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Abstract

An integral part of theoretical quantum optics is devoted to atom-light and atom-atom
interactions, at various distances. The fact that atoms (or quantum emitters) in some
instances can interact on a long or even infinite range, can lead to the modification of
light absorption and emission, which in turn leads to superior optical properties. The
field of theoretical quantum optics and specifically the study of emerging collective
phenomena in interacting quantum systems is the focus of my research. Here, we employ
analytical, as well as extensive numerical tools, in order to investigate various emerging
phenomena in the context of long-range and sometimes infinite-range interacting
quantum emitters. We exclusively consider open quantum systems, namely systems
that can leak energy or information into a coupled system or reservoir, which usually
represents the electromagnetic vacuum but can be made of other optical elements such
as waveguides or nanophotonic structures. Particularly interesting is the protection
of electronic excitations from loss via spontaneous emission. The mechanism for
protection stems from the many-body interactions of mesoscopic numbers of quantum
emitters. Tailoring interactions, we try to enhance electronic excitation storage
and read-out, transport of excitations through arrays of quantum emitters, single
photon detection, and entanglement preparation. In addition, we try to extend the
understanding of emerging collective quantum many-body phenomena to various
quantum technological platforms, such as ultracold atoms in optical lattices, molecules
at ambient temperatures, superconducting qubits coupled to optical waveguides or
alkaline-earth atoms trapped in tweezer arrays. Collective excitation states of ensembles
of quantum emitters possess a wealth of surprising physical properties. Typically, the
many-body response of these ensembles leads to delocalized excitations with lifetimes
that can vary across many orders of magnitudes. Of particular interest are dark or
subradiant states whose long lifetimes can be used to implement extremely efficient
quantum memories, lossless transport of photons, and photon-photon gates, to realize
future generations of atomic lattice clocks and potentially for improved electromagnetic
field sensors. We show, for instance, that subradiant excited states in finite chains of
two-level quantum emitters coupled to a one-dimensional reservoir are a resource for
superior photon storage and controlled photon manipulation. Typically, states storing
multiple excitations exhibit fermionic correlations and are thus characterized by an
anti-symmetric wavefunction, which makes them hard to prepare experimentally. We
closely collaborated with the Innsbruck-based experimental superconducting qubits
group and investigate the possibility to manipulate multiple photons deterministically.
This marks an important step in understanding many-body phenomena in quantum
emitters and harnessing these phenomena in a controlled fashion. Another quantum
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emitter platform that is treated in this thesis includes molecules each featuring multiple
vibrational modes. Since molecules possess a strong dipole moment and are typically
spaced at nanometer distances, they feature extremely strong dipole-dipole coupling
and delocalized excitons that can even prevail at ambient temperatures.
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Zusammenfassung

Ein wesentlicher Bestandteil der theoretischen Quantenoptik ist den Atom-Licht-
und Atom-Atom-Wechselwirkungen auf unterschiedlichen Entfernungen gewidmet.
Die Tatsache, dass Atome (oder Quantenemitter) in einigen Fällen über eine große
oder sogar unendliche Reichweite wechselwirken können, kann zu einer Veränderung
der Lichtabsorption und -emission führen, was wiederum zu besseren optischen Ei-
genschaften führt. Der Schwerpunkt meiner Forschung liegt auf dem Gebiet der
theoretischen Quantenoptik und insbesondere auf der Untersuchung entstehender
kollektiver Phänomene in interagierenden Quantensystemen. Hier nutzen wir sowohl
analytische als auch umfangreiche numerische Werkzeuge, um verschiedene auftretende
Phänomene im Zusammenhang mit wechselwirkenden Quantenemittern mit groÃer
und manchmal unendlicher Interaktionsreichweite zu untersuchen. Wir betrachten
ausschließlich offene Quantensysteme, also Systeme, die Energie oder Informationen
in ein gekoppeltes System oder Reservoir abgeben können, das normalerweise aus
dem elektromagnetischen Vakuum besteht, aber auch aus anderen optischen Elemen-
ten wie Wellenleitern oder nanophotonischen Strukturen bestehen kann. Besonders
interessant ist der Schutz elektronischer Anregungen vor Verlust durch spontane
Emission. Der Schutzmechanismus ergibt sich aus den Wechselwirkungen einer meso-
skopischen Anzahl von Quantenemittern. Infolgedessen versuchen wir, die elektronische
Speicherung und Auslesung von Anregungen, den Transport von Anregungen durch
Arrays von Quantenemittern, die Einzelphotonendetektion und die Herstellung von
Verschränkung zu verbessern. Darüber hinaus versuchen wir, das Verständnis neu
auftretender kollektiver Quanten-Vielteilchenphänomene auf verschiedene quantentech-
nologische Plattformen auszudehnen, wie etwa ultrakalte Atome in optischen Gittern,
Moleküle bei Umgebungstemperaturen, supraleitende Qubits, die an optische Wellen-
leiter gekoppelt sind, oder Erdalkaliatome, die in optischen Pinzetten gefangen sind .
Kollektive Anregungszustände von Ensembles von Quantenemittern besitzen eine Fülle
überraschender physikalischer Eigenschaften. Typischerweise führt die Vielteilchen-
reaktion dieser Ensembles zu delokalisierten Anregungen, die bei Lebensdauern, die
über viele verschiedene Größenordnungen variieren können, durch Dissipation verloren
gehen. Von besonderem Interesse sind dunkle oder subradiante Zustände, deren lange
Lebensdauer zur Implementierung äußerst effizienter Quantenspeicher, zum verlustfrei-
en Transport von Photonen und Photon-Photon-Gattern, zur Realisierung zukünftiger
Generationen von Atomgitteruhren und möglicherweise für verbesserte Sensoren für
elektromagnetische Felder genutzt werden kann. Wir zeigen zum Beispiel, dass sub-
radiante angeregte Zustände in endlichen Ketten von Zweiebenen-Quantenemittern,
die an ein eindimensionales Reservoir gekoppelt sind, eine Ressource für überlegene
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Photonenspeicherung und kontrollierte Photonenmanipulation sind. Typischerweise
weisen Zustände, die mehrere Anregungen speichern, fermionische Korrelationen auf
und sind daher durch eine antisymmetrische Wellenfunktion gekennzeichnet, was es
schwierig macht, sie experimentell vorzubereiten. Wir haben eng mit der in Inns-
bruck ansässigen Gruppe für experimentelle supraleitende Qubits zusammengearbeitet
und untersuchen die Möglichkeit, mehrere Photonen deterministisch zu manipulieren.
Dies stellt einen wichtigen Schritt zum Verständnis von Vielteilchenphänomenen in
Quantenemittern und zur kontrollierten Nutzung dieser Phänomene dar. Eine weitere
Quantenemitterplattform, die in dieser Arbeit behandelt wird, umfasst Moleküle, die
jeweils mehrere Vibrationsmoden aufweisen. Da Moleküle ein starkes Dipolmoment
besitzen und typischerweise im Nanometerbereich voneinander entfernt sind, weisen
sie eine extrem starke Dipol-Dipol-Kopplung und Delokalisierung auf, die sogar bei
Umgebungstemperaturen vorherrschen kann.
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1 Introduction

The interaction of several atoms or quantum emitters via the electromagnetic vacuum
modes gives rise to a multitude of intriguing phenomena. In particular the modification
of the spontaneous emission rate of light of an excited atom which is now modified
by the surrounding atoms. Such modifications include the increase or decrease of the
photon emission rate of this cooperative ensemble of atoms. These effects are termed
superradiance [1,2] and subradiance and can be understood as the constructive and
destructive interference of the light emitted by the individual atoms. On the one
hand, superradiance has been studied for a long time and experimentally observed
for instance in atomic clouds of atoms [3, 4] due to its strong emission signal. On
the other hand, subradiance has always remained more elusive due to its absence of
radiation and consequently was hard to measure and only recently experiments showed
signatures of subradiance [5]. The central question of this Thesis is how to harness
subradiance resulting from the cooperative behavior of quantum emitter arrays and
furthermore try to uncover collective phenomena that nature might utilize in order to
enhance certain biological functions.

1.1 Light-matter interaction in dense ensembles

Many interesting and useful processes both in nature and in quantum technologies are
a consequence of cooperative effects. This means that the behavior of an ensemble of
particles or emitters cannot be understood entirely by only looking at the individual
emitters as these effects come about by the interaction between them. In quantum
optics understanding these phenomena has always been at the forefront of both
theory and experiments and in recent years both academia and industry try to find
possible applications to exploit quantum effects for near-term devices [6–8]. It is still
challenging though to experimentally show the cooperative enhancement gained by
interacting quantum emitters. For instance, it was known for many years by theorists
that it is possible to perfectly reflect weak incoming light by a two-dimensional
ordered array of quantum emitters which is just a single layer thick [9]. Only just
recently this was experimentally demonstrated with a 2D array of rubidium atoms
trapped in an optical lattice [10] (see Fig. 1.1). Apart from trying to verify the
theory with experiments and finding applications, it is equally urgent to understand
already existing, though, unexplained phenomena occurring in the natural world. One
of the most prominent is the process of photosynthesis, in particular the primary
state involving the transfer of photons to particular locations, called reaction centers.
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1 Introduction

This stage occurs with near unit efficiency, at environmental temperatures, and in
variable and noisy environments [11]. Since scientists were not able to reproduce
such efficiencies with comparable systems or explain them with conventional, mostly
classical models, it was theorized that quantum effects might play a role here. Finding
experimental evidence that quantum coherence might be crucial in the transfer process
has been hard to find up to now at least in the electronic degrees of freedom. That is
why researchers started to look elsewhere, such as the vibrational degrees of freedom,
inherent in the individual constituents, namely, molecular pigments [12]. But here
again, the conclusion is that cooperative behavior between the vibrations of different
molecules is at the core of why nature is so highly efficient at harvesting sunlight. The
work presented in this Thesis tries to shed some light on how this can be understood
theoretically and hopefully opens possibilities for future research.

Figure 1.1: Simulation showing the cooperative enhancement of the light−matter
interaction strength and the mirror reflection of incoming light (top to
down) using an ensemble of ordered quantum emitters. The white dots
represent atoms trapped in a 2D array with a nearly perfect reflection
of incoming laser light, realizing a mirror with the thickness of a single
atom. This was experimentally confirmed recently [10]. The figure was
created by the author with the help of [13].

1.2 Outline of this Thesis

The content of this Thesis focuses mainly on three different parts. Part I focuses on
emerging collective effects due to interacting quantum emitters in free space. Part II
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1.2 Outline of this Thesis

dives into harnessing the infinite range interaction due to artificial atoms coupled to a
waveguide. Lastly, part III treats dipole-dipole interactions with molecular quantum
emitters, featuring additional vibrational couplings. These parts are complemented by
an introductory chapter that reviews several theoretical concepts, useful to understand
the main body of this Thesis. Expert readers can easily skip the introduction to the
concepts and directly select an individual chapter for reading. Here follows a succinct
summary of each chapter,

• Chapter 2 introduces basic concepts of light-matter interactions, including
spontaneous emission of single and many quantum emitters. First, we introduce
the basic equations central to this Thesis. Second, various types of quantum
emitters are discussed and their advantages and disadvantages are scrutinized.
Later we define the basics of open quantum systems based on atomic quantum
emitters, artificial atoms coupled to waveguides, and molecules. Finally, we
discuss how to gain an improved understanding of quantum emitter ensembles
with the help of the collective states picture.

• Chapter 3 investigates how super- and subradiance in two-level emitters can be
generalized to multilevel systems with several excited states. We show that for
subwavelength arrangements of the emitters, one can realize long-lived subradiant
states involving two excitations. Furthermore, possible preparation schemes are
discussed, namely probabilistic preparation via a phase-controlled laser pump
and dissipative preparation via decay into the subradiant state.

• Chapter 4 shows, that it is possible to realize a source of coherent light with
just a handful of quantum emitters. Instead of having a bulky gain medium
with an optical resonator, it is possible to create a laser with an ordered array of
emitters at a subwavelength spacing. This array is organized in a ring shape and
features eigenmodes that exhibit the character of a high-Q resonator, namely a
small resonance linewidth. Furthermore, we present that this device can operate
without a lasing threshold in a continuous fashion.

• In Chapter 5 we show similarly as in the previous chapter, that subwavelength-
spaced quantum emitters can be used to implement nanoscale non-classical
light sources. The strong dipole-dipole shifts resulting from the small inter-
particle spacings generate a highly nonlinear response strongly suppressing the
emission of a second photon. Additionally, we demonstrate, that by extending
the quantum emitter array to more than a wavelength, the emitted light can be
strongly collimated, thereby creating directional confinement. On top of that,
we find that the single photon emission happens at a superradiant rate, namely,
faster than from an independent emitter.

• Coming again back to ring geometries, Chapter 6 explores the possibility of
enhancing the light absorption capabilities of a single quantum emitter in free
space by placing a ring of emitters around it, thereby realizing an antenna effect
on the nanoscale. We find that among regular polygons with an identical center
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1 Introduction

absorbing emitter, a nonagon exhibits a distinct optimum of the absorption
efficiency, without the need to detune the central emitter. Only for nine emitters
the sum of the coupling strengths of each emitter to all others matches the
center to the ring coupling. We also find that for very small structures a
quantum treatment predicts an even stronger enhancement for the single photon
absorption enhancement than a classical dipole model. Without going too deep,
we also connect to natural light-harvesting structures, as in purple bacteria,
where chromophoric rings with a 9-fold symmetry are abundant.

• With a change of platform, Chapter 7 explores the controlled preparation and
read-out of multi-excitation subradiant states in quantum emitters coupled to
one-dimensional waveguides. Since each two-level emitter can only store a single
energy quantum, storing multiple excitations requires delocalized states, which
typically are hard to prepare with high fidelity. Here we identify a new class of
dark states with up to half of the qubits excited. In particular, we suggest an
experimental implementation using a 1D waveguide coupled to superconducting
transmon qubits.

• Chapter 8 ventures into a treatment of molecular quantum emitters featuring
vibrational degrees of freedom additionally. We illustrate a general framework to
treat molecules with an arbitrary number of vibrational modes but especially we
study the cooperative behavior of an ensemble of diatomic molecules, meaning a
single vibrational mode, for the sake of clarity. Molecules are particularly inter-
esting as they usually are spaced at nanometer distances resulting in extremely
strong dipole-dipole coupling strength. Here we illustrate the unidirectional
transfer of excitation energy between a superradiant state, coupled with free
space, and the long-lived subradiant state, highly protected from radiative decay.
We show that this process occurs for a particular molecular aggregate, namely
the H-aggregate where the symmetric state is energetically the highest eigenstate
of the system. Furthermore, we look at ring geometries with a higher number of
molecules and the possibility of coherent light emission.

• Continuing with the insights gained from the previous chapter 9 we proceed to
tread molecular aggregates in more detail. Using a quantum optics framework we
try to understand the dynamics describing an effect known in quantum chemistry
as Kasha’s rule. Studying the absorption spectrum of deeply subwavelength
molecular aggregates, one can observe that the dominant resonance peak can
be shifted with respect to a single molecule (monomer) and the fluorescence
peak can be shifted as well or be strongly suppressed. Here we try to illuminate
these facts with our quantum optics framework and derive scaling laws for this
behavior as a function of the number of molecules and number of vibrational
couplings.

• Lastly, in Chapter 10 we come back to general quantum emitters neglecting the
direct inclusion of vibrational couplings. Although this could in principle be
simulated via individual dephasing of each quantum emitter. We investigate
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1.2 Outline of this Thesis

the general optical properties of stacked rings of quantum emitters with various
relative positions and orientations. Inspired by natural light-harvesting antennas
in purple bacteria, which involve three stacked rings with 9 chromophores each,
we also present the optical properties with our dipole model using the real
physical parameters.

Finally, we summarize the main conclusions of this Thesis and give some outlook
for future research directions and open questions.
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2 Fundamental concepts

The goal of this chapter is to provide a compact overview of the most important
theoretical foundations and concepts that are utilized in the main part of this Thesis.

2.1 Single quantum emitters

Many excellent literature references treat two-level quantum emitters [14–16] and here
we just give a quick overview of the definition that are fundamental to the following
chapters. In the sections that follow we assume for the sake of clarity that the quantum
emitters are at zero temperature, except in a few cases where it is explained. This
results in a reduction of decoherence and fewer unwanted decay channels. One of
the central goals of quantum optics is to increase the coupling of light with atoms or
quantum emitters. However, in free space, the interaction between photons and atoms
is often too small to obtain efficient quantum control using light. For an ideal two-level
atom, the optical cross-section is given by σscat = 3λ20/(2π), where λ0 = 2πc/ω0 is the
resonant wavelength and the transition frequency between the ground and excited
state is given by ω0. Simultaneously, the minimal area to which a light beam can
be focused down is limited by the diffraction, Aeff ∼ λ20. This gives a fundamental
limit on the likelihood that an atom in free space absorbs a photon. This probability
P = σscat/Aeff for state-of-the-art technologies is on the order of P ∼ 0.1. There have
been many improvements and ingenious inventions to improve this probability, such as
using optical cavities, waveguides, or nanophotonic structures. Partly this Thesis takes
different approaches and takes inspiration from nature which implements biological
antennae made up of chromophores that augment absorption centers. Further details
on this topic follow in the chapters below.

A two-level system features a ground state |g⟩ and an excited state |e⟩ which can
be reached from the ground state through a dipole-allowed transition. We exclude
the possibility that the electron can go anywhere else except these two levels and the
basis follows the completeness relation |g⟩⟨g|+ |e⟩⟨e| = I2, where I2 is the identity in
the two-dimensional Hilbert space. The two terms can also be seen as projectors on
the ground and excited state respectively. The ladder operators that bring the system
up and down are defined as

σ̂ = |g⟩⟨e|, σ̂† = |e⟩⟨g|. (2.1)

Remembering basic quantum physics courses we know that the dipole moment operator
d̂ = −er̂ does not have matrix elements on the individual orbitals such that ⟨g|d̂|g⟩ = 0
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2 Fundamental concepts

and ⟨e|d̂|e⟩ = 0. We then can write the basis decomposition of the dipole moment
operator as

d̂ = |g⟩dge⟨e|+ |e⟩d∗ge⟨g|, dge = ⟨g|d̂|e⟩. (2.2)

Now we let the two-level system interact with an electromagnetic field Ê which could
also be time-dependent and write the total Hamiltonian as

Ĥ/ℏ = ωeσ̂
†σ̂ + ωgσ̂σ̂

† + (σ̂dge · Ê† + σ̂d∗ge · Ê), (2.3)

where ω0 = ωe−ωg from above. This is the basic formalism for a single two-level system
at zero temperature without additional degrees of freedom and is easily generalized
to the many emitter cases [17]. In the sections below we will discuss the process of
spontaneous emission from the excited state to the ground state.

2.1.1 Molecules

In this section we generalize the two-level emitter model introduced above to molecular
emitters featuring vibrational degrees of freedom due to relative nuclear motion. For
simplicity and the sake of clarity we take a molecule with a single relative nuclear
coordinate, meaning, a diaatomic molecule featuring two nuclei [18, 19].

Figure 2.1: The potential energy landscape in a diatomic molecule approximated by
harmonic potentials with two electronic energy levels. The two potentials
are displaced by Rge and the optical transition with frequency ω0 and
linewidth Γ0 is coupled to a single vibrational mode with frequency ν
and linewidth Γν and Huang-Rhys factor λ.

To include the electronic-vibrational coupling we take a single nuclear coordinate R
into account. Since we want to have non-zero vibrational coupling we assume that,
along the nuclear coordinate, the minima for ground (coordinate Rg, state vector

8



2.1 Single quantum emitters

|g⟩) and excited (coordinate Re and state vector |e⟩) electronic orbitals are different,
illustrated in Fig. 2.1. The total molecular Hamiltonian describing both electronic
and vibrational dynamics can be written as

Hmol =

[
ω0 +

P̂ 2

2µ
+

1

2
µν2

(
R̂−Re

)2]
σ†σ +

[
P̂ 2

2µ
+

1

2
µν2

(
R̂−Rg

)2]
σσ†, (2.4)

with µ = m/2 being the effective mass (m is the mass of a single nucleus). The kinetic
and potential energies are written in terms of the position Q̂ and momentum operators
P̂ representing the nuclear coordinate, with commutator [Q̂, P̂ ] = iÎ. Introducing
oscillations around the minima Q̂ = R̂−Rg, we can rewrite R̂−Re = Q̂+Rg −Re =:
Q̂−Rge and arrive at

Hmol =
P̂ 2

2µ
+

1

2
µν2Q̂2 + ω0σ

†σ − µν2Q̂Rgeσ
†σ +

1

2
µν2R2

geσ
†σ, (2.5)

where ν is the frequency of the vibrational mode, in a harmonic approximation. The
momentum and position operators can be written in terms of bosonic operators
Q̂ = qzpm(b

† + b), P̂ = ipzpm(b
† − b) as well. As is the case for the quantum

harmonic oscillator, the bosonic operators here satisfy the commutation relation
[b, b†] = 1 and the zero-point motion and momentum are defined as qzpm = 1/

√
2µν

and pzpm =
√
µν/2. Using these expressions the above Hamiltonian can be rewritten

to yield the well-known Holstein Hamiltonian for a single diatomic molecule [20]

Hmol = (ω0 + λ2ν)σ†σ + νb†b− λν(b† + b)σ†σ. (2.6)

The dimensionless vibronic coupling strength λ is given by λ = µνRgeqzpm, where λ
2

is the so called Huang-Rhys factor. Typically values for the Huang-Rhys factor range
between ∼ 0.01− 1. Now, we show how the Holstein Hamiltonian can be cast into
diagonal form and how laser light is absorbed by a molecule. To this end we make
a unitary transformation, also called polaron transformation U† = |g⟩ ⟨g|+D† |e⟩ ⟨e|
with the displacement operator D = e−i

√
2λp = eλ(b

†−b). In the new basis, the Holstein
Hamiltonian obtains the form H̃mol = U†HmolU = ω0σ

†σ + νb†b and with eigenstates
|g;n⟩ and |e;n⟩. The eigenstates in the original basis can be found by reversing the
polaron transformation |g;n⟩ and D |e;n⟩. Now we introduce a coherent laser drive
of the form Hℓ = iη(σ†e−iωℓt − σeiωℓt), which in the polaron-transformed basis is
then expressed as H̃ℓ = iη(σ†D†e−iωℓt − σDeiωℓt). One can now look at the transition
probabilities between the energy levels, induced by the laser drive. We assume an
initial state |g; 0⟩ in the displaced basis and compute the probability of exciting the
system to state |e;n⟩,

Pabs(n) = | ⟨e;n|σ†D† |g; 0⟩ |2 = e−λ2 λ2n

n!
, (2.7)

which is a Poissonian distribution leading to the so-called Franck-Condon principle for
molecular transitions.
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2 Fundamental concepts

For dissipative radiative processes, we notice that the collapse operator in the
Lindbladian is also transformed to σD such that radiative decay follows the same
distribution for transitions of the electronic state |e; 0⟩ to |g;n⟩. Note, that even
though the zero phonon line (ZPL) (n = 0 ↔ n = 0) by itself can be quite weak, it can
be strongly enhanced by different means. One way is to resonantly couple the ZPL to a
mode of a cavity, which can tilt the branching ratio in favor of the ZPL via the Purcell
enhancement. Of course, the presence of vibrations and subsequent weakening of the
bare transition might appear as a limitation for conventional quantum optics which
prefers resonant couplings and control. However, it can also be used as a resource as
for instance the existence of many vibrational levels and decay channels might aid the
fast transfer between various delocalized states at a rate much faster than via coherent
electronic excitation transfer only [12, 21, 22]. When tackling a system involving many
molecules such as in large biomolecular ensembles, e.g. light-harvesting complexes in
purple bacteria [23], the dimension of the whole system can become rather involved
and unsolvable. One simplification we are making most throughout this thesis is that
the electronic degrees of freedom of each emitter or molecule can be reduced to just
two levels. As we later show this can be simplified even further by assuming that
just a single excitation is present in the system, neglecting all possibilities that the
system can host two or more excitations. With that assumption, the system size grows
linearly with N , the number of emitters. However, vibrational degrees of freedom
present an additional increase in the system dimension. Realistically each molecule
can host dozens of vibrational modes each haven multiple vibronic excitations, which
would render again the system unsolvable. But it turns out that for many cases in
low-temperature limits taking a single excitation per vibrational mode is sufficient
and for obtaining qualitative conclusions it is even sufficient to take only a single
vibrational mode per molecule, see Fig. 2.1. Generally in a low excitation limit for
both vibrations and electronic excitations the whole system size grows only as N ×M
where N is the number of molecules and M the number of vibrational modes per
molecule and consequently a mesoscopic number of molecules can be simulated.

