Familienname: Vorname: Kenn- u. Matr.Nr.:

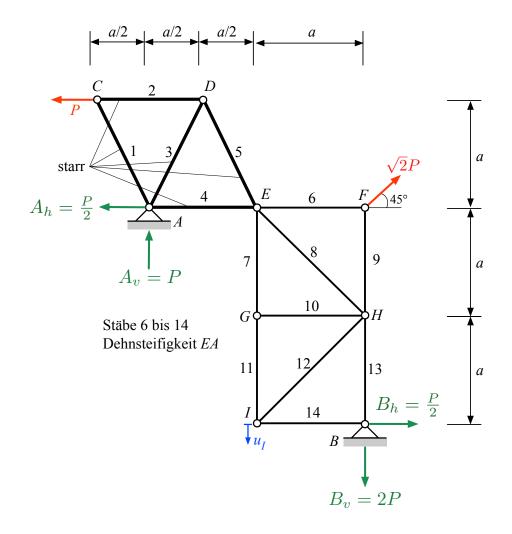
1. Beispiel (10 Punkte)

Gegeben:

Ebenes Fachwerk lt. Skizze (Längenmaß *a*):

- Starre Pendelstützen 1 bis 5 ($EA=\infty$)
- Pendelstützen 6 bis 14 mit Dehnsteifigkeit EA

Belastung lt. Skizze:


- Einzelkraft P
- Einzelkraft $\sqrt{2}P$

Auflagerreaktionen lt. Skizze:

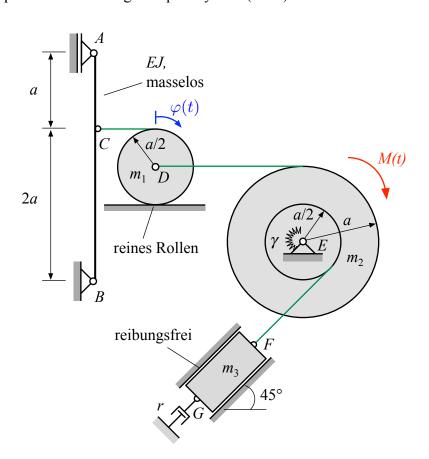
- A_h und A_v
- B_h und B_v

Gesucht:

- 1. Vertikale Verschiebung u_I im Knoten I mit dem Satz von Castigliano
- 2. Kontrolle der Stabkraft S_{11} mit dem Prinzip der virtuellen Arbeit (Skizze der Kinematik)

Familienname: Vorname: Kenn- u. Matr.Nr.:

2. Beispiel (10 Punkte)


Gegeben:

Ebenes schwingungsfähiges System lt. Skizze in entspannter Federlage (Längenmaß *a*):

- Starre homogene Kreisscheibe: Radius a/2, Masse m_1
- Starre homogene Kreisscheibe: Innenradius a/2, Außenradius a, Masse m_2
- Punktmasse: *m*₃
- Linear elastischer, masseloser Biegestab: Länge, 3a, Biegesteifigkeit EJ
- Linear elastische Feder: Drehfedersteifigkeit y
- Geschwindigkeitsproportionaler Dämpfer: Dämpfungskonstante r
- Gewichtslose, ideale Seile, die auf den Scheiben reibungsfrei haften
- Anregung: Moment M(t)

Gesucht:

- 1. Effektive Federsteifigkeit k_{eff} im Punkt C in horizontaler Richtung mit Hilfe des Mohrschen Verfahrens als Funktion von EJ und a
- 2. Anzahl der Freiheitsgrade des Ersatzsystems und mechanische Deutung der Lagekoordinate
- 3. Bewegungsgleichung des Systems für kleine Schwingungen, formuliert in der Lagekoordinate $\varphi(t)$, mit Hilfe des Schwerpunkt- und des Drallsatzes
- 4. Statische Gleichgewichtslage φ_{stat} und Bewegungsgleichung für Schwingungen um die statische Gleichgewichtslage
- 5. Eigenkreisfrequenz ω für das ungedämpfte System (r = 0)

