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Multiple Linear Regression

Introduction

Origin of the word ”Regression”

Sir Francis Galton (1822–1911), a famous
geneticist, who studied the sizes of seeds and their
offspring and the heights of fathers and their sons.

Tall fathers tend to have sons that are slightly
smaller than the fathers. Sons of small fathers are
on average larger than their fathers. He called this
phenomenon ”regression towards mediocrity”.
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A scatterplot of the heights of 1078 sons versus the
heights of their fathers.
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Note: ȳS ≈ x̄F + 1.
However, the regression line E [y ] = b0 + b1x shows a slope b1
less than 1 (black line).
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This ”regression effect” must be taken into account
in test-retest situations.

Suppose a group of preschool children are given an IQ test at

age four and another test at age five. The results of the tests

will certainly be correlated, and according to above, children

who do poorly on the first test will tend to score higher on the

second test. If, on the basis of the first test, low-scoring

children were selected for supplementary educational

assistance, their gains might be mistakenly attributed to the

program. A comparable control group is needed in this

situation to tighten up the experimental design.
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Bivariate regression

Estimating model parameters

Notation of the model

y = β0 + β1x + ε

or

yi = β0 + β1xi + εi , i = 1, ..., n

β0 ... population intercept

β1 ... population slope,

measures the change in Y per unit change in X

εi ... random/unexplained error,

associated with the ith observation
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Bivariate regression

Estimating model parameters

Decomposition of y

I Linear functional form:

yi = β0 + β1xi + εi
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Bivariate regression

Estimating model parameters

Decomposition of y

I Linear functional form:
I Decomposition in a systematic component,

explained by variable X
I and an unexplained component ε.

yi = β0 + β1xi + εi
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Bivariate regression

Estimating model parameters

Decomposition of y

I Linear functional form:
I Decomposition in a systematic component,

explained by variable X
I and an unexplained component ε.

yi = β0 + β1xi + εi

I The derivation

β1 =
dy

dx

gives the marginal impact of a change in X .
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Bivariate regression

Estimating model parameters

Decomposition of y
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Bivariate regression

Estimating model parameters

Decomposition of y
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Bivariate regression

Estimating model parameters

Decomposition of y
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Bivariate regression

Estimating model parameters

Decomposition of y
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ŷ3 ŷ4
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Bivariate regression

Estimating model parameters

Decomposition of y
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Bivariate regression

Estimating model parameters

Computation of β0 and β1
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Bivariate regression

Estimating model parameters

Computation of β0 and β1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

y

x

b

b

b

b

b

y1

y2

y3

y4

y5

yi = β0 + β1xi + εi

bc

bc

bc

bc

bc
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ŷ1
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Bivariate regression

Estimating model parameters

Computation of β0 and β1
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Bivariate regression

Estimating model parameters

Computation of β0 and β1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

y

x

b

b

b

b

b

y1

y2

y3

y4

y5

bc

bc

bc

bc

bc

yi = β0 + β1xi + εi

ŷi = β̂0 + β̂1xi

ŷ1
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e21 e22

e23 e24

e25

min
∑

i e
2
i =

∑
i(yi − ŷi)
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Bivariate regression

Estimating model parameters

OLS estimate for the model parameters
OLS estimate Standard error

β1 β̂1 =
∑n

i=1[(xi−x̄)(yi−ȳ)]∑n
i=1(xi−x̄)2

seβ̂1
=

√
σ̂ε∑n

i=1(xi−x̄)2

β0 β̂0 = ȳ − β̂1x̄ seβ̂0
=

√
σ̂ε

[
1
n
+ x̄2∑n

i=1(xi−x̄)2

]

εi ei = yi − ŷi σ̂ε =
√

1
n−2

∑n
i=1 e

2
i

Confidence intervals: β̂1 ± tα,df=n−2 · seβ̂1

Hypothesis testing: H0 : β1 = 0 and Ha : β1 6= 0

with the test statistic t = β̂1−0
seβ̂1

that is t-distributed

with df = n − 2.
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Bivariate regression

Coefficient of determination

Coefficient of determination
A measure of association between Y and X is R2 or
the coefficient of determination which measures the
proportion of the total variation in Y that is
explained by its linear relationship with X .

R2 =
SSregression
SStotal

= 1− SSresidual
SStotal

Note:

I Do not compare models with different data
transformations using R2!

