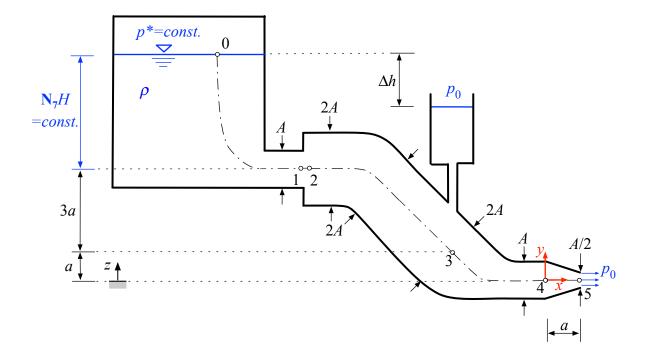
Familienname: Vorname: Kenn- u. Matr.Nr.:

1. Beispiel (10 Punkte)


Gegeben:

Stationärer Abfluss aus einem Druckbehälter über ein Rohrsystem (Längenmaß a):

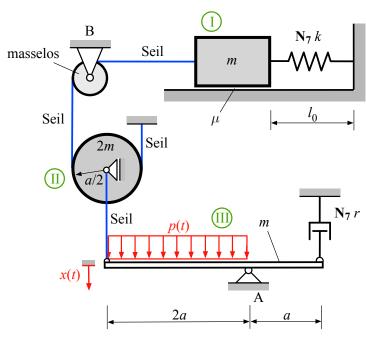
- Inkompressible, reibungsfrei strömende Flüssigkeit mit der Dichte ρ
- Querschnittsflächenmaß der Rohleitung: A
- Stationäre Wasserspiegelhöhe $N_7 H$ im Druckbehälter
- Umgebungsdruck *p*₀
- Konstanter Überdruck $p^* = p_{abs} p_0$ im Hochbehälter
- *) N₇ entspricht der 7. Ziffer der Matrikelnummer (z.B. 018012<u>3</u>4: N₇=3). Ist die 7. Ziffer gleich Null, dann ist die nächstvordere Ziffer ungleich Null einzusetzen (z.B. 0150<u>2</u>000: N₇=2). "N₇H" entspricht "2H", wenn N₇ gleich 2 ist.

Gesucht:

- 1. Geschwindigkeit v₅
- 2. Geschwindigkeiten v_1 , v_3 und v_4 abhängig von v_5
- 3. Überdrücke p_3 , p_4 abhängig von v_5
- 4. Höhenunterschied Δh abhängig von v_5
- 5. Kraftwirkung \vec{F}_W auf den Rohrabschnitt 4-5 zufolge der strömenden Flüssigkeit abhängig von v_5

Familienname: Vorname: Kenn- u. Matr.Nr.:

2. Beispiel (10 Punkte)


Gegeben:

Ebenes schwingungsfähiges System lt. Skizze in entspannter Federlage:

- Punktmasse I (Masse *m*)
- Starre, masselose Umlenkrolle im Punkt B
- Starre, homogene Kreisscheibe II (Radius *a*/2 und Masse 2*m*)
- Starrer Stab III (Länge 3a und Masse m)
- Linear elastische Feder: Federsteifigkeit N_7k , entspannte Federlänge l_0
- Geschwindigkeitsproportionaler Dämpfer: Dämpfungskonstante N_7r
- Ideale masselose, undehnbare, straff gespannte Seile, die auf den Scheiben haften
- Reibungskoeffizient μ
- Kraftanregung: Linienlast p(t)
- *) N₇ entspricht der 7. Ziffer der Matrikelnummer (z.B. 018012<u>3</u>4: N₇=3). Ist die 7. Ziffer gleich Null, dann ist die nächstvordere Ziffer ungleich Null einzusetzen (z.B. 0150<u>2</u>000: N₇=2). "N₇k" entspricht "2k", wenn N₇ gleich 2 ist.

Gesucht:

- 1. Bewegungsgleichung des Systems mit den <u>Lagrangeschen Gleichungen</u> für kleine Schwingungen, formuliert in x(t)
- 2. Kontrolle der Bewegungsgleichung für das <u>reibungsfreie und ungedämpfte</u> System (r = 0, $\mu = 0$) mit dem <u>Energiesatz</u>
- 3. Statische Ruhelage des Systems und Formulierung der Bewegungsgleichung für kleine Schwingungen um die statische Ruhelage für das <u>reibungsfreie und ungedämpfte</u> System
- 4. Maximale Federkraft für $p(t) = p_0 \sin(\nu t)$ für den eingeschwungenen Zustand des reibungsfreien und ungedämpften Systems

