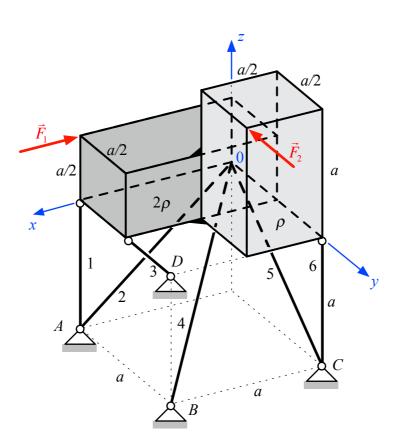
Familienname: Vorname: Kenn- u. Matr.Nr.:

Beispiel (20 Punkte)


Gegeben:

• Statisch bestimmt gelagertes System It. Skizze, bestehend aus zwei verschweißten starren gewichtsbehafteten homogenen Quadern der Dichten ρ (quadratische Grundfläche) und 2ρ (rechteckige Grundfläche), sowie sechs starren masselosen Pendelstützen: Abmessung a

• Einzelkräfte $\vec{F}_1 = -F\vec{e}_x$ und $\vec{F}_2 = -F\vec{e}_y$

Gesucht:

- 1. Überprüfung der statischen Bestimmtheit der Lagerung.
- 2. Gewichtskräfte \vec{G}_1 (quadratische Grundfläche) und \vec{G}_2 (rechteckige Grundfläche) beider Quader sowie die Lage ihrer Angriffspunkte \vec{r}_{g1} und \vec{r}_{g2} bezüglich 0.
- 3. Gewichtskraft \vec{G} des Gesamtsystems sowie die Lage des Angriffspunkts \vec{r}_g bezüglich 0.
- 4. Reduktion der Gesamtbelastung $(\vec{G}, \vec{F_1}, \vec{F_2})$ in den Punkt 0.
- 5. Aufstellen der Gleichgewichtsbedingungen zur Ermittlung der Stabkräfte in den Pendelstützen.
- 6. Stabkräfte \vec{S}_1 bis \vec{S}_6 .
- 7. Auflagerreaktion in A.

Universität Innsbruck AB Angewandte Mechanik Mechanik 1 Übungen 1. Kolloquium 16.12.2019 Familienname: Vorname: Kenn- u. Matr.Nr.:

	X_i	Y_i	Z_i	x_i	y_i	z_i	M_{ix}	M_{iy}	M_{iz}
\vec{G}									
$ec{F}_1$									
\vec{F}_2									
\vec{S}_1									
\vec{S}_2									
\vec{S}_3									
\vec{S}_4									
\vec{S}_5									
\vec{S}_6									

Dokumentieren Sie alle Berechnungsschritte und tragen Sie die berechneten Werte unten ein (die Vektoren sind in der Form $\vec{F} = \dots \vec{e}_x + \dots \vec{e}_y + \dots \vec{e}_z$ anzugeben).

\vec{G}_1	-	\vec{r}_{g1}	
$ec{G}_2$		$ec{r}_{g2}$	
$ec{G}$		$ec{r}_g$	

\vec{R}	
\vec{M}_0	

Gleichgewichtsbedingungen

<u> </u>			
I			
II			
III			
IV			
V			
VI			

Stabkräfte und Auflagerreaktion

$ec{\mathcal{S}}_1$				
\vec{S}_2				
\vec{S}_3				
$ec{S}_4$				
\vec{S}_5				
\vec{S}_6				
$ec{A}$				