I A model with more explanatory variables will
always have a higher R2.
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Bivariate regression

Anscombe data

Anscombe data
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Anscombe’s 4 regression data sets

Same intercept, slope and confidence bands! F−statistics and

t−values are significant, for all four R2 = 0.67.

Reference: Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27, 17–21.
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Bivariate regression

Assumptions of regression analysis

Assumptions of regression analysis
The four assumptions that allow the sample data to
be used to estimate the population parameter and
to do inferential statistics:

Model specification:
yi = β0 + β1xi + εi εi ∼ N(0, σ2

ε)

1. Normality

2. Homogeneity of variance

3. Independence and

4. Fixed X .
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Bivariate regression

Regression diagnostics

Assessing the important assumptions

I Normality assumption can be checked using a
histogram of the residuals or a Q-Q plot.

I Homogeneity can be assessed by plotting the
residuals against X to check for any increases
(decreases) in the spread of residuals along the
x−axis. This procedure can also assess model
misspecification and model fit.

I Plotting residuals against fitted values can
show increases in the spread for larger fitted
values: a strong indicator for heterogeneity.
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Bivariate regression

Regression diagnostics

Assessing the important assumptions

I Plotting residuals against the dependent
variable demonstrate the quality of the model.

I As to independence, for time series data
residuals can be checked additionally by the
auto-correlation function.

I For spatial correlation in the data residuals can
be checked by a spatial plot or by computing
Moran I .
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Bivariate regression

Regression diagnostics

Influential points
I Leverage is a tool that identifies observations that have

rather extreme values for the explanatory variables and
may potentially bias the regression.

leveragei = hi =
1
n
+ (xi−x̄)2∑

j (xj−x̄)2

I Cook’s distance statistic identifies single observations
that are influential on all regression parameters

Di =
∑

j(ŷj−ŷj(i))
p·MSE

p... number of fitted parameters in the model
MSE ... mean square error of the regression model

I Jacknife procedure and plot changes in the parameters.
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Bivariate regression

Regression diagnostics

Studentized residuals

I The studendized residuals are defined as
(yi−ŷi)√
σ̂2
ε(1−hi)

I Taking the square root of the absolute values
reduces the skewness and makes non-constant
variance more noticeable.
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Bivariate regression

Regression diagnostics

Studentized deleted residuals

I To obtain the ith Studentized residual the
regression model is applied on all data except
for observation i , and the σ̂ε is based on the
n − 1 points (but not residual ei or hat value
hi . These are based on the full data set.).
If the ith studentized residual is much larger
than a standardized residual, then this is an
influential observation because the variance
without this point is smaller.
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Bivariate regression

Regression diagnostics

Types of residuals for regression
diagnostics

Residual ei = yi − ŷi
Standardized residual ei

σ̂ε

Studentized residual ei

σ̂ε

√
(1−hi)

Studentized deleted residual ei

√
n−1

SSresidual(1−hi)−e2i

where hi is the leverage for observation i .
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Application

Problem

Application
Using a Case Study published in ”Analysing
Ecological Data (Statistics for Biology and Health)”
by A.F. Zuur, E.N. Ieno, G.M. Smith, Springer
2007, New York.

The Dutch governmental institute RIKZ started a
research project whose aim was to find relationships
between macrofauna of the intertidal area and
abiotic variables (e.g., sediment composition, slope
of the beach). Sampling was carried out in June
2002. Abundances of around 75 invertebrate species
from 45 sites were measured on various beaches
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Application

Problem

Application, II

One of the collected variables was ”NAP” which
measured the height of the sample site compared
with average sea level, and indicated the time a

site is under water.

The species data was converted into a diversity
index: Shannon-Weaver index. For these data
the Shannon-Weaver index can also be seen as an
indicator for the number of different species.
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Application

Problem

Application, III

Hypothesis: The tidal environment creates a harsh
environment for the animals living there, and it is
reasonable to assume that different species and
species abundances will be found in beaches with
different NAP values.