2.2 Long-range interactions on various platforms

There are a multitude of possible quantum emitters appearing in nature and are utilized
in laboratories around the world, each having its advantages and disadvantages, in
this section we discuss a handful of the most common ones and also show some of their
properties in Fig. 2.2. Generally, we are interested in emitters that possess the ability
to interact with neighboring emitters, preferably on a long range, beyond nearest-
neighbors. Quantum control of neutral atoms has led to remarkable breakthroughs
over the decades but their interaction is generally limited to local collisions. However,
non-local interactions and entanglement of distant quantum emitters promise to
lead to new breakthroughs, which is why figuring out ways to engineer and control
such long-range interactions is one of the most urgent challenges in quantum physics
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2.2 Long-range interactions on various platforms

nowadays.

Atoms and molecules in free space with an induced transition dipole moment and/or
permanent dipole moments are prime candidates for interacting over a long range
since the dipole-dipole interaction includes terms scaling with the distance as ∼ 1/r
and ∼ 1/r3. They feature a large range of transition frequencies and linewidths with
many possible transitions to choose from.

Transition frequency: Optical

Optical Optical OpticalMicrowave

Optical Optical Microwave to optical

Example platforms for collective long-range interactions

Dipole 
interactions

Photon
mediated

(3)

More platforms: Rydberg atoms, Trapped ions, Plasmonic nanoparticles, DNA origami etc.

(4)(1) (2)

Nearest-neighbor 
interaction strength:

Min. emitter spacing:

(6) (7) (8)(5)

Transition frequency:

Nearest-neighbor 
interaction strength:

Figure 2.2: Examples of quantum emitter platforms, that are readily utilized to study
collective long-range interactions. (1) Atoms trapped in a metasurface
holographic optical trap. Image courtesy [24]. (2) Image courtesy
[25]. (3) Molecular aggregates assembled or naturally occurring in ring-
shaped geometries inside light-harvesting complexes. Image courtesy
[26]. (4) Nitrogen-vacancy centers inside a single diamond crystal. (5)
Atoms trapped inside an optical cavity. (6) Atoms trapped along a
nanophotonic fiber. (7) Superconducting transmons capacitively coupled
to a 1D transmission line. (8) Semiconductor quantum dots coupled
to a nanophotonic structure with a hexagonal defect pattern. Image
courtesy [27].

Even though current techniques enable cooling down molecules to ultracold temper-
atures, it is still a major challenge due to the complexity of the molecular internal
structure introduced by its rotational and vibrational degrees of freedom. At the
same time, these additional degrees of freedom, combined with the control accessible
via optical trapping technologies and the long-range interaction introduced by the
electronic transition, offer a lucrative perspective for their utilization in near-term
quantum technologies. In particular, we will show how the vibrational modes can help

11



2 Fundamental concepts

mediate between collective electronic states that would otherwise be inaccessible by
external light sources. In paramagnetic atoms, permanent magnetic dipole moments
can be found with an interaction range that exceeds the nearest neighbor. For instance,
it was shown, that erbium atoms tightly trapped in a 3D optical lattice can be used
to explore many-body problems such as the extended Bose-Hubbard model. Yet
another group of quantum emitters that can exhibit direct long-range interactions
are Rydberg atoms. These are atoms in a largely excited state with their valence
electrons that orbit hundreds of Angstrom away from the nucleus. The subsequent
large electric dipole moment scales with ∼ n4, where n is the principal quantum
number. The range of interaction can be of the order of 10 µm. Rydberg atoms
are currently trapped with optical tweezers or optical lattices with a high degree of
control. One disadvantage is the finite lifetime of the Rydberg states in the order
of ∼ 100 µs, which can be circumvented via Rydberg dressing techniques. Apart
from direct dipole-dipole couplings, long-range interactions can also be mediated via
engineered photon reservoirs.

One such reservior is an optical fiber with atoms trapped nearby. In principle,
the fiber mediates infinite periodic interactions between the atoms making them
particularly interesting for long-range studies, and the input- and output fields can
be read out easily at the ends of the fiber. A major obstacle is the low ratio of the
atomic decay into the fiber versus decay into free space, which for state-of-the-art
experiments is of the order of ∼ 0.1. Another platform is photonic crystals with
periodic defects or holes that provide control over the dispersion of the guiding modes.
In this way, interactions can be engineered although the interaction range scales as
∼ e−r, but still beyond nearest-neighbor interaction is possible. Our last but prime
example of infinite-range photon-mediated interactions is optical cavities. Depending
on the quality of the cavity mirrors, the photons make numerous round-trips and
interact with all emitters inside the cavity, and in consequence can significantly increase
the atom-light interaction time. Additionally, optical lattices can be incorporated
introducing short-range interaction as well making the by far best and most explored
platform to date.

2.3 Ensemble of interacting quantum emitters

2.3.1 Master equation for spontaneos emission

In this section, we briefly outline the approximations used to derive the master equation,
the theoretical starting point for most of the work presented in this Thesis. The
derivation follows from a system of quantum emitters coupled linearly to a bath formed
of harmonic oscillators [28–30]. We take as an initial state, the density operator in the
full Hilbert space of an ensemble of the two-level systems in contact with infinitely
many electromagnetic modes. The evolution of the bath and system is described by
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2.3 Ensemble of interacting quantum emitters

the total Hamiltonian (ℏ = 1)

H = Hb +Hs +Hint ,

Hb =
∑
s

∫ ∞

0
dωωb†s(ω)b

†
s(ω) , (2.8)

Hint =
∑
n,s

∫
dωλn,s(ω)

(
bs(ω) + b†s(ω)

)(
σ̂n + σ̂†n

)
,

where bs(ω) are bosonic annihilation operators for bath modes of frequency ω with
polarization s. The coupling strength λn,s(ω) generally depends on the field amplitude
evaluated at the emitter position xn. This rather general coupling can accurately
describe atoms coupled to a 3D electromagnetic environment under the electric dipole
approximation [30] or artificial atoms coupled to a transmission line [31] for instance.
We restrict to the two-level approximation with system operators σ̂n and the system
Hamiltonian is

Hs =
∑
n

ω0σ
†
nσn . (2.9)

In an interaction picture, after a unitary transformation with respect to the free
Hamiltonians Hb and Hs the density operator for bath plus system ρ(t) = ρs(t)⊗ρb(t)
follows the von Neumann equation iρ̇ = [H̃int, ρ]. After formal integration, this
differential equation gives rise to an integral equation

ρ̇s = i

∫ t

0
dτ [H̃int(t), [H̃int(τ), ρs(t)]] (2.10)

where the bath variables have been traced out to obtain the density matrix of the
ensemble ρs. In writing the above master equation we have also assumed that the
system and bath are uncorrelated at an initial time, namely

ρ(0) = ρs(0)⊗ ρb(0) (2.11)

This equation describes the self-consistent evolution of the quantum system and
the environment (bath) and it considers correlations that arise between the two.
The description can be simplified for a large bath weakly coupled to the emitters
ω0 ≫ λn,s(ω0) and with a smooth frequency spectrum around the emitter resonance
frequency. The integral equation above is a non-Markovian master equation and can
only be recursively solved. To arrive at a Markovian master equation, we have to
substitute τ by t− τ in the integrand which keeps the integration bounds unchanged.
Thus, we can see the parameter τ as showing how far we go backward in time to
account for memory effects over which correlations with the bath remain relevant.
Under the Markov approximation, these memory effects are short-lived and therefore
the correlations decay very quickly. In this limit, we can extend the upper bound of
the integration to infinity, and obtain a Markovian master equation. In other words,
this approximation neglects the correlations that arise between field and bath and sets
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2 Fundamental concepts

the correlation time of the environment as the shortest time-scale of the system [28].
As an example for atoms with optical frequencies, the correlation time with the bath is
on the order of femtoseconds, on the other hand, the lifetime of the optical transition
is on the order of nanoseconds or more. The resulting master equation with diagonal
Lindblad term has the general form

ρ̇(t) = −i[H, ρs(t)]

+
∑
k,ω

γk(ω)

2

(
2Ak(ω)ρsAk(ω)

† −Ak(ω)
†Ak(ω)ρs − ρsAk(ω)

†Ak(ω)
)
, (2.12)

where this is evaluated usually around the emitter transition frequency, i.e. ω = ω0

and Ak are general collapse operators acting on the system. In the next sections, we
show its form for specific baths where this equation can be written explicitly with
analytic expression which is not possible for environments with arbitrary boundary
conditions and one has to resort to numerical tools.

Free space

The photon-mediated interactions between closely spaced emitters are described by
the electromagnetic Green’s tensor, stemming from Maxwell’s equations in classical
electrodynamics. Usually, the mediating environment is provided by a dielectric
medium with an arbitrary geometry, for which there is no analytic expression of the
Green’s tensor and it has to be calculated numerically, provided that the boundary
conditions are known and the medium is fairly homogenous. This allows to obtain
effective couplings between the quantum emitters which give rise to collective frequency
shifts and modified decay rates into the medium, which will be described in more
detail below. On the other hand, if the reservoir with which the emitters are in contact
is given by free space and to which they can decay with rate Γ0, the Green’s function
can be brought into analytic form and the interaction terms in the Hamiltonian and
Lindbladian are given in terms of it. In other words, the collective coupling rates Jij
and Γij are given as the real and imaginary part of the overlap of the transition dipole
of the ith atom with the electric field emitted by the jth atom, i.e.

Jij = −3πΓ0

k0
Re
(
ddd∗i ·GGG (rrri − rrrj , ω0) · dddj

)
, (2.13a)

Γij =
6πΓ0

k0
Im
(
ddd∗i ·GGG (rrri − rrrj , ω0) · dddj

)
. (2.13b)

In the above, GGG (rrr, ω0) is the electromagnetic Green’s tensor of a dipole source in
free-space [32] which is given explicitly by

GGG (rrr, ω0) · ddd =
eik0r

4πr

[
(r̂rr × ddd)× r̂rr +

(
1

k20r
2
− i

k0r

)
(3r̂rr (r̂rr · ddd)− ddd)

]
, (2.14)
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2.3 Ensemble of interacting quantum emitters

where r = |rrr| and r̂rr = rrr/r is the position unit vector and k0 = ω0/c. The dipole
orientation is encoded in ddd and can be real for linear polarized dipoles or complex for
circularly polarized dipoles.

The electric field that is generated by an ensemble of dipole emitters can be
calculated [33,34] as

EEE+(rrr) =
|ddd|k20
ϵ0

∑
i

GGG ((rrr − rrri, ω0) · ddd σ−i , (2.15)

for the positive frequency component, assuming identical dipole orientations and
where ϵ0 is the dielectric constant in free space. This just constitutes the electric
field generated by an ensemble of N atoms at the position rrr in the vacuum and the
radiated field intensity at this position is given by

I(rrr) = ⟨EEE+(rrr)EEE(rrr)⟩. (2.16)

The nearest neighbor coherent interaction shows a 1/r3 dependence while the
dissipative interaction follows a 1/r dependence, as a function of r, the separation.

As an example to simplify matters for emitters polarized perpendicular to the emitter
plane in the far field, we use the fact that the Green’s tensor becomes approximately
independent of the relative emitter position (|rrr − rrri| ≫ λ0) and the dipoles appear
as being in the same spot. In our case of identical two-level emitters polarized in
z-direction distributed in the xy-plane, the Green’s tensor simplifies to

GGG (rrr − rrri, ω0) · ddd ≈ eikr

4πr
êz

(
1− 1

k20r
2
− i

k0r

)
, (2.17)

which in the far-field can be approximated by êze
ikr/4πr, therefore only a 1/r term

survives at large distance.

Waveguide medium

As a second example of a possible reservoir to which two-level emitters can couple, we
discuss the one-dimensional single-mode waveguide. Let us consider a linear chain of
N emitters resonantly coupled to the modes of a single-mode waveguide. Each emitter
has again two internal states |em⟩ and |gm⟩ separated by a transition frequency ω0 and
is characterized by its position xm along the waveguide. As opposed to the decreased
interaction over distance in free-space the waveguide mediates the emitter-emitter
interactions over an infinite range. Spontaneous emission into the waveguide occurs
at rate Γ0 and assuming that ω0 is well below the cutoff frequency of the waveguide,
the time evolution for the emitter density matrix of the array ρ̂ has the form [35,36]
˙̂ρ = −i

(
Ĥeff ρ̂− ρ̂Ĥ†

eff

)
+
∑

m,n Γm,nσ̂mρ̂σ̂
†
n, where Ĥeff is the collective Hamiltonian
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(ℏ = 1)

Ĥeff =

N∑
m,n=1

(
Jm,n − i

Γm,n

2

)
σ̂†mσ̂n , (2.18)

composed of lowering operators σ̂m = |gm⟩⟨em| and crucially of the periodic infinite
range coherent and dissipative interaction terms

Jm,n = (Γ0/2) sin k0|xm − xn| (2.19)

and

Γm,n = Γ0 cos k0|xm − xn|, (2.20)

respectively. The interaction strength is determined by the individual decay rate Γ0

while the effective emitter separation by k0 = ω0/c, the wavevector of the guided
mode on resonance with the emitters. This allows to create scenarios which would not
be possible for emitters in free space. For instance for emitter separations d = nλ0
with n being a whole positive number, the coherent exchange rates Jm,n are zero
and there is only collective dissipation Γm,n = Γ0 for all n,m. In this so-called
“mirror configuration”, in the single excitation manifold, there is only one bright

state, |Ψ(1)
S ⟩ =∑N

m σ̂†m|G⟩/
√
N where |G⟩ = |g⟩⊗N , and (N − 1) perfectly dark states

of exactly zero decay rate. This is the ideal realization of the Dicke model, where
only the symmetric mode with decay rate NΓ0 exists. It should be noted, that in
experimental realizations dephasing, imperfections, and decoherence into free-space
lead to a deviation from the idealized case as there will be coupling between different
eigenmodes and Jnm ̸= 0.

2.4 Collective excitations

In this section, we show how transforming the system of coupled quantum emitters
into a collective basis can lead to a better understanding of the underlying physics.
To this end, we choose emitters arranged in a ring geometry for the sake of clarity
but the same analysis applies to all ordered emitter arrays in one to three dimensions.
Furthermore, we restrict ourselves initially to the single excitation which means that we
can analytically diagonalize the system and analyze the eigenvalues qualitatively. Also
throughout this section we assume that all emitters are linear polarized perpendicular
to the plane, d⃗ = (0, 0, 1)T .

2.4.1 Single excitation manifold

In this section, we want to showcase the usefulness of the collective basis and take two-
level emitters in a ring geometry for simplicity, since one can write the eigenmodes and
eigenvalues analytically even for finite system sizes [37]. In such a case we can neglect
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2.4 Collective excitations

Figure 2.3: Scaling of the smallest decay rate of the single-excitation eigenstates in
a ring of emitters as a function of the emitter number. The inter-emitter
spacing d substantially changes the scaling but for fixed distances, the
smallest decay rate is exponentially suppressed, i.e. Γmin/Γ0 ∼ e−N .

the recycling term, the first term in the Lindbladian. This term keeps track of the
change in the ground state population. Now the problem can be analytically understood
from the properties of the eigenstates of an effective Hamiltonian, containing the
remaining two parts of the Lindblad expression. The non-hermitian Hamiltonian is
given by

Heff =

N∑
ij

(
Jij − i

Γij

2

)
σ̂†i σ̂j (2.21)

For a single ring, where the dipole orientations preserve the rotational invariance, the
collective eigenmodes of the effective Hamiltonian are perfect spin waves given by
|Ψm⟩ = Ŝ†

m|g⟩, with

Ŝm =
1√
N

NR∑
j=1

eimφj σ̂j , (2.22)

where |g⟩ denotes all emitters in the ground state. Here φj = 2πj/N is the angle
associated with the position of emitter j along the ring andm = 0,±1, ···, ⌈±(N−1)/2⌉
is the angular momentum of the collective mode. The associated energy shifts and
decay rates of these spins waves are given by Jm =

∑
j e

imφjJ1j and Γm =
∑

j e
imφjΓ1j

respectively. For instance, the mode with m = 0 is fully symmetric upon exchange
of emitters and for very small emitter spacings has a decay rate ∝ NΓ0, while the
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remaining N − 1 collective modes have vanishingly small decay rates. In Fig. 2.3 we
show the scaling of the smallest decay rate as a function of the emitter number N.
Although it significantly depends on the inter-emitter spacing d it shows an exponential
suppression, Γmin/Γ0 ∼ e−N . The analytic form of the eigenvalues indexed by the
angular momentum number m also allows us to plot them as an energy band as shown
in Fig. 2.4. For a single ring, this generates a dispersion curve with superradiant
(Γm > Γ0) eigenmodes inside a region enclosed by ±2d, whereas modes outside this
region are subradiant and get more subradiant at the edge of the energy band. For
small inter-emitter spacings the most subradiant, long-lived mode is exactly at the edge
of the band, at m = ±(N − 1)/2 for odd N . Generally, these states are preferential
for single photon storage but are notoriously hard to access and control. Only states
inside the enclosed grey region can be directly excited by external light but decay
back to ground state at a fast rate excluding them as candidates for photon storage.
Similarly, excitation transport over a long range also needs protection from radiative
decay at least as long as the transport time [38]. We will show in later chapters about
molecules, that vibrations can be a resource to create a unidirectional flow of energy
from the energetically higher-lying superradiant states into the lower-lying subradiant
states.

2.4.2 Superradiant burst from a fully inverted ensemble

Dipole emitters in close proximity alter their radiative environment and collectively
interact with light. For fully-inverted emitters, meaning all are in the excited state, at
a single spatial location, this leads to the emission of a short pulse of light that initially
rises in intensity. This stands in contrast to the exponential decay of independent
emitters, which exhibit a monotonic emission rate. The superradiant process or
Dicke superradiance [2], occurs because atoms synchronize as they decay, locking
in their phase and emitting at an increasing rate. Although this scenario appears
to be superficial and unattainable, it has been realized in various platforms such as
optical cavities or waveguides where the condition of emitters at a point is met by the
confined optical field and the infinite periodicity of the emitter-emitter interaction
along the cavity or waveguide field. In these highly symmetric conditions, emitters
are indistinguishable from each other and only a linear number of symmetric states
participate in the dynamics. Here we describe the dynamics of a collection of N
identical two-level systems interacting via a shared electromagnetic field. The emitters
are again arranged in a ring with dipole orientations perpendicular to the ring plane.
Since the system is fully inverted initially we are not able to analytically diagonalize the
whole system. Still, we can bring the Lindbladian into a diagonal form by transforming
into the collective spin basis,

ρ̇ = −i[H, ρ] +
N∑
ν=1

Γν

2

(
2ÔνρÔ†

ν − Ô†
νÔνρ− ρÔ†

νÔν

)
. (2.23)
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2.4 Collective excitations

Figure 2.4: Eigenvalues for a ring of 61 two-level emitters with dipole orientations
perpendicular to the ring plane organized in an energy band. The
decay rates are color coded and show a super- to subradiant crossover
at mϕ/π = ±2d, where ϕ = 2π/N . Eigenmodes beyond this crossover
are extremely subradiant as their emission is exponentially suppressed
perpendicular along the ring. The dipole orientation is such, that the
symmetric m = 0 state is energetically higher relative to the subradiant
modes. For in-plane dipole orientation, the m = 0 mode would be at the
bottom of the energy band. Here m is the angular momentum number
with m ∈ [−(N − 1)/2, ..., (N − 1)/2].

The collective jump operators Ôν are acting with rate Γν and for subwavelength
spacings there are only a small number of them that are non-negligible. In fact, it was
shown in previous work [39] that the variance of these collective decay rates predicts
whether a superradiant burst will take place. The condition for superradiance to occur
reads var({Γν}/Γ0) > 1 but is only valid for an initially fully inverted ensemble. On
the other end, subradiance emerges simultaneously but in the long time limit, only
a small fraction of the initial excitations remain, see Fig. 2.5. The subradiance can
be explained by the fact, that some of the excited state population gets more and
more sucked into subradiant decay channels where Γν ≪ Γ0 where the decay process
is radically slowed down. The subradiant tail was experimentally shown recently for a
cloud of rubidium atoms confined in an optical cavity [40]. These processes are usually
highly probabilistic and harder to control than single-photon processes which already
have many applications in quantum technologies. This makes this part of quantum
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Figure 2.5: Multi-emitter decay is determined by the distance between emitters and
their dipole orientation. 8 inverted emitters placed at a subwavelength
spacing d < λ0 interact with each other and decay collectively via the
emission of a burst of light. In contrast, atoms that are far separated
(d→ ∞) emit as single entities, in the form of an exponentially decaying
pulse (black dashed line). For extended finite emitter numbers, there is
a critical distance at which the crossover between a superradiant burst
and monotonically decreasing emission occurs.

optics, namely many-body phenomena extremely interesting and challenging research
topics with potentially huge advancements throughout the field.
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We generalize the theoretical modeling of collective atomic super- and
subradiance to the multilevel case including spontaneous emission from
several excited states towards a common ground state. We show that in
a closely packed ensemble of N atoms with N − 1 distinct excited states
each, one can find a new class of non-radiating dark states, which allows for
long-term storage of N−1 photonic excitations. Via dipole-dipole coupling
only a single atom in the ground state is sufficient in order to suppress
the decay of all N − 1 other atoms. By means of some generic geometric
configurations, like a triangle of V-type atoms or a chain of atoms with
a J = 0 → J = 1 transition, we study such subradiance including dipole-
dipole interactions and show that even at finite distances long lifetimes
can be observed. While generally hard to prepare deterministically, we
identify various possibilities for a probabilistic preparation via a phase
controlled laser pump and decay.

doi: 10.1209/0295-5075/128/44001
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3.1 Introduction

Quantum fluctuations in the electromagnetic vacuum field inevitably lead to energy
dissipation from excited atomic states via the spontaneous emergence of photons [41]
known as spontaneous emission. In a quantum electrodynamics treatment the probab-
ility for this process and its corresponding decay rate Γ = ω3

0µ
2/(3πϵ0ℏc3) was first

derived by Weiskopf and Wigner [42]. It is proportional to the third power of the
transition energy between the excited and lower lying state as well as to the square of
the transition dipole moment between those two states.

