8330Nm−1
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