A simple starting point is therefore to compare
species diversity (species richness) with the NAP
values from different areas of the beach.
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Application

Regression analysis

Scatterplot of the data
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Application

Regression analysis

Regression line for the data
Regression line: yi = β0 + β1xi + εi
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Application

Regression analysis

Model summary

Model R R2 Adj. R2 SE estimate
1 0.570 0.325 0.309 4.15993

ANOVA

SS df MSS F Sig.
Regression 357.529 1 357.529 20.660 0.000
Residuals 744.115 43 17.305
Total 1101.644 44

Coefficients

Reg. coeff. Std. Error Beta T Sig.
(constant) 6.686 0.658 10.164 0.000
NAP -2.867 0.631 -0.570 -4.545 0.000
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Application

Model inspection

Residual diagnostic
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Application

Model inspection

Leverage and Cook’s distance statistic
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Model inspection

Jacknife procedure
Changes in intercept and slope
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Application

Model inspection

Plot of standardized and studentized
residuals
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Multiple linear regression

Multiple linear regression

yi = β0 + β1x1i + ...+ βpxpi + εi

εi i.i.d. N(0, σ2
ε)

Application:

Ri = constant + β1NAPi + β2Grainsizei +

β3Humusi +Week i + β4Anglei + εi
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Multiple linear regression

Residuals:
Min 1Q Median 3Q Max

-5.0454 -1.2865 -0.3314 0.7048 12.0917

Coefficients:
Reg. coeff. Std. Error T Sig.

(constant) 9.298448 7.967002 1.167 0.250629
angle2 0.016760 0.042934 0.390 0.698496
NAP -2.274093 0.529411 -4.296 0.000121
grainsize 0.002249 0.021066 0.107 0.915570
humus 0.519686 8.703910 0.060 0.952710
factor(week)2 -7.065098 1.761492 -4.011 0.000282
factor(week)3 -5.719055 1.827616 -3.129 0.003411
factor(week)4 -1.481816 2.720089 -0.545 0.589182

−−−
Multiple R-squared: 0.679, Adjusted R-squared: 0.6182

F-statistic: 11.18 on 7 and 37 dF, Sig.: 0.000
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Multiple linear regression

Standardized regression slopes

Standardized regression slopes

The value of β̂∗
i provides an estimate of the slope of

the regression model that is independent of the
units of X and Y and is useful in comparing
regression slopes.

β̂∗
i = β̂i

sX

sY
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Multiple linear regression

Multicollinearity

Multicollinearity
Multicollinearity is the phenomenon in which two or more

predictor variables in a multiple regression model are highly

correlated. In this situation the coefficient estimates may

change erratically in response to small changes in the model or

the data. Multicollinearity does not reduce the predictive

power or reliability of the model as a whole; it only affects

calculations regarding individual predictors. That is, a multiple

regression model with correlated predictors can indicate how

well the entire bundle of predictors predicts the outcome

variable, but it may not give valid results about any individual

predictor, or about which predictors are redundant with others.
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Multiple linear regression

Multicollinearity

Detecting multicollinearity I

I Tolerance for Xj is simply 1− R2
j from the OLS

regression of Xj against the remaining p − 1
predictor variables. An approximate guide is to
worry about tolerance values less than 0.1.

I Tolerance is sometimes expressed as the
variance inflation factor (VIF) which is simply
the inverse of tolerance.
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Multiple linear regression

Multicollinearity

Detecting multicollinearity II

I The principal components from the correlation
matrix among the predictor variables can be
extracted. Principal components with
eigenvalues near zero indicate collinearity
among the original predictor variables.

I Condition index > 30 indicates collinearity

I Eigenvalues < 0.5 indicate collinearity problems
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Multiple linear regression

Model selection

Model selection

I Akaike information criteria
AIC = n · log(SSresidual) + 2(p + 1)− n · log(n)

I AdjustedR2 = 1− SSresidual/(n−(p+1))
sstotal/(n−1)

I Forward selection, backward selection, or a
combination of forward and backward selection.
Note:

I multiple comparisons
I collinearity
I explorative analysis
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Multiple linear regression

Partial effects

Partial linear regression

Yi = constant + β1Xi + β2Wi + β3Zi + εi

Pure X effect?

Filtering out the effects of W and Z :

1. Yi = constant + β4Wi + β5Zi + εYi

2. Xi = constant + β6Wi + β7Zi + εXi
εX can be seen as the information in X after
filtering out the effects of W and Z .
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Multiple linear regression

Partial effects

Partial linear regression

3. εYi = βεXi + noisei This model shows the
relationship between Y and X after partialling
out the effect of W and Z . Hence, the
regression model of εY on εX shows the pure X
effect.