As there is only one electromagnetic vacuum, atoms in close proximity will experience
correlated fluctuations inducing cooperative effects in their dissipative behavior. By
means of constructive as well as destructive interference of the emerging photons
the collective spontaneous emission rates are drastically modified as a function of
distance [43–46]. A strongly increased spontaneous emission is dubbed ’superradiance’
while a decreased rate is referred to as ’subradiance’ [47].

Due to the quantum nature of atomic excitations, they can be delocalized and
distributed over an entire atomic ensemble, exhibiting highly multi-partite entan-
glement [48–50]. Well known examples are the single-excitation Bell states of two
atoms [51,52], the W-state [53,54] and many others.

Figure 3.1: Model. We consider a collection of N identical multilevel atoms separated
by a finite distance, which are coupled to the quantized electromagnetic
vacuum field. Each atom i features N − 1 excited states |ej⟩ with
independent transitions to a common ground state |g⟩, represented by
σij . The collective decay rates are given by Γik

jj′ whereas the collective

energy shifts are written as Ωik
jj′ . The individual spontaneous emission

rate for transition j in all atoms is γj .
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3.2 Model

Depending on the geometry of the atomic ensemble as well as on the local phase
difference of the excitation amplitudes between the atoms, such delocalized excitation
states can feature either super- or subradiance. For instance, for two closely spaced
atoms (d≪ λ0 = 2πc/ω0), the symmetric Bell state |+⟩ = (|eg⟩+ |ge⟩) /

√
2 is super-

radiant, while its asymmetric analogue |−⟩ = (|eg⟩ − |ge⟩) /
√
2 is strongly subradiant

and decouples from the radiation field completely at distances close to zero [2]. This
leads to the term ’dark state’. Because of the fact that their lifetime is often orders of
magnitude longer than typical experimental cycles, those dark states are a valuable
resource in quantum information storage and processing [55,56].

While subradiant states of dense atomic ensembles are easy to identify theoretic-
ally [57,58], they have been quite elusive and hard to find in concrete experiments [5,59],
with directional emission patterns as one of the signatures of destructive interference
leading to subradiance [60]. Besides the influence of motion and various dephasing
mechanisms, it was recently pointed out, that the complex level structure of typical
atoms beyond a two-level approximation will often prevent the appearance of perfectly
dark states [61]. In particular, for excited atomic states, which can decay to different
lower states via more than one decay channel, the observation of subradiance is much
more challenging. It can be easily shown that for a system of two Λ-type atoms no
dark state can be found, as both decay channels need to be blocked via interference,
which cannot be achieved simultaneously. However, in earlier work [61] we could show
that an ensemble of N N -level atoms with and N−1 independent decay channels from
the excited state to N − 1 different ground states, a unique perfectly dark state, can
be identified. This completely anti-symmetric dark state has remarkable entanglement
and symmetry properties making it a promising candidate for quantum information
applications.

In this paper, we investigate a related system, namely the inverted energy level
configuration involving N atoms where one ground state is coupled to N − 1 excited
states |i⟩ = |si⟩ = |ei⟩. Each upper state can decay independently to a common
ground state |0⟩ = |s0⟩ = |g⟩. Again the totally anti-symmetric state is a dark state
of a similar form

|ψN
d ⟩ = 1√

N !

∑
π∈SN

sgn(π)
⊗
i

|sπ(i)⟩. (3.1)

Here the sum runs over all permutations π of N elements. Using a spatially symmetric
configuration of three atoms we will show below, that this N -level state of N atoms is
subradiant as well as an eigentstate of the Hamiltonian.

3.2 Model

Let us consider a collection of N identical V-level type atoms at fixed positions {r⃗i}Ni=1.

Each atom features N − 1 excited states {|ej⟩}N−1
j=1 at energies ωj with dipole coupling

to a common ground state |g⟩ via a transition dipole moment of µ⃗j .
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The combined Hamiltonian of the atoms and the electromagnetic field is given by

H = HA +HF +Hint (3.2)

with the atomic part HA =
∑N

i=1

∑N−1
j=1 ωjσ

i+
j σi−j and the field HF =

∑
k⃗,λ

ωka
†
k⃗,λ
a
k⃗,λ

.

The interaction between the atoms and the field in dipole approximation is then

Hint = −
N∑
i=1

N−1∑
j=1

(
µ⃗ijσ

i+
j · E⃗ (r⃗i) + h.c.

)
, (3.3)

where E⃗ (r⃗i) is the quantized electromagnetic field. When particularizing to N = 3
below, we will consider a situation where the transition dipole matrix elements inside
each atom are mutually orthogonal and real, that is

µij · µij′ = 0. (3.4)

After tracing out the electromagnetic field modes in a standard quantum optics
fashion assuming the field in its vacuum state [46, 62–64] the system dynamics can be
described by the master equation

ρ̇ = i [ρ,H] + L [ρ] (3.5)

with the effective Hamiltonian including dipole-dipole interaction

H =
N∑
i=1

N−1∑
j=1

ωjσ
i+
j σi−j +

N∑
i ̸=k

N−1∑
j,j′

Ωik
jj′σ

i+
j σk−j′ (3.6)

and the Liouvillian in Lindblad form

L [ρ] =
N∑
i,k

N−1∑
j,j′

Γik
jj′

(
2σi−j ρσk+j′ − σi+j σk−j′ ρ− ρσi+j σk−j′

)
, (3.7)

where σi±j denotes the rising (lowering) operator of the j-th transition in the i-th
atom.

The coherent part of the dipole-dipole interaction induces energy shifts (see Fig.
4.1) due to the couplings

Ωik
jj′ =

3
√
γjγj′

2

[(
µ⃗ij · µ⃗kj′

)
PR (k0rik) −

(
µ⃗ij · r⃗ik

) (
µ⃗kj′ · r⃗ik

)
QR (k0rik)

]
, (3.8)

while the incoherent collective dissipation is characterized by

Γik
jj′ =

3
√
γjγj′

2

[(
µ̂ij · µ̂kj′

)
PI (k0rik) −

(
µ̂ij · r̂ik

) (
µ̂kj′ · r̂ik

)
QI (k0rik)

]
. (3.9)
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3.3 Equilateral Triangle: Analytical Treatment
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Figure 3.2: Collective Couplings. Coherent and dissipative dipole-dipole coupling
coefficients as a function of the interatomic distance with θ1 = π/4,
θ2 = 3π/4 for ϕ = 0 (see Fig. 3.3). The blue dashed lines represent the
coupling of two neighbouring and parallel dipole moments whereas the
red lines represent couplings of orthogonal dipole moments which appear
due to their indirect interaction via the same vacuum field.

Furthermore, for brevity we have introduced the functions

PR(ξ) =
cos ξ
ξ − sin ξ

ξ2
− cos ξ

ξ3
, (3.10)

PI(ξ) =
sin ξ
ξ + cos ξ

ξ2
− sin ξ

ξ3
, (3.11)

QR(ξ) =
cos ξ
ξ − 3 sin ξ

ξ2
− 3 cos ξ

ξ3
, (3.12)

QI(ξ) =
sin ξ
ξ + 3 cos ξ

ξ2
− 3 sin ξ

ξ3
, (3.13)

where rik = |r⃗i − r⃗k| represents the interatomic distance between atom i and atom
k, and k0 = ω0/c with ω0 =

(
ωj + ωj′

)
/2 and Γii

jj′ = γj = 2µ2jωj
3/
(
3ϵ0c

3
)
is the

spontaneous emission rate of a single atom on the j-th transition. The couplings
for the energy shifts as well as the collective decays are plotted in Fig. 3.2 as a
function of the interatomic distance, whereas varying the dipole moment orientations
leads to oscillations of various amplitudes (see Fig. 3.3). The terms Γ12

12 and Ω12
12 are

dipole-dipole cross coupling coefficients, which couple dipoles even though they are
orthogonal. [46].

3.3 Equilateral Triangle: Analytical Treatment

For three 3-level atoms placed at the corners of an equilateral triangle with dipole
orientations chosen such that the configuration features a C3 symmetry (see Fig. 3.3),
the states |Ψ3

d⟩ and |Ψ3
sr⟩ are both eigenstates of the Hamiltonian from eq. (6.10)

whose energies can be calculated explicitly. For three V-type atoms |Ψ3
d⟩ is given by

|Ψ3
d⟩ =

1√
6
{|e1e2g⟩+ |ge1e2⟩+ |e2ge1⟩ − |e1ge2⟩ − |e2e1g⟩ − |ge2e1⟩}, (3.14)
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Figure 3.3: Geometries. We consider (a) an equilateral triangle and (b) a linear
chain of three 3-level atoms. Here µ⃗ij represents the dipole orientation of
the j-th transition in atom i.

whereas in the superradiant analogue |Ψ3
sr⟩, which is comprised of the exact same

bare states, all signs are positive. Clearly, the dynamics of any eigenstate of the
Hamiltonian is restricted to the decay towards other eigenstates |ψeig⟩ induced by the
Liouvillian, i.e. ρ̇eig = L [ρeig] with ρeig = |ψeig⟩ ⟨ψeig|. The corresponding rates can be
found by calculating the overlap with all other states. The decay and feeding rates for
a certain selection of states are shown in Fig. 3.11. Explicitly, the decay rate for the
eigenstate |ψeig⟩ is given by ⟨ψeig | L [ρeig] |ψeig⟩.
We find that the lowest lying energy state in the double excitation manifold cor-

responds to the antisymmetric dark state |Ψ3
d⟩, while the highest energy state is the

superradiant state. With a more and more pronounced subradiance in |Ψ3
d⟩ at de-

creasing interatomic distances, also its feeding rate from higher lying states decreases,
which culminates in a decoupling from all other states and the electromagnetic field.
In particular, for the equilateral triangle configuration, the lower an eigenstate lies
energetically, the smaller its decay rate, as can be seen for selected states in Fig. 3.11.
A full account of all coupling and feeding rates is available in the supplementary
information [65]. Also note that all feeding and decay rates to and from a particular
state sum up to zero.

3.4 Numerical Diagonalization for three and more Atoms

For the case of N ≥ 3 atoms we analyze the scaling of the decay rates as a function of
the interatomic distance for increasing atom numbers and different geometries.

In Fig. 3.5(a) the simple case of two two-level atoms is shown, where the sub-
and superradiant decay rates oscillate around the independent decay rate Γ with
an amplitude decreasing with the interatomic distance, such that the super- and
subradiant state switch their roles at each node. The black dashed curve corresponds
to the lowest decay rate at any given distance and is generalized to more involved
configurations in Fig. 3.5(b).

In Fig. 3.5 it can be seen, that the lowest collective decay rate for the (N − 1)-
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3.5 Dark State Preparation

Figure 3.4: Decay Cascade. After diagonalizing the Hamiltonian for the equilateral
triangle configuration of three 3-level atoms with symmetric dipole
orientations we show the decay cascade for selected eigenstates (the full
cascade can be found in the supplement [65]). We define γ1 ≡ 3

2ΓPI(k0r)
and γ2 ≡ −3

4ΓPI(k0r) +
9
8ΓQI(k0r) and Γ represents the spontaneous

emission rate of a single V-type atom with degenerate excited states.
Additionally, the collective energy shifts in the respective excitation
manifolds are shown with Ωk ≡ Ωii

kk and ω0 being the energy between
ground and excited states.

excitation manifold for N atoms goes to zero only if the interatomic distances approach
zero, if all dipole transition moments are orthogonal to the plane of the atomic ensemble.
For the equilateral triangle with symmetric dipole orientations and for N ≥ 4 atoms
with more than two transitions this is not possible anymore and the minimal decay
rate is Γ.

3.5 Dark State Preparation

In most geometric configurations apart from the equilateral triangle the anti-symmetric
state |ψ3

d⟩ is not an exact eigenstate of the Hamiltonian from Eq. (6.10) Yet, its
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Figure 3.5: Decay Rates. (a) Sub- and superradiant decay rates for two dipoles as
a function of the interatomic distance, where γ1 = 3

2ΓPI(k0r) and the
black dashed line indicates the lowest decay rate at any given distance.
(b) Lowest decay rates in the (N − 1) excitation manifold for N N -level
emitters as a function of the interatomic distance, with the white circles
corresponding to two 2-level atoms, the red circles to three 3-level V-type
atoms in a linear chain, the orange triangles to an equilateral triangle,
the blue circles to four 4-level V-type atoms in a chain and the white
squares to four atoms in a square.

subradiant property will prevail as shown for a linear chain in Fig. 3.6. The state
|Ψunp⟩ = (|e1e2⟩+ |e2e1⟩) /

√
2⊗ |g⟩ denotes a product state with atoms 1 and 2 en-

tangled and exhibits subradiance as well. Generally, subradiance becomes particularly
apparent at small atomic distances, where the derivative of the incoherent coupling
with respect to r is almost zero. At finite distances |ψ3

d⟩ can couple to to other states
and will therefore decay as shown in 3.6. Naturally, this means that it can be populated
via decay from a higher lying state, which in this case are all triply excited states. A
typical case where the dark state becomes populated by photon emission for a three
qutrit chain prepared in a totally inverted state, |e1, e2, e1⟩, is demonstrated in Fig. 3.8.
Note that there are, in fact, eight different possibilities for triply excited states, i.e.
|ei, ej , ek⟩ with i, j, k ∈ {1, 2}, which lead to similar results. In Fig. 3.8 it can be seen,
that the dark state can acquire a significant population, even via purely dissipative
preparation, by choosing an appropriate geometric configuration. On the other hand,
the feeding rate for the dark state becomes smaller with decreasing distances as it
starts to decouple from the electromagnetic field. As we have seen above, after an
initial build-up of population in the dark state, the remainder of the population mostly
ends up in the ground state. Hence, one can think of reusing the atoms in the ground
state in order to further increase the occupation of the dark state. For this purpose
, the preparation of the dark state |Ψ3

d⟩ or its superradiant analogue |Ψ3
sr⟩ can be

facilitated by a continuous pump laser. It turns out that using different excitation
phases for each atom can strongly improve the efficiency of this process, although this
might be challenging to implement in practice. We include a continuous pump in our
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3.5 Dark State Preparation
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Figure 3.6: Decay. Population during decay for different doubly excited states in
a linear chain of V-type atoms at λ0/50 separation. The black line
corresponds to the dark state |Ψ3

d⟩, the yellow dashed line to the su-
perradiant state |Ψ3

sr⟩, the grey line to an unpolarized product state
1/
√
2(|e1e2⟩−|e2e1⟩)⊗|g⟩ and the blue line to 1/

√
2(|e1e2⟩−|e2e1⟩)⊗|e1⟩,

where all three atoms are initially excited.

model by adding the term Hpump =
∑3

i=1

∑2
j=1 ηi(σ

i
j + σi†j ) to the Hamiltonian with

η1 = η, η2 = ηeiφ1 and η3 = ηeiφ2 , assuming that all atoms are driven with the same
strength η. In our example the atoms are initialized in the ground state, |ggg⟩, and
we look at the population of the dark state after a given laser illumination time. In
Fig. 3.9 the preparation probabilities for |Ψ3

d⟩ in a linear chain and for its superradiant
analogue |Ψ3

sr⟩ in an equilateral triangle are shown as a function of the laser phase
using a constant pump amplitude of η = 8.5Γ at an interatomic distance of λ0/50 in
both cases. For the linear chain it can be seen, that for instance if atom 2 and 3 are
driven by phases φ1 = π/2 and φ2 = π relative to atom 1, the preparation probability
for |Ψ3

d⟩ reaches 20%. The state will still decay, but with a small rate, as given in
Fig. 3.6. In contrast, setting φ1 = 0 and φ2 = 0 in the equilateral triangle results in
a preparation probability of 30% for |Ψ3

sr⟩. We find a surprisingly high preparation
probability after a time evolution of Γt = 0.3.

Now, we include different phases for different transitions by writing our pump
Hamiltonian asHpump =

∑3
i=1

∑2
j=1 η

i
j(σ

i
j+σ

i†
j ). Figure 3.10 (a) shows the preparation

probability for |Ψ3
d⟩ for a range of different phases, where for instance for φ1 = φ2 =

7/10π a maximum of ≈ 24% is reached after Γt = 0.3. In Fig. 3.10 (b) we compare
the time evolution of a pulsed laser with a continuous drive. Both cases lead to the
same maximal value after Γt = 0.3, but, after turning off the laser the dissipative
dynamics lead to larger preparation probabilities shortly after that. Only for times
longer than Γt = 1.5 the laser driven system dominates the preparation probability.
Specifically, for the case of pulsed lasing in Fig. 3.10 (b) the first peak corresponds to a
preparation probability of 24% and the second peak to 15%, both within an evolution
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Figure 3.7: Lowest Decay Rates. The lowest decay rates (a) for three 3-level V-type
atoms in a triangle configuration for eigenstates in the two-excitation
manifold for different distances between atoms 1,2 and atoms 1,3 respect-
ively and (b) in a chain of atoms for different distances between atoms
1,2 and atoms 2,3 where all transitions are orthogonal to the direction of
the chain are shown.
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Figure 3.8: Inverted Decay. Occupation probabilities during a purely dissipative
preparation of different typical states of three V-type atoms in a linear
chain with interatomic distance λ0/20. The red dashed line represents
the inverted initial state, the orange line the superradiant state |Ψ3

sr⟩,
the blue line the ground state fraction during the decay and the black
line the dark state |Ψ3

d⟩ fraction during the decay process.

time of Γt = 1.
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3.5 Dark State Preparation

Figure 3.9: Continous Laser Pump. (a) Preparation probability of the dark state
|Ψ3

d⟩ in a linear chain starting from |g, g, g⟩ with interatomic separation
r = λ0/50, laser pumping strength η = 8.5Γ and laser phases eiφ1

and eiφ2 for atoms 2 and 3 on both transitions with respect to atom 1
after Γt = 0.3. (b) Probabilities for the superradiant state |Ψ3

sr⟩ in an
equilateral triangle with the same parameters as in (a) where a maximum
of ≈ 30% is obtained for phases (φ1, φ2) = (±π/3,±π/3).
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Figure 3.10: Pulsed Laser. (a) Preparation probability of the dark state |Ψ3
d⟩ in

a linear chain starting from |g, g, g⟩ with interatomic separation r =
λ0/50, laser pumping strength η = 10Γ and laser phases η1j = η,η21 =

ηeiφ1 ,η31 = ηe2iφ1 and η32 = η22 = ηe2iφ2 . (b) Probability for |Ψ3
d⟩

with the parameters from (a) and phases φ1 = φ2 = 7/10π where the
preparation probability is maximal. The orange dashed line corresponds
to continuous lasing throughout the time evolution and the blue line to
a laser pulse for a time of [Γt = 0.3].
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3.6 Conclusions

We have generalized the concept of subradiance to multilevel emitters with several
excited atomic levels decaying via independent decay channels towards a common
ground state. In these systems the most subradiant states are completely anti-
symmetric and maximally entangled. In contrast to ensembles of two-level emitters
this multilevel type of dark states can hold several excitation quanta without decay.
Hence detection could be facilitated by non-classical photon correlations at long time
delays.

Entangled subradiant states have promising applications in quantum information
processing and optical lattice clocks [66, 67], amongst other key quantum technologies,
where longer coherence times and a better understanding of energy level shifts induced
via dipole-dipole interactions are crucial for improved accuracies. States that do not
decay as they decouple from the radiation field in turn are hard to access in order to
prepare them directly. Yet, a probabilistic preparation can be achieved via spontaneous
emission from higher lying states or in a much more efficient way by the application of
laser pulses with spatial phase control. Future work in this lines of studies will include
coupling to a cavity field and analyzing the emission and absorption behaviour of
multiple V-type emitters via an input/output formalism as in [68]. Another direction
is to investigate possible waveguiding effects with the above model in the second
excitation manifold as was done for the single excitation manifold in [69] for two-level
emitters and for emitters with multiple levels in the ground and excited state.
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3.7 Supplemental Material

3.7.1 Decay Cascade For Three 3-level Emitters

By considering

⟨ψ| L[|ψ3
d⟩ ⟨ψ3

d|] |ψ⟩ and ⟨ψ| L[|ψ3
sr⟩ ⟨ψ3

sr|] |ψ⟩ (3.15)

where |ψ⟩ are all the lower lying eigenstates into which the superradiant and subradiant
state decays, we obtain the decay rates into the respective states. For |ψ⟩ = |ψ3

d⟩ or
|ψ⟩ = |ψ3

sr⟩ we obtain the total decay rate.
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3.7 Supplemental Material

Figure 3.11: All 27 eigenstates for the equilateral triangle with eight fully in-
verted states corresponding to all permutations of |ei, ej , ek⟩ with
i, j, k ∈ {1, 2}, twelve eigenstates in the double excitation manifold, six
eigenstates in the single excitation manifold and one ground state with
no excitations. As in the main text, we define γ1 ≡ 3

2ΓPI(k0r) and
γ2 ≡ −3

4ΓPI(k0r) +
9
8ΓQI(k0r) with Γ being the spontaneous emission

rate of a single 3-level V-type atom on both transitions, assuming
degeneracy.

Whereas for

⟨ψ3
d| L[|eiejek⟩ ⟨eiejek|] |ψ3

d⟩ and ⟨ψ3
sr| L[|eiejek⟩ ⟨eiejek|] |ψ3

sr⟩ , (3.16)

where i, j, k = 1, 2 and eiejek are the 8 possible inverted states which can feed the
Super- and Subradiant states, we obtain the feeding rates. From the decay rate of the
dark state we see that in the limiting case of infinitely close atoms, the decay could
become even zero and the state would be indeed stationary under the Liouvillian
superoperator. As is demonstrated in the main text, for the triangle it approaches 1Γ
for infinitesimal distances and zero for the linear chain.
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Nanoscale Coherent Light Source
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Technikerstrasse 21, A-6020 Innsbruck, Austria

A laser is composed of an optical resonator and a gain medium. When
stimulated emission dominates mirror losses, the emitted light becomes
coherent. We propose a new class of coherent light sources based on
wavelength sized regular structures of quantum emitters whose eigenmodes
form high-Q resonators. Incoherent pumping of few atoms induces light
emission with spatial and temporal coherence. We show that an atomic
nanoring with a single gain atom at the center behaves like a thresholdless
laser, featuring a narrow linewidth. Symmetric subradiant excitations
provide optimal operating conditions.

DOI: 10.1103/PhysRevLett.124.253603

4.1 Introduction

Conventional lasers consist of an optical cavity filled with a gain medium, typically
comprised by an ensemble of energetically inverted emitters amplifying the light
field via stimulated emission. Pioneering experiments have realized lasers with the
most minimalistic gain medium yet, a single atom [70–77]. Corresponding theoretical
quantum models have already been studied extensively for several decades [78–81].
Standard models of a single-atom laser still feature a macroscopic optical resonator
supporting the corresponding laser light mode. Technically, the noise of the cavity
mirrors is a substantially limiting factor for the frequency stability of a laser. This can
be reduced when working in the bad cavity regime, such that the coherence is stored
in the atomic dipoles rather than the light field. In such superradiant lasers [82–86]
the properties of the emitted light are governed by the gain medium rather than the
resonator.
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Nanoscale Coherent Light Source

In this work we go one step further removing the cavity altogether and consider
a nano-scale system where atomic quantum emitters provide for the necessary gain
while simultaneously acting as a resonator. Thus, in principle, the size of the entire
setup can be reduced to even below the order of the laser wavelength. Such a device
is characterized solely by the spectral properties of the atoms. As discovered recently,

Figure 4.1: Coherent Light Emission from a Partially Pumped Atomic Array. (a) A
ring of atoms with an additional atom in its center incoherently pumped
with a rate ν. (b) The atoms decay at a spontaneous decay rate Γ0 and
are collectively coupled to the center atom with dispersive coupling Ωp

and dissipative coupling Γp, respectively. In turn, the ring atoms have
couplings Ωij and Γij amongst each other. The symmetric excitation
exhibits a collective decay rate Γcoll. (c) The field intensity generated
in the steady state according to eq. (5.4) for a ring of N = 11 atoms
in the xz-plane with y = 2.5λ0 and interatomic distance d = λ0/5 and
pumping rate ν = 0.1Γ0. (d) The field intensity in the xy-plane with
z = 2.5λ0.

tailored dipole-coupled atomic arrays possess collective eigenmodes with a very long
lifetime demonstrating analogous characteristics to a high-Q optical cavity mode [37,87].
Such arrangements could be implemented, e.g. by means of optical tweezers [88–90] or
superconducting qubit setups operating in the microwave regime [91]. We study the
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prospects of implementing a minimalistic sub-wavelength sized laser by incoherently
pumping some of the dipoles in such a nano array. As our generic setup we consider a
single atom placed in the center of a small ring comprised of identical emitters. The
collective coupling to the other emitters in the ring is mediated by virtual photon
exchange through the electromagnetic vacuum [43,75,92]. The collective eigenmodes
of the outer ring take on the role of a resonator mode.

We show that such a minimal model constitutes a steady-state coherent light source
with a spectral linewidth well below the single atom decay rate. Therefore, it can be
viewed as a minimal implementation of a laser. Depending on the number of atoms
and the configuration of the array, the collective nature of the dipole-dipole couplings
leads to strong quantum correlations within the atoms and an inherent emission of
a coherent field. Optimal operation is achieved when the collective state in the ring
atoms features a single subradiant excitation only.

4.2 Model

We consider N identical two-level atoms with excited state |e⟩ and ground state |g⟩
each, separated in frequency by ω0 and arranged in a ring geometry at an inter-
atomic distance of dλ0 = 2πc/ω0. An additional gain atom is placed in the center
of the ring as depicted in Fig. 4.1a and is assumed to be pumped to its upper level
incoherently at a rate ν (after having eliminated auxiliary levels). The corresponding
raising (lowering) operators of the ith atom are σ±i for i ∈ {1, 2, . . . , N, p} (the index p
corresponds to the central, pumped atom). The excited state is subject to spontaneous
emission with a rate Γ0. All transition dipoles µµµi are chosen such that they point in z-
direction. At the considered distances, the fields emitted by each of the atoms interfere
resulting in effective dipole-dipole interactions [43], so that the atomic ring acts like a
resonator [37] coupled to the gain atom in its center. Using standard quantum optical
techniques [62] we obtain a master equation for the internal dynamics of the emitters,
ρ̇ = i [ρ,H] + LΓ [ρ] + Lν [ρ] , where the Lindblad term describing the incoherent
pumping of the central atom is given by Lν [ρ] =

ν
2

(
2σ+p ρσ

−
p − σ−p σ

+
p ρ− ρσ−p σ

+
p

)
.

The corresponding Hamiltonian in a frame rotating at the atomic transition frequency
ω0 is

H =
∑

i,j:i ̸=j

Ωijσ
+
i σ

−
j , (4.1)

while the Lindblad operator accounting for collective spontaneous emission reads

LΓ [ρ] =
∑
i,j

Γij

2

(
2σ−i ρσ

+
j − σ+i σ

−
j ρ− ρσ+i σ

−
j

)
. (4.2)

The collective coupling rates Ωij and Γij are given as the real and imaginary part of
the overlap of the transition dipole of the ith atom with the electric field emitted by
the jth atom [93]. The emitted electric field EEE+(rrr) can be used to compute the field
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Nanoscale Coherent Light Source

intensity as [93], i.e.
I(rrr) =

〈
EEE+(rrr)EEE−(rrr)

〉
, (4.3)

The steady-state intensity is shown in Fig. 4.1c and Fig. 4.1d for typical operating
conditions.

4.3 Continuous Collective Emission

Our goal is to find operating regimes where the system emits coherent light with a
narrow linewidth. As the configuration is symmetric with respect to the coupling of
the ring atoms to the gain atom in the center, we can expect the ring atoms to be
driven into a symmetric excitation state given as

|ψsym⟩ =
1√
N

N∑
j=1

σ+j |g⟩⊗N . (4.4)

In accordance with standard laser theory we will target parameters for which a
symmetric excitation of the ring atoms constitutes a good cavity, i.e. the radiative
loss is sufficiently small. To this end, we study the stationary populations of different
eigenstates of our Hamiltonian from Eq. (5.2) during a time evolution starting from
the ground state as depicted in Fig. 4.2a.

Indeed, as shown in Fig. 4.2, we find that the two eigenstates involving the symmetric
single-excitation state in the ring are occupied predominately at all times (except for
the ground state). These states are given by

|Ψi⟩ = ai |g⟩⊗N ⊗ |e⟩+ bi |ψsym⟩ ⊗ |g⟩ , (4.5)

for i ∈ {1, 2}, where ai and bi depend on the particular geometry with |ai|2 + |bi|2 = 1.

Note that the gain atom can only emit one photon into the ring at a time. Hence, the
single-excitation manifold dominates the dynamics even for pump rates substantially
larger than the single-atom decay rate. This is shown in Fig. 4.2b, where we plot the
occupation probability of different eigenstates at steady state as a function of ν.

The fact that the ring does indeed form a resonator can be seen more clearly as
follows. Let us assume that only the symmetric state in the ring is populated. Thus,
we can rewrite the Hamiltonian in the subspace spanned by the ground and excited
state of the gain atom in the center, as well as the ground state of the ring and its
symmetric state obtaining [93]

Hsym = Ωsymσ
+
symσ

−
sym +

√
NΩp

(
σ+symσ

−
p +H.c.

)
, (4.6)

where Ωsym =
∑N

j=2Ω1j is the dipole energy shift of the symmetric state. Written
like this, the Hamiltonian resembles the Jaynes-Cummings Hamiltonian with the ring
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Figure 4.2: Dissipative System Dynamics. (a) Time evolution of the population of
the eigenstates of the Hamiltoniann from eq. (5.2)]for N = 5 ring atoms
with an interatomic distance d = λ0/2 and an incoherent pump rate
ν = Γ0/2 starting from the ground state. The state |Ψ1,2⟩ feature a
large contribution from the symmetric state of the ring atoms |ψsym⟩ and
show significantly higher populations than all other excited eigenstates
(gray lines) at all times. (b) Stationary population of the eigenstates for
different pump rates. We can see that even for large pump rates ν > Γ0

the symmetric single-excitation states dominate.

taking on the role of the cavity mode. In this sense, the symmetric subspace lowering
operator σ−sym = |g⟩⊗N ⟨ψsym| ⊗ 1p can be interpreted as the photon annihilation
operator of our ”cavity”. The coupling between the gain atom and the cavity is then
determined by Ωp. If we neglect the dissipative coupling between the central atom
and the atoms forming the ring, i.e. Γp = 0, we can rewrite the decay of the system as
L [ρ] = Lν [ρ] + L0 [ρ] + Lsym [ρ] , with

L0 [ρ] =
Γ0

2

(
2σ−p ρσ

+
p − σ+p σ

−
p ρ− ρσ+p σ

−
p

)
, (4.7a)

Lsym [ρ] =
Γsym

2
(2σ−symρσ

+
sym − σ+symσ

−
symρ− ρσ+symσ

−
sym

)
.

Minimizing the decay rate of the ring atoms is important, but in order to build up
population within the ring we need an efficient coupling to the gain atom as well. In
analogy to the Jaynes-Cummings model we thus define a cooperativity parameter [93]
C := NΩ2

p/ (Γ0Γsym) . An efficient coherent coupling of the ring atoms to the gain
atom is achieved when C > 1. As we can see in Fig. 4.4b, we reach this limit at
extremely small distances or at a distance where Γsym is minimal (see Fig. 4.3). The
cooperativity becomes large at d < 0.1λ0 since for d → 0 the coherent coupling
diverges. Yet, this is also the limit where the energy difference Ωsym is large, which
detunes the ring atoms from the gain atom. Furthermore, as we will show later, due
to the superradiant loss of the ring in this limit the emitted light features thermal
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Figure 4.3: Super- and Subradiance of the Symmetric State. The decay rate of
the symmetric state Γsym as a function of the atom number in the
ring and their interatomic distance. The white dots highlight specific
interatomic distances where the decay of the symmetric state is the
smallest (subradiant).

statistics rather than coherence. Consequently, we find that the optimal parameter
regime indeed lies where the ring atoms show a subradiant behaviour, i.e. at the points
highlighted in Fig. 4.3. As seen in Fig. 4.4a, the dissipative coupling of the central
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Figure 4.4: Coupling of the Central Gain Atom to the Outer Ring. (a) The dissipative
coupling Γp between the central atom and the ring atoms is plotted as a
function of the atom number N and the inter-atomic distance d. One can
see that it becomes negligible at the points where |ψsym⟩ is subradiant.
(b) Cooperativity C for different distances and atom numbers. The
cooperativity is large when d→ 0 due to the divergent behavior of Ωp,
or when Γsym is small.
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4.4 Photon Statistics and Spectral Properties

atom vanishes at points where the symmetric state shows suppressed spontaneous
emission (see Fig. 4.3). Hence, the loss during the excitation transport from the gain
medium to the ring is reduced as well.

4.4 Photon Statistics and Spectral Properties

We have now identified a regime where our system resembles the typical setup of a
single-atom laser. In order to study the statistical properties of the emitted light we
calculate the normalized second-order correlation at zero time delay g(2)(0) of the
electric field intensity. In the far-field r ≫ λ0, where the intensity correlation function
becomes independent of the position [93] and is given by

g(2)(0) =

∑
ijkl

〈
σ+i σ

+
j σ

−
k σ

−
l

〉
|∑mn

〈
σ+mσ

−
n

〉
|2 . (4.8)

Coherent light exhibits a Poissonian statistic implying g(2)(0) = 1 [62,94]. Therefore,
an operation in the previously identified parameter regimes leads to the emission of
coherent light. In addition , we calculate the amount of emitted light, i.e. Iout :=∑

ij Γij

〈
σ+i σ

−
j

〉
. In Fig. 4.5a we can see that points of coherent light emission where

g(2)(0) = 1 are achieved along a curve strongly resembling the optimal subradiance
parameters shown in Fig. 4.3. The points where g(2)(0) = 0 correspond to the situation
where the gain atom decouples from the cavity atoms, since then only the single atom
in the center can emit light. And, because it is not possible for a single atom to emit
more than one photon at a time, we observe anti-bunching. However, this regime does
not coincide with ”lasing” since the ring atoms are not occupied. Simultaneously, the
intensity shown in Fig. 4.5b is small, but still finite when the emitted light is coherent.
This is because coherences can only build up when the loss from the atoms in the ring
is sufficiently low (Γsym is small), which also reduces the amount of light emitted. In
order to analyze the emitted light in more detail, we compute its spectral linewidth.
Therefore, we calculate the emission spectrum by means of the Wiener-Khinchin
theorem [93, 95]. It is given as the Fourier transform of the first-order coherence

function, g(1)(τ) :=
∑

i,j

〈
σ+i (τ)σ

−
j

〉
. The spectrum has a Lorentzian shape, thus we

compute the linewidth ∆ν as the full width at half maximum (FWHM). In Fig. 4.5c,
we show the linewidth as a function of N and the interatomic distance d. Once again,
we find that the linewidth is small (∆ν < Γ0) at the points where the symmetric state
is subradiant. It can be seen that in order to maintain coherent light emission the
interatomic distances need to become smaller for an increasing number of atoms in a
ring of constant radius.

Note, that in order to treat larger atom numbers in the above calculations we
have truncated the Hilbert space at the second-excitation manifold [93]. Since the
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Figure 4.5: Intensity and Statistics of the Emitted Light. (a) Steady-state second-
order correlation as a function of the ring atom number and atom spacing.
For each atom number N there are specific interatomic distances d where
the emitted light changes from thermal-like light emission (red), passing
over regions of Poissonian statistics (white), to sub-Poissonian properties
(blue). (b) The radiated intensity Iout for the same parameter region.
Where g(2)(0) = 1 the intensity is maximal, regardless of the atom
number. (c) The spectral linewidth ∆ν for the same parameters. It
reduces to well below Γ0. The pump rate was ν = 0.1Γ0.

single-excitation subspace usually dominates [as shown in Fig. 4.2], neglecting any
state containing more than two excitations is well justified.

4.5 Threshold-Less Behavior

In standard lasing models, coherent output light is achieved from a certain input power
threshold on. Above threshold, the intensity of the emitted light increases drastically.
In an effort to identify such a threshold in our setup, we compute the properties of
the output light as a function of the pump strength of the gain atom.

The system does not exhibit a threshold. Such a threshold-less behavior has been
observed in single-atom lasing setups [71]. As we can see in Figs. 4.6a and 4.6b,
the output intensity grows as soon as the pump rate becomes nonzero, rather than
requiring a sufficiently large pump rate. At the same time, the photon statistics of
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Figure 4.6: Threshold-Less Coherent Light Emission. (a) Iout as a function of the
pump rate ν for N = 5, d = λ0/2 exhibiting maximum from ν ≈ 4Γ0

onwards. (b) A zoom in to the weak pump region shows the immediate
onset of the intensity Iout at small ν. (c) The second-order correlation
g(2)(0) in steady state is 1 for finite, but small ν. (d) The radiative
linewidth ∆ν (blue) in the steady state stays well below the pump
broadened linewidth Γ0 + ν of a single emitter (gray), and approaches
the decay rate Γsym of the symmetric state (yellow, dashed line).

the emitted field are Poissonian, i.e. g(2)(0) = 1, for arbitrarily low pumping rates
(see Fig. 4.6c). The only point at which the photon statistics change is when the pump
rate becomes large, ν ∼ 10Γ0, such that the emitted light starts to reproduce the
thermal statistics of the input field. It can also be seen in Fig. 4.6a that above this point
the output intensity is actually reduced. As one would expect, the linewidth of the
emitted field is small (∆ν < Γ0) as long as the light is coherent (see Fig. 4.6d). When
the incoherent pumping rate ν is increased, states outside the symmetric subspace are
occupied, which leads to a slight increase in the linewidth. However, by increasing
ν further, the linewidth decreases again and approaches Γsym as the central atom
decouples from the ring atoms the light is emitted from the ring in the subradiant
symmetric state.

4.6 Conclusions

We predict that a continuously pumped single atom surrounded by a nano-ring of
identical atoms could act as a minimal, sub-wavelength sized implementation of a laser.
Under suitable operating conditions the system will emit spatially and temporarily
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coherent light with Poisson statistics. Our analysis reveals a close analogy to the
Jaynes-Cummings model, where the outer ring atoms take on the role of a high-
Q cavity mode with the central atom providing for gain. The system works best
when driven into a collective subradiant state with a single excitation. In this limit,
spontaneous emission is suppressed and the operation strongly resembles the behavior
of a threshold-less laser [96]. While the implementation of such a system in a pure
form could be envisioned in optical tweezer arrays of neutral atoms [88], analogous
setups based on quantum dots have been implemented and are already operational in
the pulsed excitation regime [97].

Let us note here that there are no principal lower physical limits on the size of the
system apart from the technical implementation of the structure and its pumping.
Hence, very high density arrays of such lasers on a surface are possible.
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4.7 Supplemental Material

4.7.1 Symmetric Subspace

As mentioned in the main text, during the whole time evolution and for any incoherent
pumping rate ν the ring is mainly in the symmetric state. This allows us to restrict
ourselves to a subspace within the single-excitation manifold where either the central
atom is excited or the symmetric state of the ring is populated. The Hilbert space is
spanned by these two states and the ground state of the system, i.e.{

|ϕ1⟩, |ϕ2⟩, |ϕ3⟩
}
≡
{
|ψsym⟩ ⊗ |g⟩, |g⟩⊗N ⊗ |e⟩, |g⟩⊗N ⊗ |g⟩

}
. (4.9)

Within this subspace the nonzero matrix elements of the Hamiltonian are given by

⟨ϕ1|H|ϕ1⟩ = Ωsym, (4.10a)

⟨ϕ1|H|ϕ2⟩ =
√
NΩp. (4.10b)

In turn, this allows us to rewrite the Hamiltonian in this basis as

Hsym = Ωsymσ
+
symσ

−
sym +

√
NΩp

(
σ+symσ

ge
p +H.c.

)
, (4.11)
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where the subspace lowering operator is given by

σ−sym = |g⟩⊗N ⟨ψsym| ⊗ 1p. (4.12)

If there is only a single excitation present in the system the Lindblad operator
accounting for the collective spontaneous emission can be rewritten as

LΓ[ρ] =
∑
i,j

Γij

2

[
σegi σ

ge
j , ρ

]
, (4.13)

where the atomic density matrix in the steady state will live in the symmetric subspace,
such that

ρ ∝
2∑
i,j

|ϕi⟩ |⟨ϕj | . (4.14)

Applying the Lindblad superoperator will yield the decay rates Γp, Γsym and Γ0

for i ̸= j, i, j = 1 and i, j = 2, respectively. The collective decay Γp between the
central atom and the ring atoms will be approximately zero for the distances where
g(2)(0) = 1 and can be neglected as is discussed in the main text. The ring features
the collective decay Γsym = ⟨ψsym|LΓ[ρ]|ψsym⟩ and the central atom independent
spontaneous emission Γ0 with the decay operators σ−sym and σ−p respectively. Therefore
the Lindblad term can be split into

LΓ[ρ] = LΓsym [ρ] + LΓ0 [ρ]. (4.15)

This leads to a form of the Hamiltonian and Master equation which resembles the
Jaynes-Cummings model, where the good cavity is given by the subradiant symmetric
state of the ring atoms.

The definition of the cooperativity parameter can be understood as follows. As
can be seen in Hsym, the coupling coefficient between the central atom and one of
the ring atoms is given by

√
NΩp, whereas the spontaneous decay into the vaccum

modes for the center atom is simply Γ0. As analyzed in the main text, the ring atoms
are predominately in the symmetric state with a collective decay rate Γsym for the
parameters where the symmetric state is maximally subradiant. Interpreting the ring
in the symmetric state as a cavity and the center atom as the gain medium leads to
the definition of the cooperativity parameter C.

4.7.2 Truncating the Hilbert Space at Low Excitation

Concerning the scaling behaviour of the system a mean field treatment even with
the inclusion of correlations to second order is not sufficient since the properties of
the steady state strongly depend on correlations of higher orders in particular g(2)(0)
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Figure 4.7: (a) Scaling behaviour of Iout in the steady state as a function of the atom
number in the ring, where the interatomic distance for each N is chosen
along the white circles in fig. 3 of the main text and the incoherent
pumping rate ν = 10−1Γ0. (b) Comparison of the Master equation
with the cut-off at the second excitation manifold as a function of the
incoherent pumping rate ν for N = 8 atoms in the ring. (c,d) The
intensity correlation function g(2)(0) and the linewidth ∆ν as a function
of N for a pumping rate ν = 10−1Γ0 and an interatomic distance λ0/2
between neighbouring atoms.

involves products of four operators. In order to analyze the scaling behaviour for
a larger number of emitters in the ring we restrict the system to two excitations.
This cut-off can only be a good approximation to the full model for small enough
incoherent pumping rates ν. In fig. 4.7b the output intensity Iout in the steady state
of the reduced Hilbert space is compared to the full model for eight atoms in the ring
and a good agreement can be found for ν ≤ Γ0. For Iout, the intensity correlation
function g(2)(0) and the linewidth ∆ν in fig. 4.7acd the pumping rate is 10−1Γ0 and
the interatomic distances are chosen along the white circles in fig. 3. The linewidth ∆ν
is well below Γ0 with N ≥ 4 emitters in the ring and for distances d where g(2)(0) ≈ 1
but reaches a minimum which is above Γ0/2.

4.7.3 Computing the Spectrum

The spectrum we use in order to compute the linewidth via its FWHM is given
by the Fourier Transform of the first-order correlation function. Similarly to the
second-order correlation function, in the far-field this expression becomes independent
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of the geometry and is given by

g(1)(τ) =
∑
i,j

⟨σ+i σ−j ⟩. (4.16)

The spectrum can then be computed via [95] as

S(ω) = 2ℜ
{∫ ∞

0
dτe−iωτ

∑
i,j

⟨σ+i (τ)σ−j ⟩
}
. (4.17)
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Regular arrays of two-level emitters at distances smaller than that of the
transition wavelength collectively scatter, absorb, and emit photons. The
strong inter-particle dipole coupling creates large energy shifts of the col-
lective delocalized excitations, which generates a highly nonlinear response
at the single and few photon level. This should allow us to implement
nanoscale non-classical light sources via weak coherent illumination. At the
generic tailored examples of regular chains or polygons, we show that the
fields emitted perpendicular to the illumination direction exhibit a strong
directional confinement with genuine quantum properties as antibunching.
For short interparticle distances, superradiant directional emission can
enhance the radiated intensity by an order of magnitude compared to a
single atom focused to a strongly confined solid angle but still keeping the
anti-bunching parameter at the level of g(2)(0) ≈ 10−2.

DOI: 10.1063/5.0049270

5.1 Introduction

A coherently driven single two-level quantum emitter is well known to radiate non-
classical light, which shows perfect anti-bunching [99–101] as well as squeezing [102,103].
It is, however, very difficult to efficiently harness these properties directly. Usually it
requires complex optical elements such as high-Q cavities, high aperture lenses [104,105]
or tailored optical structures [106]. Using larger ensembles of identical emitters
increases the radiative output power but the nonclassical properties typically average
out to create narrow band radiation but with close to thermal statistics [107, 108].
For small interparticle dipole interactions in a dilute gas, the dynamics of the whole

49

https://doi.org/10.1063/5.0049270
https://doi.org/10.1063/5.0049270


Nanoscale quantum light sources based on dipole emitter arrays

ensemble in the low excitation regime then can be mapped to an effective harmonic
oscillator using the Holstein Primakoff transformation [109,110].

However, recent experimental advances allow implementing and controlling precise
arrays of individual quantum emitters at very close distances on the wavelength
scale [111–114]. Here, collective radiation effects as sub- and super-radiance play
a central role and exhibit a wealth of new physical phenomena [1, 2, 5, 115]. These
unusual radiative properties of sub-wavelength structures of dipole coupled quantum
emitters have recently been studied theoretically in great detail in various contexts
[9, 50, 57, 58, 61, 116–137]. This leads to several suggestions for novel platforms for
light matter coupling surpassing current limitations of quantum information protocols
[58,87,138], precision spectroscopy [67,139] or opto-mechanics [140,141]. Some first
experimental confirmations of such collective effects were also experimentally observed,
where superradiance proved more accessible [3, 59] than subradiance [5, 142].