⇒ Partial regression plot and interpret the
significance of the slope.
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Multiple linear regression

Partial effects

Part correlation coefficient/decomposition
of the variation

To obtain the variance components, Legendre and
Legendre (1998) gave the following algorithm:

1. Apply the linear regression model
Yi = constant + Xiβ +Wiγ + noisei and
obtain R2. This is equal to [a+ b + c], and [d ]
is equal to 1− [a + b + c].

2. Apply the linear regression model
Yi = constant + Xi β̃ + noisei and obtain R2.
This gives [a + b].
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Multiple linear regression

Partial effects

Part correlation coefficient/decomposition
of the variation

3. Apply the linear regression model
Yi = constant +Wi γ̃ + noisei and obtain R2.
This gives [b + c].

The following computation gives
[b] = [a + b] + [b + c]− [a + b + c].

Note: Semi-partial correlation coefficient
Note: Hierarchical partitioning
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Multiple linear regression

Partial effects

Variance partitioning for the RIKZ data

The following model was fitted

Ri = constant + β1NAPi + β2Anglei

+ β3Exposurei + noisei

All regression parameters are significantly different
from zero at the 5% level.

What is the pure NAP effect?



Multiple Linear Regression

Multiple linear regression

Partial effects

Variance partitioning for the RIKZ data
1. Ri = constant + β1NAPi + β2Anglei + β3Exposurei +

noisei → R2 = 0.636 → [a + b + c] = 0.637 and
[d ] = 1− 0.637 = 0.364.

2. Ri = constant + β̃1NAPi + noisei → R2 = 0.325 →
[a + b] = 0.325

3. Ri = constant + β̃2
˜Angle i + β̃3Exposurei + noisei →

R2 = 0.347 → [b + c] = 0.344

Hence, [b] = 0.325 + 0.344− 0.636 = 0.033, and therefore

[a] = 0.292 and [c] = 0.311.

The pure NAP effect is 29.2%, meaning that 29% of the

variation in species richness is explained purely by NAP.
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Non-random structure of the residuals

Possible tools

Non-random structure of the residuals

1. Apply a transformation.

2. Add other explanatory variables.

3. Add interactions.

4. Add non-linear terms of the explanatory
variables (e.g., quadratic terms).

5. Use smoothing techniques like additive
modelling.

6. Allow for different spread using generalized
least squares (GLS).

7. Apply mixed modelling.
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Non-random structure of the residuals

Apply a transformation

Example: body weight [kg] and brain
weight [g] of 62 mammals species (and 3
dinosaurs)
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Non-random structure of the residuals

Apply a transformation

Example (cont.): Logarithmic scale
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Non-random structure of the residuals

Apply a transformation

Example (cont.)

brain weight = β0 + β1body weight + ε

Residuals:
Min 1Q Median 3Q Max
-633.8 -202.0 -193.6 -125.2 4679.0

Coefficients:
Estimate Std. Error T Sig.

(constant) 204.42722 111.15156 1.839 0.071
body weight 0.12452 0.01462 8.518 0.000

−−−
Multiple R-squared: 0.5557, Adjusted R-squared: 0.5481

F: 72.55 on 1 and 58 df, Sig.: 0.000



Multiple Linear Regression

Non-random structure of the residuals

Apply a transformation

Example (cont.)
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Non-random structure of the residuals

Apply a transformation

Variance-stabilizing transformation
We see that the residuals’ variance depends on the
fitted values (or the body weight):
“heteroscedasticity”.

The model assumes homoscedasticity, i.e. the
random deviations must be (almost) independent of
the explaining traits (body weight) and the fitted
values.

Variance-stabilizing transformation: a logarithmic
transformation scales body- and brain size to make
deviations independent of variable.
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Non-random structure of the residuals

Apply a transformation

Cause for heteroscedasticity

Actually not so surprising: An elephant’s brain of
typically 5 kg can easily be 500 g lighter or heavier
from individual to individual. This cannot happen
for a mouse brain of typically 5 g. The latter will
rather also vary by 10%, i.e. 0.5 g. Thus, the
variance is not additive but rather multiplicative.
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Non-random structure of the residuals

Apply a transformation

Cause for heteroscedasticity

brain mass = (expected brain mass) · random

We can convert this into something with additive
randomness by taking the log:

log(brain mass) = log(expected brain mass) +
log(random)



Multiple Linear Regression

Non-random structure of the residuals

Apply a transformation

Example: Logarithmic transformation
log(brain weight) = β0 + β1log(body weight)+ε

Residuals:
Min 1Q Median 3Q Max

-2.6500 -0.4957 0.0391 0.6776 1.6083

Coefficients:
Estimate Std. Error T Sig.