Recently we have predicted that a ringlike sub-wavelength structure with a single
atom pumped at its center providing for gain can be tuned to emit spatially and
temporarily coherent light [143]. Using other operating parameters the system is also
predicted to generate non-classical light with strong photon anti-bunching. In closely
related foundational work it was pointed out that scattering a simple plane wave off a
regular dipole array with strong dipole-dipole interaction is already sufficient to tailor
the quantum statistical properties of the scattered photons [144,145]. The emerging
non-clasical radiative properties here can strongly vary depending on whether the
excitation frequency is tuned to superradiant or subradiant collective excitations.
Here we extend such studies to explore the potential of ordered structures of dipolar
quantum emitters as the basis to implement minimal non-classical light sources. In
particular we study how size, geometric shape of the structure and the orientation and
polarization of the individual dipoles can be used to tailor the spatial and temporal
distribution of the scattered radiation as well as its genuine quantum properties. As
has been seen even for a single atom [108,146,147], quantum properties of the scattered
radiation depend on the emission direction. In larger ensembles this can be tailored
to direct a large fraction of the emission towards a small angle, still keeping its special
quantum statistical properties. This could e.g. point towards a high flux directional
single photon source of subwavelength dimensions. Note that the commonly used
classical coupled dipole model [148] is not sufficient to account for and describe these
special radiation properties, as the origin is tied to the restriction of excitations to low
energy manifolds due to the strongly varying collective exciton shifts. This suppression
of multiple excitations could also be at the heart of recent observations of antibunching
in biological light harvesting structures [149]. For the sake of simplicity we will mainly
focus on the two cases of an ordered linear string or a regular polygon of dipoles. This
work is organized as follows. After an introduction and short review of our quantum
coupled dipole model we study the spatial distribution of the emitted radiation as
a function of size of the linear chain of emitters and relate it to the directional
g(2)(0)-function. In the final part we then concentrate on the non-classical aspects of
the photon statistics which is closely tied to the strong nonlinear suppression of the
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5.2 Model

Figure 5.1: (a) Schematics of the system: An ordered chain of quantum emitters with
transition frequency ω0 and spontaneous emission rate Γ0 is trapped along
the y-axis with lattice constant d and transition dipole moment pointing
in the z-direction. A coherent drive of frequency ωp with polarization
parallel to the atomic one propagates along the y-axis with Rabi frequency
Ωp. In this configuration the emitters can be treated as being two-level.
The scattered light by the array is detected in the far field at a plane of
constant z. (b) The normalized electric field intensity distribution of the
steady state for a chain of N = 22 quantum emitters with d = λ0/60,
where λ0 is the emitter transition wavelength. The laser is tuned to the
most superradiant single excitation state with a driving rate Ωp = Γ0.
The detector position is given by (r sinϕ,−r cosϕ, z = 5λ0), with the
azimuthal angle ϕ indicated in the figure. The preferred angle is in the
direction of maximal scattering which simultaneously does not coincide
with the laser beam direction. (c) The bunching parameter g(2)(0) for the
same parameters as in (b) evaluated in the plane with constant z = 5λ0.

ensemble excitations to the second and third excitation manifolds. In the supplement
we discuss 2D geometries, which can confine the emission in two dimensions towards
implementing higher collection efficiencies.

5.2 Model

We consider N identical two-level atoms with excited state |e⟩ and ground state |g⟩
each, separated in frequency by ω0 with an inter-atomic distance dλ0 = 2πc/ω0. The
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emitters are coherently pumped by a laser at rate Ωp, polarization ϵϵϵp and detuning ∆p

with respect to ω0. The corresponding raising (lowering) operators of the ith atom are

σ
+(−)
i for i ∈ {1, 2, . . . , N}, its dipole moment is denoted by µµµi, with corresponding

dipole moment orientation µ̂µµi = µµµi/µ and strength µ identical for all the emitters, and
the positions are fixed at rrri. The excited state is subject to spontaneous emission with
rate Γ0 = µ2ω3

0/3πℏϵ0c3. At the considered distances, the fields emitted by each of the
atoms interfere resulting in effective dipole-dipole interactions [43]. Using standard
quantum optical techniques [62] we obtain a master equation for the internal dynamics
of the emitters, ρ̇ = − i

ℏ [H, ρ] +LΓ [ρ], where the photonic part has been traced out in
the Born-Markov approximation. The corresponding Hamiltonian in a frame rotating
at the atomic transition frequency ω0 is H=

∑
j ∆pσ

+
j σ

−
j +

∑
i,j:i ̸=j Ωijσ

+
i σ

−
j +

+Ωpϵϵϵp ·
∑

j µ̂µµj

(
e−ikkk·rrrjσ+j + eikkk·rrrjσ−j

)
, where we have assumed that the incident field is

a plane wave with wave-vector kkk (|kkk| ≈ 2π/λ0), while the Lindblad operator accounting
for collective spontaneous emission reads

LΓ [ρ] =
∑
i,j

Γij

2

(
2σ−i ρσ

+
j − σ+i σ

−
j ρ− ρσ+i σ

−
j

)
. (5.1)

The collective coupling rates Ωij and Γij are given respectively by the real and
imaginary parts of the overlap between the transition dipole moment of the ith atom
and the electromagnetic field created by the jth atom, i.e. Ωij = −(3πΓ0/k0)Re[Gij ]
and Γij = (6πΓ0/k0)Im[Gij ], with Gij = µ̂µµj ·GGG(rrrij , ω0) ·µ̂µµi, and GGG is the Green’s tensor
in free space. When acting on an oscillating unit dipole at the origin, this is given by

GGG(rrr, ω0) · µ̂µµ =
eik0r

4πr

[
(r̂rr × µ̂µµ)× r̂rr +

( 1

k20r
2
− i

k0r

)
(3r̂rr(r̂rr · µ̂µµ)− µ̂µµ)

]
. (5.2)

Here, r̂rr = rrr/|rrr| is the unit vector in the direction where the Green’s tensor is
evaluated and k0 = ω0/c is the wave-number of the emitted light by the dipole. After
solving for the atomic density matrix the electric field generated at position rrr can be
found from a generalized input-output relation which in the absence of external fields
is given by [58,127]

ÊEE
+
(rrr) = µ0ω

2
0

N∑
j=1

GGG(rrr − rrrj , ω0) ·µµµjσ−j . (5.3)

The field intensity can then be evaluated from the emitted electric field operator EEE+(rrr)
at position rrr:

J (ϕ) =
〈
ÊEE

+
(rrr(ϕ))ÊEE

−
(rrr(ϕ))

〉
. (5.4)

We will consider a one-dimensional chain of atoms coherently driven by a plane
wave propagating along the chain axis, defined as the y-axis. The atomic and field
polarizations are parallel along the z-axis. To separate the scattered quantum light
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5.2 Model

from the driving laser light, the detector is placed along the x−direction as seen in
Figs. 5.1(a) and (b). The external field will be on resonance with the most superradiant
collective mode in order to maximize the photon emission rate. For typical operating
conditions, we show in Fig. 5.1(b) the emitted steady state light intensity pattern of
an atomic chain with 22 emitters. In order to evaluate the directional intensity, and
similar to [150–153], we will consider the total light intensity covered by a detector of
angular width ∆ϕ = 0.01π in the far field, and calculate the average value of J (ϕ)
over the emission angle ∆ϕ.
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0.00
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0.75

1.00
(a) J (φ)/Jmax
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10−1
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(b) g(2)(0)φ

Figure 5.2: Steady State Emission. (a) Far field intensity distribution versus azi-
muthal angle ϕ (normalized with respect to its maximum value over
ϕ) and (b) bunching parameter g(2)(0)|ϕ, for a linear chain of N = 30
emitters linearly polarized in z direction with different values of the
lattice constant d. The geometry is the same as in Fig. 5.1, but with
the detector placed at (r sinϕ,−r cosϕ, 0) and r = 100λ0. (a) Shows
that maximal emission occurs perpendicular to the chain for all lattice
constants. This enables separation of the incoming and scattered fields
in real space and minimizes its interference. In (b) a photon bunching
parameter of g(2)(0)|ϕ ≤ 0.1 is achieved for a small enough lattice spacing
in the direction perpendicular to the chain. The vertical lines at ±π/2
indicate the angles of maximal scattering.

In addition, one can also obtain from Eq. (5.9), normalized (zero-time delay) second-
order correlation functions, defined as

g(2)(0)
∣∣∣
ϕ
=

⟨ÊEE+
(rrr)ÊEE

+
(rrr)ÊEE

−
(rrr)ÊEE

−
(rrr)⟩

|⟨ÊEE+
(rrr)ÊEE

−
(rrr)⟩|2

, (5.5)

and which is shown in Fig. 5.1(c) in the xy-plane for a constant z. For the same
geometry as in Fig. 5.1, we evaluate in Fig. 5.2 the emitted light intensity and the
correlation function g(2)(0)|ϕ in the far field (|rrr| = r ≫ λ0), as a function of the
azimuthal angle ϕ which is defined in the plane containing the array (see Fig. 5.1).
We choose a coherent external field with pumping rate Ωp = Γ0 and again tuned
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Figure 5.3: Normalized scattered field intensity distribution (with respect to its
maximum value over ϕ for each value of the chain length) and photon
bunching parameter g(2)(0)|ϕ calculated for the steady state and in
the far field (r = 100λ0), as a function of the emission angle ϕ and
total chain length Nd/λ0. The two panels are for d/λ0 = 0.05 and
d/λ0 = 0.02, as indicated. The laser and detector position parameters
are identical to Fig. 5.2. For long enough chains Ndλ0 the scattered
field concentrates around the perpendicular direction to the chain (ϕ =
±π/2). Taken together, (b) and (d) show that it is possible to achieve
directional emission perpendicular to the laser beam direction with a
photon bunching of g(2)(0)|ϕ ≤ 0.1 for a lattice spacing d = 0.02λ0.

to the most superradiant single excitation eigenmode of the chain. In Fig. 5.2(a)
the directional emission is normalized by the maximal emission Jmax over the angle
ϕ. The different lines correspond to various lattice constants d. In Fig. 5.2(b) the
g(2)(0)|ϕ function has values ≤ 0.1 in the direction of maximal emission for d ≤ λ0/70
with the emission exhibiting two emission maxima perpendicular to the laser beam
direction (ϕ = 0).

In order to analyze the dependence of the directional emission on the total chain
length, we have evaluated in Figs. 5.3(a) and (b) the directional emission J (ϕ)
(normalized by its maximum value) and in Figs. 5.3(c) and (d) the two-photon
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Figure 5.4: The steady state of a coherently driven linear chain of emitters with
different lattice constants d for the same geometry and parameters as in
Fig 1. In (a) and (b) the total photon emission rates and the emitter
populations are shown respectively and show an increasing superradiant
emission rate for decreasing d. (c) Photon correlations g(2)(0)|ϕ are
measured in the direction of maximal emission in the far field (r =
100λ0) and which is as seen in Figs. 1-3 perpendicular to the chain
and laser beam in x direction for a total chain length of Nd0.35λ0. A
bunching parameter of g(2)(0)|ϕ ≤ 0.1 in combination with directional
perpendicular emission with respect to the lasing direction is reached for
sufficiently small lattice constants d. (d) The maximal intensity in the
xy plane as can be seen in Figs. 1-3 divided by the total emission rate.
The sudden increase of the peak intensity for a total chain length 0.7λ0
originates from the merger of the two emission peaks as seen in Fig. 5.3
(a) which turns the perpendicular emission into a reflection in the laser
beam direction. In comparison the dashed line shows the steady state
values for a single emitter coherently driven with a rate Ωp = Γ0 with
the emission being uniform in the xy-plane without directionality. Note
that in the case of maximal emission in two directions (see Fig. 1 (a)
and (b)) the maximal intensity is calculated for one of the maxima.

correlation function g(2)(0) characterizing bunching in the system, for fixed lattice
constant d and an increasing number of emitters. As it has been previously shown,
the emission becomes highly directional for increasing chain lengths, both when
targeting superradiant [144,145,154–157] and subradiant [58] eigenmodes. Instead,
the anti-bunching is reduced as the length chain increases, but at constant length
chain it is always enhanced by reducing d. Directional photon statistics of this kind
have been recently observed for two emitters by varying the detector position [108].
Therefore, these results suggest that it is possible to obtain highly directional anti-
bunched light by decreasing the lattice constant d, and keeping the total length chain
large enough compared to λ (Ndλ/3). To see how general these results are, we have
also analyzed other geometries in the supplemental material. In particular, we have
considered a scheme consisting of two coupled rings of linearly polarized emitters, for
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Figure 5.5: Excitation energy distribution in steady state for a coherently driven
linear chain of 9 emitters along the y direction each linear polarized in z
direction with the linear polarized drive along the chain direction and
pump amplitude Ωp = Γ0. The x axis denotes the excitation manifolds
which are proportional to the output electric field (see Eq. 5.9). For
(a) and (b) in the first row the laser is tuned to resonance with the
maximally superradiant single excitation eigenstate while for (c) and (d)
in the second row we target the most subradiant single excitation state
in a steady state operation with their respective photon emission rates
Γout shown in each figure. Note very strong (nonlinear) suppression of
higher excitation numbers for short inter-particle distances. The red
horizontal shades are guides for the eyes only.

which it is also possible to obtain strongly directional anti-bunched scattered light.
We now evaluate in Fig. 5.4(a) and (b) the total photon emission rate and excited
state population respectively, for the above system geometry, as a function of the
length chain Nd and for different lattice spacings. The total excited level population
of the steady state is given by ⟨n̂ex⟩ =

∑N
j=1⟨σ+j σ−j ⟩ whereas the photon emission

rate is Γout =
∑N

ij Γij⟨σ+i σ−j ⟩, which reduces to NΓ0 for N identical initially fully
inverted two-level emitters. For a steady state which consists only of a superposition
of the ground state and a single excitation in the mode m, the total emission rate
is given by Γm⟨nex⟩, where Γm is the collective decay rate of the mode m. On the
other hand, a single dipole in free space coherently driven by a laser at rate Ωp and
detuning ∆p (with respect to the atomic transition frequency) has an effective decay
rate of Γ0Ω

2
p/(4∆

2
p + Γ2

0 + 2Ω2
p), which can be derived by solving the atomic master
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equation in the steady state. The effective rate saturates at Γ0/2 for Ωp ≫ Γ0, which
constitutes the maximum steady state emission rate of a single coherently driven two
level emitter. The total photon emission rate of closely spaced quantum emitters as
e.g. in Fig. 5.1(a) can be many times that value, as shown in Fig. 5.4(a). In the same
figure, we show in panel (c) the two-photon correlation evaluated in the direction
of maximal emission. Finally, in panel (d) we have plotted the maximal intensity
in the xy−plane normalized by the total emission, which is a figure of merit for the
directionality of the emitted light. To increase the total photon emission rate it is
reasonable to increase the number of emitters, but as already previously discussed
this leads to a higher g(2)(0) in the direction of maximal emission. However, as it can
be clearly seen in 5.4(c), by decreasing the lattice spacing for a given chain length,
the g(2)(0) in the direction of maximal emission is decreasing as well. The smallest
lattice separation of d = λ/100 shows the highest total emission rate and maximum
renormalized intensity, indicating that a larger amount of the totally emitted light is
concentrated in the emission peak(s). The sudden increase in the ratio in (d) for a
chain length of 0.7λ0 originates from the merger of two emission peaks into one, which
is reflected back into the laser beam direction as seen in Fig. 5.3(a). The decrease
of the emitter population plotted in Fig. 5.4(b) with increasing emission rate shows
the increasing superradiance of the targeted eigenmode of the chain which possesses
a decay rate of ≈ NΓ0⟨nex⟩ for d ≤ λ0/100. On the other hand the decrease of the
total emission rate for increasing chain length is due to less emitter population in the
superradiant mode. Fig. 5.4 shows that both a directional emission and a bunching
parameter g(2)(0) ≤ 0.1 in the direction of maximal emission can be achieved for
lattice spacings of d ≈ λ0/100 as the chain length exceeds λ0/3. The dashed lines
in Fig. 5.4 show the case of a single emitter coherently driven with a rate Ωp = Γ0.
The g(2)(0) function is zero in this case but the small emission rate and absence of
emission peaks in the xy-plane renders the efficient collection of the scattered light
less favorable. Although the distances between the emitter are out of reach for optical
tweezers and lattices at present, recently [158] superradiant and subradiant states
in single nanocuboids at room temperature have been observed. Here the lattice
constants of the nanocube can be adjusted and the spacing between the interacting
dipoles can be below λ0/100.

5.3 Photon statistics

In the following, we will discuss photon statistics in terms of the occupations in the
various excitation manifolds since we have eliminated the photonic modes during the
derivation of the atomic master equation, however, the output intensity is proportional
to the atomic raising/lowering operators weighted by the Green’s tensor. In Fig. 5.5 it
can be seen that single photon states of high quality can be obtained at d ≤ λ0/10 for a
laser tuned both to the superradiant (in Fig. 5.5(a,b)) and subradiant (in Fig. 5.5(c,d))
eigenmode of the chain. The geometry is identical to the previous examples with the
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laser driving the chain from the y direction at a rate Ωp = Γ0. For the subradiant case
in Fig. 5.5 (c) the total emission rate for a linear chain of 9 emitters at a spacing of
0.05λ0 shows that a steady state occupation of 50% in the single excitation manifold
is reached. The total emission rate indicates a lifetime 500 times longer than that of
a single excited emitter. The statistics in Fig. 5.5 are obtained by continuous laser
driving in the steady state and if the laser is tuned to the most subradiant eigenmode
of the chain the emitter population levels out at 50% as for a chain emission rate
of ≪ Γ0 a pumping rate of Ωp = Γ0 resembles the case of a single strongly driven
emitter. In this regime the chain prepared in the subradiant collective mode behaves
like a single strongly driven emitter which reaches a excited state occupation of 0.5
in the steady state. In the supplement we demonstrate an efficient way to prepare
a subradiant eigenmode via a laser pulse. Pulsed on-demand production of photon
number states is proposed in [159] with a single multi-level atom in a cavity.

5.4 Conclusions

We have shown that the collective excitations in regular sub-wavelength structures
of dipolar quantum emitters can behave like a designer two-state atom [160] with a
strongly enhanced effective dipole moment and a tailorable spatial radiation pattern.
When illuminated with weak coherent light their strong nonlinear response at the
single or few photon level leads to directional emission of strongly anti-bunched light
without the help of any additional optical elements. While we restricted ourselves
here to the most simple generic cases of regular chains, more general structures can be
envisaged for specific applications and in particular as the basis of minimalist nanoscale
single photon sources. We highlight these surprising features for the generic examples
of a regular polygon with titled polarization and interacting regular polygons which
are partially pumped in the supplement. Even at fairly high excitation powers, in
strongly interacting configurations the second excitation manifold is only very weakly
excited, which might be a hint on the origin of anti-bunching found in bio-molecular
dipole configurations [149]. Interestingly, as shown in the supplement for a ring
with slightly tilted dipoles, besides the spatial dipole arrangement, polarization can
be an efficient tool to separate excitation light and emitted photons in addition to
directional spatial filtering. Note that while atoms in tweezers might be the most
straightforward test bed for these ideas, alternatives used synthetic molecules [160],
nanocuboids [158] at room temperatures or quantum dot nano-structures [161] and
should largely exhibit similar physics as long as the couplings are comparable with
environmental decoherence effects.
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5.5 Supplementary Material

5.5.1 Green’s Tensor and effective Model

The electric field generated by an ensemble of atoms is mediated by the electromagnetic
Green’s tensor, moreover in the weak excitation limit the Hamiltonian can be rewritten
in a form which allows for analytic solutions of its eigenvalue equation. These steps are
described below for the special case of an infinite chain. For a finite chain the procedure
is only valid approximately because of its open boundaries at the ends of the chain
but for an infinite chain it becomes accurate and as investigated previously [58,162]
1D atomic arrays behave like a quantum waveguide and support guided modes that
do not decay into free space. The Green’s tensor in free space acting on an oscillating
unite dipole is given by

GGG(rrr, ω0) · µ̂µµ =
eik0r

4πr

[
(r̂rr × µ̂µµ)× r̂rr +

( 1

k20r
2
− i

k0r

)
(3r̂rr(r̂rr · µ̂µµ)− µ̂µµ)

]
. (5.6)

Here, r̂rr = rrr/|rrr| is the unit vector in the direction where the Green’s tensor is evaluated,
k0 = ω0/c is the wavenumber of the emitted light by the dipole and µ̂µµ = µµµ/|µµµ| is the
unit dipole orientation. The coherent and dissipative interaction rates between emitter
i and j read

Ωij = −3πΓ0

k0
Re{µ̂µµ∗i ·GGG(rrri − rrrj , ω0) · µ̂µµj}, (5.7)

Γij = −3πΓ0

k0
Im{µ̂µµ∗i ·GGG(rrri − rrrj , ω0) · µ̂µµj} (5.8)

where µ̂µµi is the unit dipole moment associated with the transition of atom i. The
single atom spontaneous emission rate is given by Γ0 = ω3

0|µµµ|2/3πϵ0ℏc3. As described
in the main text after solving for the atomic density matrix the electric field generated
at position rrr can be obtained from a generalized input-output relation [58], which in
the absence of external fields is given by

ÊEE
+
= µ0ω

2
0

N∑
j=1

GGG(rrr − rrrj , ω0) · µ̂µµjσ−j . (5.9)
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To obtain this equation the Markovian approximation has been made, therefore
retardation effects arising from the physical sepration between the quantum emitters
can be ignored. As long as the ensemble stays within the length scales of ≈ 1 meter
this assumption is well founded. [36,163,164] We will consider the weak excitation limit
in which only the single-excitation manifold is significantly occupied and neglecting
external driving fields for the moment. In this case the recycling term which is the
first term in the Lindblad expression can be neglected. This term accounts for the
change in the ground state population. Then, the system can be fully understood
from the properties of the eigenstates of an non-Hermitian Hamiltonian that reads
(setting ℏ = 1) H = ω0

∑N
i=1 σ

+
i σ

−
i +Heff with

Heff = −µ0ω2
0

N∑
i,j=1

µ̂µµ∗i ·GGG(rrri − rrrj , ω0) · µ̂µµjσ+i σ−j

=

N∑
i,j=1

(
Ωij − i

Γij

2

)
σ+i σ

−
j ,

(5.10)

where Ωii = 0, as it only leads to a finite global energy shift in the Hamiltonian for
identical emitters. This model will now be used to to investigate the properties of a
linear chain of atoms in free space without external driving.

For an infinite chain that extents along the y direction the eigenstates of Heff are spin
waves with a well defined wave vector ky ∈ [−π/d, π/d]. The collective spin operators

Ŝ†
ky

= 1/
√
N
∑

j e
ikyyjσ+j satisfy the eigenvalue equationHeff Ŝ

†
ky
|g⟩⊗N = ωky Ŝ

†
ky
|g⟩⊗N ,

where yj is the position along the chain of emitter j and |g⟩⊗N the total ground state
of the sytem. The complex eigenvalues read

ωky = ω0 −
3πΓ0

k0
µ̂µµ∗ · G̃GG(ky) · µ̂µµ, (5.11)

assuming all quantum emitters have the same unit dipole moment µ̂µµ. The imaginary
part of ωky corresponds to the decay rate of the spin wave, and its real part accounts
for the frequency shift with respect to the bar atomic frequency ω0. In the above
equation G̃GG(ky) =

∑
j e

−ikyyjGGG(yj , ω0) is the discrete Fourier transformation of the
vacuum Green’s tensor.