(constant) 1.93277 0.12570 15.38 0.000
log(body weight) 0.62395 0.02982 20.93 0.000
−−−
Multiple R-squared: 0.883, Adjusted R-squared:
0.881
F: 437.9 on 1 and 58 df, Sig.: 0.000
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Example (cont.)
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Multiple Linear Regression

Non-random structure of the residuals

Apply a transformation

Aims of data transformations I

I Make the data and the model error terms
closer to a normal distribution (i.e. make the
distribution of the data symmetrical).

I Reduce any relationship between the mean and
the variance (i.e. improve homogeneity of
variances), often as a result of improving
normality.

I Reduce the influence of outliers (extreme
points), especially when they are at one end of
the distribution.



Multiple Linear Regression

Non-random structure of the residuals

Apply a transformation

Aims of data transformations II

I Improve linearity in regression analysis.

I Make effects that are multiplicative on the raw
scale additive on the transformed scale, i.e.
reduce the size of the interaction effects.



Multiple Linear Regression

Non-random structure of the residuals

Apply a transformation

Types of transformations I

I The most common type of transformation is
the power transformation: Y → Y p.

I For data with right skew, the quare root
transformation is applicable, particularly for data
that are counts (Poisson distribution) and the
variance is related to the mean.

I p = 0.33, p = 0.25 etc. will be increasingly
effective for data that are increasingly skewed.
p = 0.25 are commonly used for abundance data in
ecology when there are a lots of zeros and a few
large values.
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Non-random structure of the residuals

Apply a transformation

Types of transformations II

I A reciprocal transformation can also help although
interpretation is a little bit difficult then order of
values is reversed.

I Transforming data to logarithms (log(Y + c))
will also make right skewed distributions more
symmetrical, especially when the mean is
related to the standard deviation.



Multiple Linear Regression

Non-random structure of the residuals

Apply a transformation

Types of transformations III
I If skewness is actually negative, i.e. the
distribution has a long left tail, the variable can
be reflected before transforming. Reflection
simply involves creating a constant by adding
one to the largest value in the sample and then
subtracting each observation from this
constant.

I These transformations can be considered part
of the Box-Cox family of transformations:
Y λ−1

λ
, when λ 6= 0 (optimal λ) and for λ = 0

the transformation is log(Y ).
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Non-random structure of the residuals

Apply a transformation

Types of transformations IV

I For percentages of proportions (between 0%
and 100%) power transformations don’t work
because they change each end of the
distribution differently. One common approach
is to use the angular transformation,
specifically the arcsin transformation.



Multiple Linear Regression

Non-random structure of the residuals

Apply a transformation

Types of transformations

Mosteller and Tukey’s bulging rule

Mosteller, F. and Tukey, J. W. (1977). Data Analysis and Regression: A Second Course in Statistics.

Addison-Wesley, Reading, MA.
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Non-random structure of the residuals

Apply a transformation

Changing hypothesis
I A transformation changing your response
variable changes your formal null hypothesis.

I You might hypothesize that growth of plants
varies with density and formalize that as:
H0: mean growth of plants at high density
equals mean growth at low density.

I You are forced to log-transform your data, the
null hypothesis becomes ’mean log-growth does
not vary with density’, or you might say that in
the first case, growth is defined as mg of
weight gained, whereas after log-transforming,
growth is the log-mg weight gained.
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Non-random structure of the residuals

Apply a transformation

A change in raw scale or a change in
percentage scale?

Means for treatment and control groups for an
experiment conducted at two times. (Artificial data)

Untransformed Log-transformed
Time 1 Time 2 Time 1 Time 2

Control 10 50 1.000 1.699
Treatment 5 25 0.699 1.398

Transforming the data to a log scale changes the
interpretation of the effect to a percentage change!



Multiple Linear Regression

Non-random structure of the residuals

Allow for different spread using GLS

Allow for heterogeneity using variance
structures

I εi ∼ N(0,Xi · σ2)
I εi ∼ N(0, |Xi |2δ · σ2)
I εi ∼ N(0, σ2 · exp(2δXi))
I εi ∼ N(0, σ2

j )

where δ is an unknown parameter.
The first three options allow for an increase
(decrease) in residual variance depending on the
values of the variance covariate Xi . The 4th option
allows for different spread per level of a nominal
variable.
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