Fig. 1(a) shows the real and imaginary part of ωky as well as the light line beyond
which (ky > k0 = ω0/c) the spin wave mode becomes extremely subradiant as opposed
to modes inside the light line (ky < k0) which acquire a finite life time and some even
become superradiant. In fact for the special case of infinitesimal emitter distances there
will be N − 1 subradiant states and a single superradiant state. It is the superradiant
mode closest to the lower energy band of Fig. 1(a) which we address with a coherent
driving laser such that the detuning ∆l in the main text is on resonance with said mode.
For guidance a chain of 50 emitters is shown vs. a chain of 5 emitters with a single
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Figure 5.6: Energy Band. In (a) the continuous lines represent a chain of N = 50
emitters whereas the dots indicate the real part of (ωy − ω0)/Γ0 of a 5
emitter chain. Since the dispersion relation is symmetric around the y-
axis the first Brillouin-Zone is shown only for wavenumbers ky ∈ [0, π/d].
The spacing is d/λ0 = 0.05 and all emitters are linearly polarized along
the chain. (b) shows the steady state populations and total emission
rate of a 5 emitter chain driven coherently from the z-direction. The x
axis shows the laser detuning with respect to the single atom transition
frequency ω0. Resonances at the single-excitation eigenenergies are
clearly visible and show significant populations in the steady state and
note that the linewidths of the resonances is given by the decay rates of
the targeted modes.

collective mode k
(0)
y inside the region enclosed by the light line and two subradiant

modes outside of it. Due to the finiteness of the system the solution is only approximate
but still a qualitative picture can be extracted as there is a clear connection between
the energy band and the scattered light observed in Fig. 1(b). As the laser is tuned

to the frequency corresponding to the mode |Ψ
k
(0)
y
⟩ = 1/

√
N
∑

j e
−ik

(0)
y yjσ+j |g⟩⊗N

superradiant emission (> Γ0) is observed in the steady state total emission rate with
vanishing populations in the higher excitation manifolds. The same holds for the
subradiant modes where the population is saturating at 1/2 excitations. Note that

the emission rate for k
(2)
y amounts to Γ0/100 in the steady state corresponding to a

100 fold increased lifetime of the stored energy compared to independent emitters. As
one increases the number of emitters in the chain these effects increase significantly
with the most subradiant mode’s decay rate scaling with N−3 for large N [58]. As
discussed in the main text for the superradiant mode to show strong anti-bunching
in the scattered light the chain length should not exceed the wavelength λ0 of the
emitted light of a single atom.
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5.5.2 Pulsed preparation of a subradiant state

In Fig. S5.7 we show the pulsed preparation of a subradiant single excitation eigenmode
of a linear chain of 12 emitters. In Fig. 5 of the main text it is shown that a steady
state operation leads to a 50% occupation of the first excitation manifold but as we
show in Fig. S5.7(b-d) the occupation can reach near unity if the pulse duration,
amplitude and detuning are optimal. The emitters are linear polarized in z direction
and the chain extents along y with lattice constant d = λ0/20 and with a linear
polarized laser pulse propagating along the chain. The Hamiltonian in Eq. 1 of the
main text will now have a time dependence as follows

H(t) =

N∑
j

∆pσ
+
j σ

−
j +

N∑
i,j:i ̸=j

Ωijσ
+
i σ

−
j +Ωp(t)ϵϵϵp ·

N∑
j

µ̂µµj

(
e−ikkk·rrrjσ+j + eikkk·rrrjσ−j

)
,

(5.12)

where Ωp(t) = Ω̃pe
−(t−t0)2/τ2 is a laser pulse with amplitude Ω̃p, a full width half

maximum of the pulse duration of τ and peak at t0. In Fig. S5.7(b) the case of a laser
pulse with τ = 25Γ0, Ωp = Γ0 and t0 = 50Γ0 is plotted. The laser is now tuned to
the most subradiant single excitation eigenmode of the chain. In (a) the normalized
intensity distribution is plotted at Γ0t = 150 and shows that the chain radiates only
at the ends with a emission rate of 10−3Γ0 as is shown in (c). The distribution of
the emitter population in the individual excitation manifolds in (d) at Γ0t = 150
shows that the chain stores nearly a single excitation which decreases at a rate of
10−3Γ0. Experimentally verifying the preparation of subradiant states has always been
a challenge and this should only illustrate the preparation with a minimal amount of
elements.

5.5.3 Nano-Rings

As another example of ordered arrays the ring provides closed boundary conditions,
namely rotation symmetry thereby allowing for an explicit calculation of eigenmodes.
[165] As in the case of the chain the Hamiltonian can be cast into a non Hermitian
form where the complex eigenvalues read

ωm = ω0 −
3πΓ0

k0
µ̂µµ∗ · G̃GG(m) · µ̂µµ, (5.13)

where G̃GG(m) =
∑

jl e
−im(φl−φj)GGG(rrrl − rrrj , ω0) is again the discrete Fourier trans-

formation of the Green’s tensor for the ring. The angle associated with position
j ∈ (1, ..., N) is denoted by φj = 2π(j − 1)/N and m = 0,±1,±2, ..., ⌈±(N − 1)/2⌉
corresponds to the angular momentum of the mode. [165,166] The collective energy
shifts and emission rates of the mode are given by the real part Ωm = Re{ωm} and
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the imaginary part Γm = Im{ωm} of the eigenvalue ωm. From Eq. 5.13 it is easy to
see that the eigenvalue spectrum will be symmetric under the exchange m ↔ −m,
meaning, ωm = ω−m. Relevant for the present case is the superradiant m = 0 mode
which is non-degenerate and will be targeted by a coherent pump of rate Ωp = Γ0.
The corresponding eigenstate has the form

|Ψm=0⟩ =
1√
N

N∑
j=1

σ+j |g⟩⊗N (5.14)

with a superradiant emission rate Γsup =
∑N

j=1 Γ1j and eigenenergy ω0 +
∑N

j=2Ω1j

which has the same form as the eigenenergies of the hermitian Hamiltonian which
is used for the simulations. Note that for infinitesimal emitter spacing the ensemble
approaches the Dicke Limit [2] for which the superradiant mode decays with rate NΓ0.
Now we will investigate a coherently driven ring of emitters of separation d = 0.03λ0
each having linear polarization in z direction with a linear polarized laser propagating
in the y direction with a pumping rate Ωp = Γ0 (see Eq. 1 in the main text). Fig.
S3(a) shows the normalized intensity distribution in the steady state for N = 4
emitters in the ring and features a uniform ring shaped emission into the xy-plane.
Now in (b) a second identical undriven ring is placed at a π/4 angle w.r.t. the first
ring with a separation between the two rings centers of 0.7λ0. The resulting steady
state emission shows strong directionality in the xy-plane in a direction which is not
interfering with the laser’s direction. The 1D plot in (c) shows the corresponding
emission peaks in the far field and (d) the bunching parameter g(2)(0) as a function of
the emission angle ϕ in the xy-plane. A bunching parameter of < 0.1 can be observed
in the direction of maximal emission coinciding exactly with the global minima of
the g(2)(0) function which would constitute a good single photon source. Finally in
(e) the scaling behaviour is plotted when the emitter number in the undriven ring is
varied leaving all other parameters fixed including the distance between the two ring
centers. The steady state total emission rate remains roughly constant with a small
variation at N = 4. This is expected as the driven ring’s emitter number remains
constant and which is the source of the emission or scattered light. The bunching
parameter on the other hand shows strong variations of two orders of magnitude
as the second ring’s emitter number is changed. The ratio between the maximal
emission in the xy-plane and the the total emission in (d) is increasing with increasing
emitter, therefore more light is concentrated in the direction of maximal emission.
Simultaneously a bunching parameter g(2)(0) ≈ 10−4 is reached which would constitute
an almost perfect source of single photons. Although driving only one of the rings
might be a challenge experimentally the small bunching parameter in combination
with the strong directionality as seen in Fig. S3(b,c) and a total emission rate of
> Γ0 in this system seems to be an interesting avenue for future experimental and
theoretical studies.
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5.5.4 Tilted Polarization

To drive only one of the rings in the previous example might prove experimentally
difficult. By again considering the same geometry as in Fig. S3 but adding a small x
component of ϵ = 0.1 to the polarization of the left ring and the laser being circular
polarized as (x̂, iŷ, 0)T /

√
2 and propagating along the z direction. With a pumping

rate of Ωp = 20Γ0 the laser beam will only drive the left ring which still has a dipole-
dipole interaction with the second ring. The normalized steady state emission for
N = 14 emitters per ring is plotted in Fig. S4 (b) and shows strong directionality in
the xy-plane. In (a) the steady state total emission rate as a function of the emitter
number per ring is shown in a, whereas in (c) and (d) the bunching parameter g(2)(0)
in the direction of maximal emission and the ratio between maximal emission and
total emission in the xy-plane are plotted. At N = 14 the whole system shows a
total emission rate approximately 7 times larger than that of a single emitter which is
Γ0/2, a bunching parameter g(2)(0) ≈ 0.03 and increasingly more light concentrated
in the direction of maximal emission. In effect the tilted polarization of the driven
ring converts the circular polarized laser light into highly antibunched linear polarized
light in a continuous manner.

5.5.5 Spatial Disorder Effects

In Fig. S5.10 we plot in (a) the total emission rate and in (b) the bunching parameter
g(2)(0) in the direction of maximal emission as a function of the emitter number in a
linear chain along y for different degrees of spatial disorder. Each emitter is linear
polarized in z direction and the linear polarized driving laser propagates along the
chain direction with rate Ωp = Γ0. The laser is tuned to the most superradiant single
excitation state for each N where ϵ = 0. This means that the positional disorder also
induces some detuning between the laser frequency ωp and the targeted eigenmode of
the disordered chain. We consider a classical disorder, where each emitter is randomly
displaced around its initial position in the xy plane by a value between [−dϵ, dϵ].
We plot the total emission rate and the bunching parameter after averaging over 100
disorder realizations. The chain lies along y and the disorder for each emitter is in x
and y direction. Evidently in the presence of significant fluctuations of ϵ/d = 0.1 the
total emission rate is substantially decreased and the bunching parameter increased
on the other hand moderate disorder has only small effects on both values. In the
case of subradiance it was shown that moderate disorder has relatively little influence
on the decay rate of the most subradiant eigenmode. [167]

5.5.6 Truncated Model

Throughout this work a truncated Hilbert space is used for most simulations by
which the full quantum model is restricted only up to two excitations. In this way
it is still possible to calculate second order correlations in normal order of the form
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⟨σ̂+i σ̂+j σ̂−k σ̂−l ⟩ and investigate larger system sizes with finite computational resources.
In order to calculate the occupation in a given excitation manifold we have diagonalized
the given Hamiltonian and summed up the projections of the steady state density
matrix on the respective eigenstates. For instance in the first excitation manifold are
N eigenstates, so the population is given by

∑N
j=1⟨ψj |ρss|ψj⟩, where |ψj⟩ denote the

N single excitation eigenstates and ρss is the density matrix for the emitters in the
steady state. There are N(N − 1)/2 eigenstates carrying two excitations and so forth
with all excitation manifolds adding up to 2N states.

In Fig. S5 the full quantum model is compared to the truncated model for a linear
chain of 5 emitters both for in population and total emission rate versus pumping rate
Ωp. A good approximation to the full model for small enough coherent pumping rates
Ωp ≤ Γ0 can be found. The vanishing population in the third excitation manifold of
the full model shows that the truncated model describes the system sufficiently well
from a physics viewpoint.
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Figure 5.7: Subradiance. The linear chain of 12 quantum emitters along the y
direction each linearly polarized in z direction with spacing d = λ0/20.
For optimal subradiant state preparation a laser pulse propagating along
the chain is chosen with amplitude Ω̃p = Γ0 and FWHM of the pulse
duration of τ = 25Γ0. The laser is linear polarized and tuned to the
most subradiant single excitation eigenmode of the chain. In (a) the
normalized intensity distribution at Γ0t = 150 in the xy plane is shown
with a cut at z = 20d. The emission rate in (c) shows that the chain
radiates weakly only at its ends with a rate 10−3Γ0. In (b) the laser
pulse and the emitter population of the chain are plotted with the chain
population reaching almost unity. (d) shows the distribution of the
population in the individual excitation manifolds at Γ0t = 150. Only
the total ground state and the first excitation manifold are populated
showing that a single excitation is stored in the chain which radiates at
a rate 10−3Γ0.
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Figure 5.8: Nano Ring. (a) A single ring of emitters (N = 4) is continuously
driven by a linear polarized laser from the y direction with driving
rate Ωp = Γ0. The emitters are linear polarized in z direction with a
separation d = 0.03λ0. The laser is tuned to the most superradiant single
excitation eigenmode of the ring which is given by ω0 +

∑N
j=2Ω1j but

steady state emission shows no directionality in the xy-plane. (Cut in
z = 1.5λ0) In (b) a second identical undriven ring is placed at an π/4
angle to the first ring with the centers of the rings being 0.7λ0 apart and
the steady state showing strong directional emission in a direction which
is not interfering with the laser beam direction. The intensity maxima in
(b) are shown in (c) as a function of the emission angle ϕ (xy-plane) and
(d) shows correspondingly a low bunching parameter g(2)(0) < 0.1 in the
directions of maximum emission. Scaling behaviours as a function of the
undriven ring emitter number are plotted in (e) for the total emission
rate, g(2)(0) in the direction of maximum emission and the ratio between
maximal emission and total emission in the steady state. The emitter
number of the driven ring is fixed at N = 4 and the distance between
the ring centers is fixed at 0.7λ0 as is the emitter spacing d = 0.03λ0.
For an increasing emitter number in the undriven ring, more light is
concentrated in the direction of maximal emission with a g(2)(0) ≤ 10−3

as seen in (e), constituting a nearly perfect directional single photon
source.
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Figure 5.9: Tilted Polarization. Taking the same arrangement as in Fig. S3 with
d = 0.02λ0 but adding a small component of x = 0.1 to the dipole
orientations (µ̂µµ = (0, 0, 1)T ) of the emitters in the driven ring on the left.
The laser beam propagates in the z-direction with a rate Ωp = 20Γ0 and
a circular polarization (x̂, iŷ, 0)T /

√
2. In (b) the normalized steady state

emission rate in the xy-plane is shown for N = 14 emitters per ring (Cut
in z = 1.5λ0). The total emission rate, the bunching parameter and the
ratio between maximal emission and total emission in the steady as a
function of the emitter number per ring are shown in (a), (c) and (d)
respectively. A single ring of such small scale with transversally polarized
emitters would emit into the whole xy plane equally but the presence of
a second identical undriven ring directs the emission into a particular
direction.
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Figure 5.10: Influence of positional disorder ϵ for a linear chain in (a) the steady state
emission rate and (b) bunching parameter g(2)(0) in the direction of
maximal emission. The continuous lines are guides for the eye showing
the dependence on the emitter number N. For a chain along y, each
emitter is displaced in x and y by a random value between [−dϵ, dϵ].
We average over 100 random configurations for each value of ϵ. For all
plots, d = λ0/40.
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Figure 5.11: A comparison of the full quantum model with the truncated model is
shown in the steady state for a 5 emitter chain along y with spacing
d/λ0 = 0.05 and the emitters linearly polarized in z direction. The laser
is again tuned to the most superradiant single excitation eigenmode
and propagates along the chain direction. The truncation includes only
up to two excitation but it is seen that the third excitation manifold in
the full model is almost negligible and the total emission rate shows
good agreement up to a coherent driving rate of Γ0 both for the steady
state population and the total emission rate.
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Nanoscopic arrays of quantum emitters can feature highly sub-radiant
collective excitations with a lifetime exponentially growing with emitter
number. Adding an absorptive impurity as an energy dump in the center
of a ring shaped polygon allows to exploit this feature to create highly
efficient single photon antennas. Here among regular polygons with an
identical center absorbing emitter, a nonagon exhibits a distinct optimum
of the absorption efficiency. This special enhancement originates from
the unique emergence of a subradiant eigenstate with dominant center
occupation. Only for nine emitters the sum of coupling strengths of each
emitter to all others matches the center to the ring coupling. Analogous to
a parabolic mirror the antenna ring then concentrates incoming radiation at
its center without being significantly excited itself. Similar large efficiency
enhancements, which even prevail for broadband excitation, can also
be engineered for other antenna sizes by tailoring the frequency and
magnitude of the central absorber. Interestingly, for very small structures
a quantum treatment predicts an even stronger enhancement for the single
photon absorption enhancement than a classical dipole model. As natural
light harvesting structures are often based on ring shaped structures, the
underlying principle might be exploited there as well.

DOI: 10.1364/OE.437396

6.1 Introduction

Collective radiation effects such as sub- and super-radiance [1, 2, 5, 115] in sub-
wavelength structures of dipole coupled quantum emitters create growing widespread
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Figure 6.1: Scheme of an antenna in form of a regular polygon of N two-level emitters
of radius R and distance d coupled to a central impurity which decays
from state |e⟩ either to state |g⟩ at rate ΓI or to an auxiliary state |t⟩ via
an extra irreversible channel at rate ΓT . The impurity |g⟩-|e⟩ transition
is detuned from the antenna atoms by δI . The whole system is uniformly
driven.

interest [9,50,57,58,61,116–136,168] as recent experimental advances allow implement-
ing and controlling precise arrays of individual quantum emitters at close distance
e.g. in uniformly filled optical lattices [111–114], optical tweezers arrays, microwave
coupled superconducting q-bits [169–171] or solid-state quantum dots [172,173].

Ordered dipole arrays create novel platforms for enhanced atom-light coupling
surpassing current limitations of quantum information protocols [58,87,138], precision
spectroscopy [67,139] or opto-mechanics [140,141]. Moreover they represent a genuine
test bed for fundamental studies of quantum many body states of light and matter
[132,139,174,175]. Nature is abundantly engineering complex sub-wavelength scale
structures of optical dipoles in common light harvesting complexes [160,176–181].

Among various designs, arrays forming regular polygons with sub-wavelength inter-
particle distance (referred here as nanorings) exhibit exceptional radiative properties
[58, 143, 165, 182–184]. On the one hand they support extremely subradiant guided
modes with a loss exponentially decreasing with atom number [58], allowing for efficient
energy transport within a single ring [183] or between two neighboring rings [165,184].
On the other hand they possess collective eigenmodes with a tightly confined field
in a sub-wavelength region near their center. Adding gain at the ring center, such
nano-rings as optical resonators allow to create coherent laser-like nanoscopic light
sources [143].

Here we exhibit how such a ring structure can act like a parabolic mirror antenna
[185,186] concentrating incoming radiation in a sub-wavelength volume at its center and
strongly enhancing the single photon absorption cross section by placing an impurity
there, way beyond the single atom value. Surprisingly one finds that antenna rings of
N = 9 dipoles with an equal center dipole exhibit a distinctively superior performance
compared to other antenna atom numbers in several respects. Let us note here, that
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ring structures in a common form of bacterial light harvesting complexes called LHC2
often appear with 9-fold rotational symmetry, but are comprised of several concentric
rings [160,176–180,187–193]. Interesting previous results show that the dynamics of
excitation energy transfer between concentric rings at room temperature are indeed
improved by coherence or quantum mechanical coupling between the chromophores
forming the ring [189–193].

Analysing the collective eigenmodes reveals a first hint for the astonishing superiority
of a nine-atom ring with a central impurity. Only for N = 9 we find an extremely
subradiant mode with the central emitter as the most strongly excited component.
Similar sub-radiant states can also be engineered for other ring emitter numbers,
when one precisely optimizes their center impurity dipole moment and transition
frequency. As a key property, despite being strongly subradiant, these collective
states still sufficiently couple to a perpendicular incident plane wave. At resonance,
the high-Q center field enhancement of the dark mode creates a large steady state
excitation of the central emitter so that the energy can be efficiently absorbed.

Importantly, throughout the absorption process the ring atoms are only weakly
excited and will hardly dissipate or re-emit energy. The mechanism resembles a gener-
alized form of cavity anti-resonance spectroscopy with the ring acting as enhancement
cavity [194]. Interestingly, the collection efficiency enhancement is even much larger, if
the incoming field does not directly excite the central absorber, but only couples to the
antenna ring. Any irreversible non-radiative decay from the excited state of the central
emitter slowly but efficiently extracts the collected energy without re-emission into free
space. Hence the system is a minimalist model for a light-harvesting complex build of
a ring shaped antenna and a central absorber as energy dump [160,176,180,181,195].

6.2 The model

We model our generic antenna as a regular polygon of N equal point-like two-level
emitters with dipole moment ℘i = ℘ at distance d with radius R. At its center we
add an extra dipole (referred to as “impurity”), with a transition of polarization
strength ℘I =

√
ΓI/Γ0 ℘ detuned from the antenna atoms by δI . Energy loss is

modelled by an additional incoherent decay channel to an auxiliary state |t⟩ at rate
ΓT (see Fig. 6.1). All emitters (including the impurity) are interacting via vacuum
mediated dipole-dipole interactions which in the Born-Markov approximation leads to
the master equation (in the frame rotating at ω0) [43]:

ρ̇ = −i[Ĥ, ρ] + L[ρ] , Ĥ =
∑
i ̸=j

Jij σ̂
eg
i σ̂

ge
j − δI σ̂

ee
I , (6.1)

L[ρ] = 1

2

∑
i,j

Γij

(
2σ̂gej ρσ̂

eg
i − σ̂egi σ̂

ge
j ρ− ρσ̂egi σ̂

ge
j

)
, (6.2)
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where σ̂gej (σ̂egj ) is the lowering (raising) operator between excited and ground state of
emitter j. The dispersive and dissipative couplings are Jij = ReGij and Γij = −2ImGij ,
with Gij being the dipole-dipole coupling matrix, which is proportional to the free
space Green’s tensor, and it can be written as:

Gij =
3Γ0

4k30r
3℘2

eik0r℘α,∗
i ℘β

j

[(
1− ik0r − k20r

2
)
δαβ +

(
−3 + 3ik0r + k20r

2
) rαrβ
r2

]
.

r = ri− rj is the vector connecting dipoles i and j, whose α−component and modulus
is denoted by rα and r = |r| and ℘α

i is the α−component of the vector polarization of
emitter i. k0 = ω0/c is the transition wave-number and Γ0 = |℘|2 k30/3πϵ0 the spontan-
eous emission rate of a single ring emitter. In the low intensity limit the observables are

described by the non-Hermitian effective Hamiltonian Ĥeff =
∑

ij

(
Jij − i

Γij

2

)
σ̂egi σ̂

ge
j .

The remaining terms in Eq.(7.10) describe corrections of higher order in pump intensity.

6.3 Sub-radiant modes in the ring-impurity system

A sub-wavelength ring of emitters exhibits extremely subradiant excitation modes
whose field vanishes at the center [165] and thus they are decoupled from the center
impurity. However, in presence of the impurity one finds a new class of subradiant
states with large center occupation and strong coupling to the symmetric bright mode
of the outer ring (antenna). When the antenna is excited the center impurity oscillates
with opposite phase and almost perfectly cancels the total emitted field creating a
so called anti-resonance [194]. The large excitation weight of the central emitter in
combination with the suppressed decay here is the key to low loss energy transfer and
large absorption cross-section.

For concreteness and simplicity we restrict ourselves to the symmetric case where all
emitters are circularly polarized in the ring plane. Nevertheless, equivalent phenomena
appear in more general polarization configurations [184], where all emitters equally
couple to the central impurity. Within the single excitation subspace the center only
couples to the unique symmetric antenna mode (represented by S† = N−1/2

∑N
j=1 σ̂

eg
j ),

and Ĥeff reads:

Ĥeff = −
(
δI + i

ΓI

2

)
σ̂eeI +

(
JR − i

ΓR

2

)
S†S +

√
NΓI

Γ0

(
J − i

Γ

2

)[
S†σ̂geI + Sσ̂egI

]
,

(6.3)

JR and ΓR are the collective frequency shift and decay rate of the symmetric ring
mode [165]. Here we omitted the other eigenmodes of the ring decoupled from
the center since they are irrelevant to the impurity dynamics. The ring-impurity’s
dispersive and dissipative couplings are given by J = Re G and Γ = −2Im G, with

G =
3Γ0

8k30R
3
eik0R

[
−1 + ik0R+ k20R

2
]
. (6.4)
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Note that the effective field the symmetric ring mode creates at the impurity position
corresponds to a single dipole with dipole moment

√
N℘. Hence the system is formally

equivalent to two coupled emitters of unequal dipole moments. The effective ring
dipole is detuned from the impurity by JR + δI . A study of this equivalent toy system
is given in [196].

For a single excitation, the collective eigenmodes of the ring-impurity system and
the corresponding decay rates and frequency shifts can be obtained by diagonalizing
the 2 × 2 matrix resulting from projecting Eq.(6.3) into the subspace spanned by
{|R⟩ , |I⟩}, with |R⟩ = S† |g⟩ and |I⟩ = σ̂egI |g⟩. Fig. 10.2 shows the decay rate Γmin

and impurity occupation weight ⟨σ̂eeI ⟩ respectively, for the most subradiant eigenmode
in the case where ring and impurity emitters are identical (δI = 0 and ΓI = Γ0), as a
function of emitter number N and ring size. As central result of this work we find
that in the sub-wavelength regime (λ0/d5) an extremely dark mode with suppressed
decay rate Γmin/Γ010

−3 emerges exclusively when the ring contains exactly N = 9
emitters.
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Figure 6.2: Eigenstate properties of the coupled ring-impurity system. (a) Collective
decay rate Γmin (in units of Γ0) and (b) impurity excited state population
⟨σ̂eeI ⟩, of the most subradiant state emerging in the coupled ring-impurity
system, plotted versus N and λ/d. The figure shows that at sufficiently
large value of λ/d a very subradiant state for N = 9 ring emitters exists,
whose impurity excited state population is large.

Its appearance can be understood in the two effective dipoles model, as a subradiant
state arises when two dipoles have similar magnitude but opposite phase (singlet
configuration) so that their radiated far fields cancel. For a generic state of the form
|Ψ⟩ = α |R⟩+ β |I⟩ this implies β ≈ −α

√
N/ΓI . In general, however, such a state is

not an energy eigenmode. In the sub-wavelength regime (λ/R≫ 1), where ΓR ≈ NΓ0

and Γ ≈ Γ0, this state is only an eigenmode if:

JR + δI ≈ J(N − ΓI/Γ0). (6.5)
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For identical emitters (δI = 0 and ΓI = Γ0) this reduces to JR ≈ (N − 1)J . Hence
all emitters including the central one experience virtually the same total interaction
strength with all others. Indeed we find that the closest integer value N satisfying this
condition is N = 9 as for the most subradiant mode. This reflects a special geometric
property of the nonagon (regular polygon with N = 9 sides), where the sum of the
inverse cubic distances 1/r3ij to all other N-1 corners is closest to (N − 1)/R3, i.e., the
scaling of the near field dipole-dipole interaction.

Based on this general principle it is straightforward to induce a similar dark mode
for other values of N by suitable tuning of the impurity parameters δI or ΓI to
fulfill Eq.(6.5). At small values of λ/d the system properties are very sensitive to
δI and ΓI and this estimate only yields almost optimal values. In general, the
effective polarization strengths

√
Nα and

√
ΓIβ associated with the ring and impurity

components of the eigenmode are complex values and a minimal decay rate requires a
very small imaginary part and a relative phase close to π. This ensures that short
range interactions between the two dipoles do not contribute to the free space energy
loss. We show in Fig. 10.3 the minimum collective decay rate of the coupled system
corresponding to ΓI = Γ0 when optimizing over the detuning δI , as a function of N
and λ/d.

−4 −2 0

N

λ  
/ d

5 10 15 20

5

10

15

20
(c)

Figure 6.3: Decay rate (in units of Γ0 and in log-scale) of the most subradiant mode
of the coupled ring-impurity system, as a function of N and λ/d, when
optimized over the impurity detuning δI (see also Fig. 10.9 for comparison
with the corresponding cross-section).

6.4 Absorption cross section

Let us now study the light absorption of this special dark resonance by adding an
incoherent decay at rate ΓT from the excited state of the center to an auxiliary state |t⟩
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(see Fig. 6.1). This implements a sink extracting energy without back-action and could
represent irreversible conversion of photons into chemical energy at the reaction center.
In an atom based setup extra atoms coupled to the central atom via a dipole moment
component orthogonal to the antenna dipoles could extract excitations [197]. For
superconducting q-bits one could use a tiny antenna close to the center q-bit [169,198].
Mathematically we simply add a loss term LT [ρ] = ΓT

[
σ̂teρσ̂et − (1/2) {σ̂ee, ρ}

]
in

the master equation.

Absorption efficiency is quantified by the cross section σabs, which represents the
effective area for which an incident photon triggers an absorption event. The relative
rate of absorbed versus incident photons per area A then is σabs/A = dnabs/dnin. In
contrast to total scattering or light extinction often used (e.g. [176,199]), our definition
of σabs includes both, the probability of scattering a photon by the system and its
subsequent transfer to the auxiliary impurity state. Note that the resulting cross
section here can exceed the resonant single emitter scattering cross-section σ = 6π/k20.

The rate of effectively absorbed photons is dnabs/dt = ΓT ⟨σ̂eeI ⟩. When all emitters
are driven by a perpendicularly propagating coherent field of frequency ωL (detuning
δ = ωL −ω0), whose Rabi frequency is Ω(ri) = Ω, we add the term Ĥin = −δ∑i σ̂

ee
i +∑

i [Ω(ri)σ̂
eg
i + h.c.] in Eq.(10.1). In this case the incident photon rate is dnin/dt =

4Ω2k20A/6πΓ0 = (4Ω2/Γ0)(A/σ), leading to σabs/σ = ΓTΓ0 ⟨σ̂eeI ⟩ /4Ω2. Here the
absorption efficiency is compared to a single emitter weakly driven on resonance with
spontaneous emission rate Γ0 including the additional decay channel at rate ΓT . In
steady state we have: σsingleabs,c = σΓ0ΓT /(Γ0+ΓT )

2, i.e. the product of the probabilities
for first scattering a photon and subsequently absorbing it, with maximum value
max(σsingleabs,c ) = σ/4 for ΓT = Γ0.

For a very low-intensity coherent field we get:

|Ψ⟩ = |g⟩ − i
∑
ν

1

ν − δ
|ν⟩
〈
νT
〉
Ω+O(Ω2/Γ2

0), (6.6)

where |ν⟩ are the eigenmodes of the system with complex eigenvalues ν = ων − iΓν/2
and |Ω⟩ ≡∑iΩ(ri)σ̂

eg
i |g⟩. In general excitations of dark modes with long lifetime are

strongly suppressed due to the small overlap with propagating field modes. However,
resonant enhancement due to the extremely small dark state damping still yields a
large absorption cross sections. For an energetically well resolved eigenmode |ν0⟩ with
a decay rate smaller than its frequency difference to nearby modes, the absorption
cross section is dominated by a single term:

σabs
σ

≈ ΓTΓ0

Ω2Γ2
ν0

|⟨I⟩ ν0|2 ·
∣∣〈νT0 〉Ω∣∣2 . (6.7)

It surpasses a single atom if Γν0/2 < |⟨I⟩ ν0| ·
∣∣〈νT0 〉Ω∣∣ /Ω, i.e. the decay rate of

the eigenmode has to be small but contain a large impurity occupation weight to
compensate for the smaller overlap with incoming radiation. In Fig. 10.4(a) we show
for N = 9 (identical emitters case) as a function of λ/d and detuning δ = ωL−ω0 of the
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external coherent drive, the absorption cross section σabs in units of max(σsingleabs,c ) = σ/4.
This shows that a narrow resonance where the absorption is greatly enhanced emerges
for λ/d5, corresponding to the frequency of the dark mode previously discussed. In
Fig. 10.4(b) we then plot σabs versus λ/d and N , when the external drive detuning
is tuned to the dark mode. In the deep sub-wavelength regime (λ/d5) a distinct
maximum cross-section arises for N = 9 emitter antennae and the regions of maximal
absorption correspond to those with minimum collective decay.
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Figure 6.4: Absorption cross-section σabs (in units of maximal single atom absorption

cross section max(σsingleabs,c ) = σ/4) of the coupled ring-impurity system
illuminated by a weak coherent circularly polarized field. (a) σabs versus
external field detuning δ and λ/d for N = 9. For small enough rings
(λ/d≫ 1) the system is a frequency-selective antenna with resonantly
enhanced absorption cross-section, corresponding to the dark eigenmode
and which can be tuned via the system parameters. (b) σabs versus N and
λ/d for resonant light with the subradiant eigenmode. A maximum in the
absorption occurs exactly where the collective mode is most subradiant
(see for comparison Figure 2 (a)).

As said, a similar dark mode can be accessed for different values of N by tuning the
impurity parameters ΓI and δI , which yields an enhanced absorption cross section as
shown in Fig. 10.5(a) and (b), where we plot σabs versus N and δI (at fixed ΓI = Γ0),
or ΓI (at fixed δI = 0), for λ/d = 20. Finally, in Fig. 10.9 we depict σabs as a function
of N and λ/d for optimal δI , showing that enhanced absorption σabs with respect to
the single emitter case can be achieved for an arbitrary value of N ≥ 3 by tuning the
impurity parameters.
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Figure 6.5: Effect of impurity detuning δI and decay ΓI in the coupled ring-impurity
system. Absorption cross section σabs (in units of maximal single atom

absorption cross section max(σsingleabs,c ) = σ/4) versus N and (a) δI at fixed
ΓI = Γ0, and (b) ΓI at fixed δI = 0, for λ0/d = 20. The dashed white
lines are Eq.(6.5). Inset: σabs for N = 9 (red line), dark mode decay
rate (log-scale, black line), effective dipole moment |℘eff |2 (cyan line) and
Im[℘eff ] (blue line, log-scale), for comparison. σabs is very sensitive to
the detuning δI with a sharp maximum near the minimum of Im[℘eff ].
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Figure 6.6: Absorption cross-section σabs (in units of maximal single atom absorption

cross section max(σsingleabs,c ) = σ/4) versus N and λ/d optimized as function
of δI at fixed ΓI = Γ0. The dashed white line represents λ/R = 1. For
optimal δI enhanced absorption with respect to the single atom case
occurs for N ≥ 3 at λ/R ≥ 1.
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6.5 Enhancement of incoherent light absorption

So far we dealt with spatial and temporal coherent input radiation with well defined
intensity as it occurs for incoming laser light. Of course this is far from the conditions
present for thermal radiation sources, where only spatial and not temporal coherence is
present. It is, however, straightforward to generalize our absorption model to account
for a spectral bandwidth of the incoming light. Actually in the very large bandwidth
limit one simply has to replace the coherent driving amplitude by a temporally
incoherent but spatially coherent field. Mathematically this just amounts to add the
excitation rates in form of an extra Liouvillian term:

Linc[ρ] = ϵ[R̂†
kρR̂k − (1/2){R̂kR̂

†
k, ρ}], (6.8)

with R̂k =
∑

j e
ikrj σ̂gej added to the master equation. For low-intensity radiation

impinging perpendicular to the ring (k = 0 and ϵ≪ Γ0) in Fig. 10.10 we show σabs in

units of σsingleabs,inc = σΓT /(Γ0 + ΓT ), corresponding to a single emitter. In Fig. 10.10(a),

where σabs/σ
single
abs,inc is plotted versus ΓT and N for λ/d = 40, we see that this ratio

again attains a maximum for N = 9 in the small ΓT ≪ Γ0 regime. In addition, a
broad maximum centered around N = 9 arises for fast center loss ΓT /Γ0 ∼ 103. Again
a choice of N = 9 seems optimal. Note that nature is partly using 9-fold symmetry
but the construction involves a much more complex and intricate structure for each
element [200,201] involving transfer between different rings [184,202].
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Figure 6.7: Absorption cross-section σabs (in units of σsingleabs,inc = σΓT /(Γ0 + ΓT ),
corresponding to the absorption cross section of a single emitter weakly
incoherently driven) in the coupled ring-impurity system for an incoherent
weak pump. (a) σabs versus N and ΓT /Γ0, at fixed λ/d = 40, and (b)
versus N and λ/d, at fixed ΓT /Γ0 = 10−4. An enhancement in absorption
with respect to the single emitter case is found for N = 9 at sufficiently
small ΓT /Γ0 and large λ/d.
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6.6 Semi-classical coupled dipole model

As we have seen above the enhancement is close tied to a very dark collective eigenstate
of the system with ample weight on the center dipole. As it has been argued that the
most dark states are entangled [50,203], one can ask whether our results hold in the
case of classical dipole arrays. To this end we can simply apply a mean-field type of
approximation to the quantum description, representing atomic operators by their
mean values and study the differences to the quantum model, where we restricted the
Hilbert space to the single or the two excitation manifold. In this classical limit we
get simple coupled c-number Bloch equations for each dipole and the center impurity.
For symmetry reasons the expectation values for all ring atoms follow the same time
evolution, so that finally we end up with a rather small finite closed set of differential
equations:

˙⟨σeeI ⟩ = −2Ωℑ{⟨σgeI ⟩}+ (iJ − Γ/2)
√
N⟨σgeI ⟩⟨S⟩∗ − (iJ + Γ/2)

√
N⟨S⟩⟨σgeI ⟩∗

− (Γ0 + ΓT )⟨σeeI ⟩
˙⟨σgeI ⟩ = −(iδI + ΓI/2 + ΓT /2)⟨σgeI ⟩+ iΩ(2⟨σeeI ⟩ − 1) + 2(iJ + Γ/2)

√
N⟨S⟩⟨σeeI ⟩

− (iJ + Γ/2)
√
N⟨S⟩

˙⟨S⟩ = −(iJR + ΓR/2)⟨S⟩ −
√
N(iJ + Γ/2)⟨σgeI ⟩ − i

√
NΩ. (6.9)

These equations can be readily solved for the steady state and we can then extract
the effective cross section exactly as in the quantum model above with the initial values
given by (⟨σeeI ⟩, ⟨σgeI ⟩, ⟨S⟩) = (0, 0, 0). Fig. 6.8 compares the classical approximation
with the quantum model with the Hilbert space truncated to either one or two
excitations. In Fig. 6.8 (a) the quantum description leads to a significantly larger
absorption cross section compared to the classical description and the same holds for
Fig. 6.8 (b) when the coherent driving rate Ω becomes sufficiently large but still orders
of magnitude below the single atom saturation power.

Interestingly in the case of very close dipoles, larger differences appear and the
quantum model always predicts a superior cross section by looking at a cut along
the N = 9 line. Note that for very small diameters λ/d > 8 in the sub-wavelength
region the quantum model predicts a significantly larger absorption cross section. In
this regime, the energy shifts get more important than the modifications of the decay
properties. One might speculate that this makes coherence more robust, increasing
the absorption efficiency.

6.7 Conclusions

A sub-wavelength regular nonagon of dipoles has a built in geometric symmetry allowing
for the existence of unique subradiant eigenstates with a high center population weight,
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Figure 6.8: Effective absorption cross section in the steady state of the coupled ring-
impurity system as a function of emitter distance and driving rate in the
ring for the quantum model and the classical approximation (mean-field)
corresponding to a coupled dipole model. (a) Absorption cross section
as function of the interatomic emitter distance in the N = 9 ring for a
coherent pumping rate Ω/Γ0 = 5× 10−4 with detuning ∆ = −ℜ{λDark},
trapping rate ΓT = −2ℑ{λDark} for the impurity in the center and
all emitters circularly polarized. (b) For d = λ/12 and N = 9 the
mean field approximation is compared to the quantum model (one and
two-excitation truncated states as indicated in the label) for increasing
coherent driving rates Ω for the same ∆ and ΓT as in (a). The lines are
only guides to the eye.

if one adds an additional equivalent centered absorber acting as an energy dump.
This special property enhances absorption of light for weak uniform illumination not
only in the case of resonant enhancement for spectral narrow radiation but it also
appears for broadband incoherent light. Actually the absorption enhancement is even
much stronger when only the antenna dipoles are selectively illuminated, while the
center impurity is shielded. While such selective illumination seems hard to implement
technically, a dynamical mechanism switching the center dipole on and off or shift
its frequency should induce a similar effect. Note that comparable enhancements can
also be engineered for other antenna sizes and geometries if one optimizes the center
impurity strength and resonance frequency.

Interestingly, a classical mean field description reproduces these results well for
larger ring dimensions and atom numbers, while the strongest enhancement at sub-
wavelength distances appears only in a quantum treatment. Preliminary studies
beyond weak field illumination also reveal a suppression of absorption of a second
photon as long as the system is in the excited state. This will presumable suppress
the g2 intensity correlation function of the emitted fluorescence as has recently also
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been found in related studies [144,204]

In practise, such dark state nano-ring antenna configurations inspired by natural
ring structures should find applications in nanoscale single photon detection or even
spectroscopy. Operated in reverse these structures act as coherent light nano-sources
[143] or even non-classical single photon sources [204].

Let us finally remark, that while this effect appears not to be directly exploited
in single natural LHC2 molecules, already the more complex form of of LHC1 is
composed of a ring structure with a reactive center, where the proposed mechanism
could be at work and in particular in combined LHC2-LHC1 compounds [176]. As
these whole structures are very well below a wavelength in size, even thermal light will
couple directly to collective delocalized excitations as starting point of light absorption.
Clearly, light to chemical energy conversion in a thermal environment with a complex
reaction center is a way more complex process. Nevertheless, it is hard to imagine
that the ring symmetry found in many biological realizations is not used [202] and a
pure coincidence.
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6.8.1 Simplified model based on an effective dipole to replace the ring

A regular polygon of antenna emitters with a single center dipole as excitation receiver
as discussed above constitutes a highly symmetric arrangement. Hence, as it has
been seen and used in previous work [165], rotation symmetry allows for an explicit
calculation of eigenmodes for a simplified treatment. Nevertheless the resulting full
description still is quite complex and requires a large Hilbert space. Thus the key
physics is not always very easy to extract and analyze.
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Here we will thus reduce the system to the minimal nontrivial size. For this we
use only two effective dipoles, an antenna dipole µa with a large dipole moment
proportional to the square root of the number of ring atoms representing the ring and
a weak receiver dipole µc = µ at distance R with an extra loss channel to represent
the reaction center with corresponding energy extraction. Hence mathematically we
end up with single two-level emitter for the ring and an Λ-type level system for the
center. Interestingly we will see, that still a great deal of the essential physics that we
found above, can be analyzed in such a oversimplified form.

As we will deal with spatially uniform and weak excitation fields, they will almost
exclusively couple to the dominant symmetric mode and excitation is limited to the
single excitation manifold in the ring. Hence we replace the ring of N emitters, with
a dipole moment µ and decay rate Γ each, by a single effective antenna with N-fold
dipole moment µa =

√
Naµ placed at a small distance R to the center dipole with

moment µc = µ. Both dipoles are modeled as two-level systems (|0⟩ , |1⟩) with a
circular polarized transition dipole moment and closely related transition frequency.
The center atom is modeled as a three level Λ system, where spontaneous emission
from the excited level on a second independent transition towards an additional state
|T ⟩ mimics the receivers energy absorption. The dipole-dipole interaction is then
determined by two parameters characterizing the effective dipole-dipole interaction
with real part Ω(R) and imaginary part Γ(R).

The simplified Hamiltonian of our system thus reads:

H = ℏωcσ
+
c σ

−
c + ℏωaσ

+
a σ

−
a + ℏωlPl + ℏΩ(R)(σ+a σ−c + σ−a σ

+
c ) (6.10)

with ωl, ωc, ωa denoting the energies of the auxiliary loss level, center atom and
antenna atom respectively and Pl the Projector on the loss level. Note that for the
corresponding full geometry the respective energies and coherent shifts are given by
ωa = Ωsym and Ω(R) =

√
NΩac with Ωsym =

∑
i ̸=cΩic being the Eigenenergy of the

symmetric state in the ring. The spontaneous decay rates of the two dipoles is then
related by Γa = N2Γc. At very close (sub-wavelength) distance we have:
Γ ≈

√
(ΓaΓc) = NΓc and Ω ≪ Γ. Thus collective spontaneous decay including

incoherent pumping is described by the Liouvillian

Lρ =
∑

ij∈{a,c}

Γij

2

(
2σ−i ρσ

+
j − {σ+i σ−j , ρ}

)
+

Γl

2

(
2σ−l ρσ

+
l − {σ+l σ−l , ρ}

)
+
νij
2

(
2σ+i ρσ

−
j − {σ−i σ+j , ρ}

)
.

(6.11)

with Γ =

[
Γa Γac(R)

Γac(R) Γc

]
and ν =

[
νa νac
νac νc

]
.

The two single excitation eigenstates of H, denoted as

|±⟩ = (|01⟩ ± |10⟩)/
√
2, (6.12)

84



6.8 Supplemental material

have energies E± = ℏ(ω ± Ω). While for N=1 the energy eigenstates directly
correspond to the most dark and bright superposition states with respect to decay, for
N > 1 the states |±⟩ are not eigenstates of the decay matrix Γ. The most bright |B⟩
and dark states |D⟩ are given by

|B⟩ = (c− |10⟩+ |01⟩)/N− (6.13)

|D⟩ = (c+ |10⟩+ |01⟩)/N+. (6.14)

where c± = (Γa − Γc ∓
√
Γ2
a − 2ΓaΓc + Γ2

c + 4Γac)/2Γac and N± is a normalisation
constant. Hence, for a large effective antenna ring atom number N, where c+ ≪ 1,
the dark state |D⟩ carries most excitation within the center atom. Hence it possesses
a large decay rate to the target loss state |T ⟩ without much loss to free space. This
properties play a key role in the absorption and energy loss dynamics of our coupled
toy system as outlined below.

In order to study the light absorption in the system we can prepare it in state
|G⟩ = |00⟩ and simply calculate the population transfer to the final state |T ⟩ for
various excitation an decay scenarios for a given short illumination time. Let as first
start with incoherent excitation in the weak excitation regime. Here we look at three
generic cases of excitation, but pumping (a) only the strong effective dipole or (b)
only the center (weak) dipole and alternatively (c) collective driving of both dipoles
simultaneously. Typical absorption cases are shown in Fig.6.10. We clearly see that
increasing the dipole moment of the antenna dipole leads to much faster population
accumulation in the center absorber = receiver atom. At the same time we note
that for increased relative strength of the antenna the difference between collective
pumping of both dipoles or only exciting the large antenna dipole diminishes. When
we relax the energy resonance condition between antenna and receiver dipole, we see
pronounced differences between the three cases. In particular for selective incoherent
pumping of the antenna the energy transfer to the center is resonantly enhanced at
suitable receiver atom energy shift. Here the range of useful detunings gets larger
with closer spacing of the receiver to the antenna. Note that as we simply assume
incoherent antenna excitation the observed resonance is connected to resonant energy
transfer and not to selective excitation. As expected, a more complex and interesting
behavior appears for driving with a coherent field with tunable frequency. Again we
study the population transferred to the center trap state after a given illumination
time as function of the excitation laser frequency for different effective ring dipole
strengths and the two cases of antenna or collective excitation. We see two absorption
maxima at the energies of the two coupled eigenstates |±⟩. The magnitude, splitting
and width of the component increases with antenna dipole magnitude. We see that
a larger antenna dipole moment leads to a strongly broadened absorption line with
a reduced maximum. Note that in course of this transfer the antenna dipole is only
weakly excited and population dominantly accumulates in the dark state. Interestingly,
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Figure 6.9: Target state population as function of time Γt for incoherent collective
excitation of the effective antenna atom only, the center atom only or
both, where the ring is replaced by an effective single dipole of strength
µeff = 1 ∗ µ (dashed lines) and strength µeff =

√
9µ (solid lines). For

pump and impurity loss rate we have chosen ν = 0.01Γ and ΓT = 3Γ.

the total area of the spectrum increases with growing antenna dipole moment up to a
value of about N ≈ 10. Hence a nine atom ring as it appears in biological structures
seem to be close to the optimum for a given amount of material. We see that a
larger antenna dipole significantly enhances the final trap state population. This
enhancement is surprisingly stable against laser phase fluctuations (laser bandwidth).
While for small antenna dipoles selective pumping of the antenna only clearly is
favorable, the difference gets smaller for larger antenna dipoles. Again a value of
N = 9 already captures most of the enhancement and further increase of the antenna
dipole only adds minor gain. Let us remark here that for collective coherent driving,
secondary absorption maxima appear at larger distances of about R ≈ 0.75λ.

Finally we come back to the large bandwidth driving limit, where we can replace
coherent excitation simply by transition rates. Again we compare antenna and
collective excitation and vary the distance. We see that for equal excitation rates,
transfer is strongly enhanced at short distances and unequal dipole moments. Similar
as above, antenna only driving is generally more effective but the difference gets
insignificant at about N ≈ 10 ring dipoles. Hence overall, splitting a light absorbing
structure into a strong antenna system and a dedicated energy receiver, as also seems
present in biological systems, has several generic benefits.
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Figure 6.10: Target state population transfer rate as function of relative center
dipole resonance frequency shift for weak incoherent antenna atom
excitation and effective dipole strength of

√
9µ (solid lines) for three

dipole distances r = (0.2, 0.1, 0.05). We see a strong increase of the res-
onant transfer for shorter antenna - receiver distances. For comparison
collective pumping of both dipoles at the intermediate distance shows
regions of enhancement and suppression of transfer efficiency (dashed
line).
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Figure 6.11: Frequency dependence of coherent pump induced population transfer to
target state for collective excitation (solid lines) and selective antenna
excitation (dashed lines plotted with sign changed for better visibilty)
for different effective antenna dipole moments.
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Figure 6.12: Integrated area of absorption spectrum [a.u.] as function of antenna
dipole moment µ for different laser bandwidths comparing antenna
pumping (dashed lines ) and collective pumping (solid lines). We used
ΓT = Γ and Ω = 0.1Γ.
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Figure 6.13: Fraction transferred to target state after a fixed short illumination time
for incoherent broadband light as function of antenna dipole moment µ
and antenna to absorber distance comparing selective antenna pumping
(left) and collective pumping (right)
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Subradiant states in a finite chain of two-level quantum emitters coupled to
a one-dimensional reservoir are a resource for superior photon storage and
their controlled release. As one can maximally store one energy quantum
per emitter, storing multiple excitations requires delocalized states, which
typically exhibit fermionic correlations and anti-symmetric wavefunctions,
thus making them hard to access experimentally. Here we identify a
new class of quasi-localized dark states with up to half of the qubits
excited, which only appear for lattice constants of an integer multiple
of the wavelength. These states allow for a high-fidelity preparation
and minimally invasive read out in state-of-the-art setups. In particular,
we suggest an experimental implementation using a coplanar waveguide
coupled to superconducting transmon qubits on a chip. With minimal free
space and intrinsic losses, virtually perfect dark states can be achieved for a
low number of qubits featuring fast preparation and precise manipulation.

DOI: 10.1103/PhysRevLett.129.253601

7.1 Introduction

Collective excitation states of ensembles of quantum emitters possess several surprising
and long-sought physical properties. Typically, excitations are delocalized and lost
dissipatively to the environment at rates that vary over many orders of magnitude. Of
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particular interest are states with long lifetimes. These dark—or subradiant—states
can be used to implement extremely efficient quantum memories [205,206], lossless
transport of excitations [207,208], photon-photon gates [209], future generations of
atomic lattice clocks [210,211] and improve quantum sensing. Recently, applications
towards building superior single photon antennas [212] or nanoscopic coherent or
non-classical light sources based on dark resonances have been proposed [213]. In
most cases, studies and experiments on subradiance focus on manipulating a single
excitation only, i.e., they limit their scope to the lowest Dicke manifold [213–225].
Many-body multiple excitation subradiant states have attracted some interest only
recently, but in general the preparation and manipulation of such states remains
challenging as they are typically very delocalized. One option is to use more complex
atomic emitters with several internal excited states. This allows to store several
photons in a dark subspace, but they are tied to multipartite entanglement, which is
fragile in general [226–231]. For a chain of qubits coupled to a waveguide, dark states
within the two-excitation manifold have been classified into fermionic, dimerized or
edge states among others [232–246]. Experimental preparation and control of such
states remains challenging and only quite recently the two-excitation manifold was
probed experimentally with superconducting transmon qubits [247].

In this work, we theoretically predict a new type of many-body dark states for
arrays of qubits coupled to a 1D bath. These states emerge when the lattice constant
is an integer of the guided mode wavelength and are distinguished by strongly localized
excitations. The states are built from antisymmetric superpositions of symmetric
states, whose decay into the bath is forbidden due to destructive interference [35]. For
instance, we find that a large fraction 2(N − 3)/(N − 2) of two excitations stored in
an N qubit array settles in just two qubits, while a small fraction spreads along the
remaining qubits to inhibit decay [see Fig. 10.1(c)]. We show below an analytical
description for these states and characterize their spatial correlations. We study
spectral signatures of photon transport in the presence of these states. From these
findings, we propose a realistic protocol to store and release microwave photons in
a controlled fashion. Our work should lead to multiple opportunities within atomic
physics and quantum optics, such as multi-photon memories for quantum repeaters,
and unlock rich phenomena in ordered systems of long-range interacting quantum
emitters, both in the linear and quantum many-body regimes. We also note that the
high-fidelity preparation protocol presented here may inspire experimental confirmation
and further the understanding of many-body subradiant states.

7.2 Model

Consider an array of N qubits resonantly coupled to the modes of a waveguide as
illustrated in Fig. 10.1. Each qubit has two internal states |em⟩ and |gm⟩ separated
by a transition frequency ω0 and is characterized by its position xm. The waveguide
mediates the qubit-qubit interactions and acts as a source of dissipation. With the
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Figure 7.1: (a) Schematics of a regular chain of qubits coupled to a 1D waveguide
with photon-mediated interactions determined by the single-qubit decay
rates γ. For qubits separated by integer multiples of the wavelength λ0,
a degenerate family of non-radiative dark states forms, which are only
subject to very small free space decay and non-radiative losses γnr. (b)
Waveguide QED realization with superconducting circuits: transmons
(in black) are coupled to a coplanar waveguide (in blue). The individual
qubit frequencies and thus effectively their distance d can be tuned in-situ
via flux-bias lines. For the preparation and read-out of dark states, local
driving pulses Ĥd(t) and local detuning control ∆q(t) are applied via
separate control lines. (c) Distribution of the excited state population for

N = 8 qubits for a localized two-excitation dark state |Ψ(2)
D ⟩ as described

by Eq. (7.7). Two qubits store a large fraction 2(N − 3)/(N − 2) of the
excitation energy.

inclusion of spontaneous emission into the waveguide and assuming that ω0 is well
below the cutoff frequency of the waveguide, the master equation for the density

operator of the array ρ̂ reads [35, 36] ˙̂ρ = −i
(
Ĥeff ρ̂− ρ̂Ĥ†

eff

)
+
∑

m,n γm,nσ̂mρ̂σ̂
†
n,

where Ĥeff is the collective Hamiltonian (ℏ = 1)

Ĥeff =

N∑
m,n=1

(
Jm,n − i

γm,n

2

)
σ̂†mσ̂n , (7.1)
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Figure 7.2: (a) Minimal decay rate γ
(1)
min within the single-excitation manifold as a

function of qubit number and separation d for lossless qubits with γnr = 0.
Continuous white lines enclose regions of strong collective subradiance,

where γ
(1)
min/γ ≤ 10−5. The example of Eq. (7.3) is indicated with a white

dot for N = 8 qubits. (b) Assuming M qubits are driven individually,
we show the energy level diagram indicating the route towards dark

state preparation and probing with coupling to |Ψ(M)
D ⟩ facilitated by a

coherent drive Ĥd(t). Once |Ψ(M)
D ⟩ is prepared a second field sent through

the waveguide, as described by Ĥwg(t) in Eq. (7.6), transfers the state
outside the dark manifold, from where it decays with rate (N − 2M)γ.
(c) Weak field waveguide transmission as a function of probe frequency
tuned across the single qubit resonance frequency ω0 for a 8-qubit chain
in the ground state (solid line) and the single- to four-excitation dark
states (dashed lines). The blockade window decreases from the linewidth
Nγ of the symmetric single-excitation state towards (N − 2M)γ for the
M-excitation dark state and disappears for the four-excitation dark state
showing complete transmission.

composed of lowering operators σ̂m = |gm⟩⟨em| and interaction terms Jm,n = (γ/2) sin k0|xm−
xn| and γm,n = γ cos k0|xm − xn|. The interaction is weighted by the individual decay
rate γ while the qubit separation by k0 = ω0/c, the wavevector of the guided mode on
resonance with the qubits. For qubit separation d = nλ0 with n ∈ N+, the coherent
exchange rates Jm,n are zero and there is only collective dissipation γm,n.

We are interested in localized dark states |Ψ(M)
D ⟩ storing M excitations. To con-

struct such states, we divide the chain into two parts of M and N − M qubits,
respectively. The precise position of the qubits is not relevant for this division and
without losing generality we define the collective operators S1 =

∑M
j=1 σ̂j/

√
M and

S2 =
∑N

j=M+1 σ̂j/
√
N −M to act over each part. The effective Hamiltonian for
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d = nλ0 within this division reads

Ĥeff = − iMγ

2
S†
1S1 −

i(N −M)γ

2
S†
2S2 − iΓ(S†

1S2 + S†
2S1). (7.2)

The last term shows that the symmetric superpositions of the two parts are dissipatively
coupled by the enhanced rate 2Γ =

√
M(N −M)γ. A similar division can be done

for odd multiples of λ0/2 separations with the symmetric operators now replaced with
anti-symmetric operators, having alternate signs between consecutive qubits. The
division is a formal one, but our results can be generalized to non-identical couplings
as shown in the Supplementary Information. In particular, if we assume that the
first qubits decay with a rate γ1 while the remaining decay with γ2 the localization is
enhanced. That is, a higher fraction of the excited state population is concentrated
in the first qubits. The effects of impurities as non-radiative energy loss γnr and
dephasing γϕ are also explored in the SI.

Single Excitation.— Qubits decay into the waveguide via collective channels determ-
ined by the eigenstates of the effective Hamiltonian. The decay rates depend on qubit
number N and lattice spacing d, as shown in Fig. 7.2(a) for the slowest decay rate
of a single excitation. While in general this rate is suppressed with increasing qubit
number – following a N−3 scaling [233] – this is not the case for spacing k0d = nπ. In
the so-called “mirror configuration” (with d = nλ0), there is only one bright state,

|Ψ(1)
S ⟩ =

∑N
j σ̂†j |G⟩/

√
N where |G⟩ = |g⟩⊗N , and (N − 1) perfectly dark states of

exactly zero decay rate. Leveraging the degeneracy of the dark manifold, one can
build highly-localized dark states. Consider the state

|Ψ(1)
D ⟩ = 1√

N

(√
N − 1σ̂†1 − S†

2

)
|G⟩, (7.3)

composed of the normalized sum of |Ψm⟩ = 1/
√
2(σ̂†1 − σ̂†m)|G⟩ states, which span

the N − 1 dark subspace. The operator S2 is defined in the model section. The dark
state displays the unique feature that a large fraction ⟨σ̂†1σ̂1⟩ = 1− 1/N of the excited
state population is concentrated in the first qubit. By increasing the system size, the
excitation is mostly stored in the first qubit while being protected from decay by a
vanishing amount spread in the remaining qubits. The absence of coherent exchange
interaction is crucial in so far as it would introduce unwanted couplings between bright
and dark states.

7.3 Dark state preparation and probing

The choice to store an excitation in the first qubit is not unique and any other qubit

is equally valid [248]. The dark state |Ψ(1)
D ⟩, however, can be efficiently prepared by

introducing an external coherent drive on resonance with qubits and localized on the
first qubit. This pulsed drive couples to the chain via Ĥd(t) = Ωd(t)(σ̂

†
1 + σ̂1) where
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Ωd(t) is a time-dependent Rabi frequency. It connects the ground state to both bright
and dark states with asymmetrical coupling strengths

⟨Ψ(1)
S |Ĥd(t)|G⟩ = Ωd(t)

√
1/N, (7.4)

⟨Ψ(1)
D |Ĥd(t)|G⟩ = Ωd(t)

√
1− 1/N, (7.5)

thus coupling to the dark state with high fidelity in the N ≫ 1 limit. The drive not
only prepares single-excitation dark states but also connects dark states along the
excitation ladder through paths illustrated in Fig. 7.2(b). These paths continue until
half of the qubits are excited and there are no more dark states [240]. To probe the

Figure 7.3: (a) Minimal decay rate γ
(2)
min within the second excitation manifold as

a function of chain size N and qubit separation d. The continuous

white lines enclose the regions where γ
(2)
min/γ ≤ 10−5. The subradiant

states generally exhibit non trivial spatial correlations |⟨enem|Ψ⟩|2, which
renders them challenging to access. For k0d = (2n+ 1)π/2 with n ∈ N a
checkerboard pattern emerges in (b) whereas in (c) a typical fermionic
occupation is shown, which is shared by most subradiant states. In (d)

the dark state |Ψ(2)
D ⟩, of Eq. (7.7), is shown for k0d = 2nπ with two

excitations localized in the center of the array.

dark states we use a second, weak driving field (Ωwg(t)/γ ≪ 1). The field propagates
along the waveguide and couples to the qubits through

Ĥwg(t) =

N∑
j=1

(
∆wgσ̂

†
j σ̂j +Ωwg(t)(σ̂

†
j + σ̂j)

)
. (7.6)

Notice there is no phase pick-up between the qubits due to the nλ0 separation. This
probe connects dark and bright states through paths shown in Fig. 7.2(b). It then
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opens a window into the dark states by measuring the field Ê = Êin + i
√
γ/2

∑
j σ̂j

composed from the superposition of probe and fields scattered into the waveguide.
Figure 7.2(c) shows the transmission ⟨Ê†Ê⟩/⟨Ê†

inÊin⟩ for different initial states. An
8-qubit chain is probed by a rectangular waveguide pulse of duration tγ = 50 during
which the transmitted field is recorded using the master equation accounting for
multiple excitations [214]. We begin with N qubits in the ground state where the

transmission linewidth is Nγ, corresponding to the symmetric state |Ψ(1)
S ⟩ excited by

the probe. For the qubits prepared in the Mth excitation dark state the transmission
linewidth is reduced to (N − 2M)γ [248]. For a single excitation, with N <= 3, the

probe excites Ĥwg(t)|Ψ(1)
D ⟩ ∝ |Ψ(2)⟩, with |Ψ(2)⟩ ∝ ((N − 2)σ†1 −

√
N − 1S†

2) S†
2|G⟩.

For M = N/2 the waveguide drive is orthogonal to the dark state and therefore
renders the system completely transparent. In this way the two-excitation manifold is
utilized to escape the decoherence-free subspace and probe the preparation of the dark
state [247]. Note that we assume the ideal case without imperfections and positional
disorder, which would lead to a finite lifetime of the dark state and a higher overall
transmission, treated in the SI [248].

7.4 Multiple Excitations

The localized dark states for multiple excitations are written explicitly in the SI [248].
For simplicity, we focus on the two-excitation subspace of Eq. (7.2), where the Hilbert

space is spanned by states |enem⟩ = σ̂†nσ̂
†
m|G⟩. In general, the most superradiant

two-excitation state can be written as |Ψ(2)
S ⟩ ∝∑j<k σ̂

†
j σ̂

†
k|G⟩ and decay with a rate

2(N − 1)γ. By contrast, for k0d = nπ, a completely dark state is

|Ψ(2)
D ⟩ =

√
N − 3√
N − 1

(
(S†

1)
2 −

√
2S†

1S†
2√

N − 2
+

(S†
2)

2

N − 3

)
|G⟩, (7.7)

where a fraction 2(N − 3)/(N − 2) of the excitations is stored in the first two qubits
with S1,2 defined above Eq. (7.2).

Subradiant states for two excitations are illustrated in Fig. 7.3. Figure 7.3(a)

shows the minimal decay rate γ
(2)
min as a function of qubit number N and relative

distance d. The decay rate changes with lattice constant and signals different types
of dark states with qualitatively different spatial correlations |⟨enem|Ψ⟩|2, as shown
in Figs. 7.3(b)-(d). For k0d = (2n + 1)π/2 with n ∈ N, correlations display a
checkerboard-type pattern [233] due to the fact that coherent nearest-neighbor and
dissipative next-nearest-neighbour interactions in Eq. (9.4) are zero. Figure 7.3(c)
shows a typical state, described by a fermionic ansatz, where two-excitation states
are composed of single-excitation subradiant states, as commonly found for multiple
excitations [205, 232]. For a large number of qubits, N50 and k0d = (6n − 1)π/6,
another extremely subradiant two-excitation state emerges with dimerized spatial
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correlations and a decay rate lower than any fermionic-type state [235]. These extended

states are to be compared with Fig. 7.3(d), where the dark state |Ψ(2)
D ⟩ of Eq. (7.7)

with k0d = 2πn is shown for a 20-qubit chain. The spatial correlations of the dark
state lead to easily accessible preparation as opposed to most other subradiant states
with non-trivial spatial correlations. For instance, a (local) coherent drive with
Rabi frequency Ωd(t) exciting two of the qubits drives the dark state with strength
Ωd(t)

√
N − 3/

√
N − 1 and subsequently a waveguide drive can be used to probe the

preparation of the dark state, see also Fig. 7.2(b).

Figure 7.4: Protocol to prepare, store, and release two excitations using a chain of
16 qubits separated a distance d = λ0. (a) A π-pulse drives the first

two qubits into the dark state |Ψ(2)
D ⟩ where excitations are stored until

γt = 12, when they are released via a superradiant channel created
by quickly detuning the last N − 2 qubits by ∆q = 50γ. (b) Fidelity

F = ⟨Ψ(2)
D |ρ|Ψ(2)

D ⟩ to prepare the dark state for an ideal case (solid line)
compared to a case with dephasing and non-radiative damping γdep, γnr =
10−2γ (dashed-dotted). (c) The field radiated into the waveguide displays
a sharp peak in intensity I(t) = ⟨Ê†Ê⟩(t) after release and negligible
values during preparation and storage. A beating in intesity appears as
the excitation oscillates between initial and final qubits during release
[see Ŝ1,2 in Eq. (7.2)]. Emission with (dashed-dotted) and without

interference term 2Re⟨S†
1S2⟩ (black dashed). Here, the π-pulse has a

Gaussian temporal profile of duration 8γ at FWHM and reaches a peak
Rabi frequency 0.25γ at t0 = 3γ−1.

98



7.5 Superconducting circuit implementation

Two-Photon Storage and Release.—Building on the above results we establish a
simple protocol for storing and releasing two excitations into a waveguide. The
protocol starts with N qubits in the ground state that are driven into the dark

state |Ψ(2)
D ⟩ by a coherent pulse on the first two qubits. The two excitations remain

stored for a time τ after which the last N − 2 qubits are detuned by ∆q(N − 2)γ to
transfer most of the two excitations into the product state |e1e2⟩. This is illustrated
in Fig. 7.4 for a 16-qubit chain with and without imperfections. The coherent drive

Ĥd(t) = Ωd(t)(σ̂
†
1 + σ̂†2 + h.c.) prepares the state |Ψ(2)

D ⟩. Then, at γt = 12, the last
14 qubits are detuned by ∆q = 50γ from the resonance frequency ω0 to initiate the
decay of excitations. The radiated intensity I(t) = ⟨Ê†Ê⟩(t), equivalently expressed

as ⟨S†
1S1⟩+ ⟨S†

2S2⟩+ 2Re⟨S†
1S2⟩ is negligible until a sharp pulse of emission appears

after the detuning is turned on.

7.5 Superconducting circuit implementation

Due to near-perfect mode matching, superconducting qubits in a 1D transmission
line [214,249–251] are an ideal platform for realizing these ideas. Here, we focus on
the implementation with transmon qubits capacitively coupled to a common coplanar
waveguide as shown schematically in Fig. 10.1(c). Similar to Ref. [252], the distance d
between the qubits on chip is fixed but changing the frequency at which the transmon
qubits emit effectively changes their separation. This ensures that we can satisfy
d ∼ λ0, as well as tune qubits on and off resonance via on-chip flux lines. Weakly-
coupled control lines realize the drive Ĥd(t) and allow to selectively excite the single
qubits respectivley in-situ, and thus prepare dark states [247]. Non-radiative decay
rates γnr and dephasing rates γϕ for superconducting qubits are usually multiple orders
of magnitude smaller than typical couplings to the waveguide γ, see the SI [248]. The
achievable parameters are easily sufficient to realize the protocol demonstrated in
Fig. 7.4 with ∼ 99% fidelity for the dark state preparation.

7.6 Conclusions

Motivated by state of the art implementations of waveguide-coupled superconducting
qubits, we introduced and studied a theoretical model of the properties and excitation
pathways of multi-excitation dark states. Due to the symmetry and (practically
infinite-range) all to all coupling, such system possesses almost degenereate manifolds
of multi-excitation states radiatively decoupled from the waveguide if the qubits are
positioned at wavelength distance. These states allow to absorb and store multiple
photons simultaneously [248], while localizing the majority of the excitation energy
in just a handful of qubits. This contrasts with typical free space subradiant states,
where each excitation is maximally delocalized. Their localized nature facilitates the
preparation of these states via local addressing of individual qubits, which is currently
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available in state of the art implementations. The system and the proposed protocol
also allows for controlled storage and release of multiple photons into the waveguide,
pointing towards possible applications for non-classical multi-photon sources or a
tailored memory for a quantum repeater. As the projected numbers for experimental
realizations seem favorable, we expect to inspire efforts in various quantum simulation
platforms including superconducting circuits or Rydberg arrays [211,253]. Similarly,
optical waveguide systems [218] and atoms, which are tweezer trapped in optical
resonators [254], can be envisaged as an alternative setup.

R.H. and H.R. acknowledge funding from the Austrian Science Fund (FWF) doctoral
college DK-ALM W1259-N27 and the FET OPEN Network Cryst3 funded by the
European Union (EU) via Horizon 2020. T. H-D. acknowledges financial support from
the Lise Meitner programme of the Austrian Science Fund (FWF), project M3347.
AAG gratefully acknowledges support from the Air Force Office of Scientific Research
through their Young Investigator Prize (grant No. 21RT0751), the National Science
Foundation through their CAREER Award (No. 2047380), the A. P. Sloan foundation,
and the David and Lucile Packard foundation. G.K. acknowledges funding by the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (714235).

7.7 Supplemental material

7.7.1 Master Equation Derivation

In this Appendix, we present the approximations used to derive the superradiant master
equation, the theoretical starting point for our work. The derivation is standard and
follows from the conventional picture of a system coupled linearly to a one-dimensional
bath formed of harmonic oscillators [28,29].

The evolution of bath and system is described by the Hamiltonian

H = Hb +Hs +Hint ,

Hb = ℏ
∑
s

∫ ∞

0
dωωb†s(ω)b

†
s(ω) , (7.8)

Hint = ℏ
∑
n,s

∫
dωλn,s(ω)

(
bs(ω) + b†s(ω)

)(
cn + c†n

)
,

where bs(ω) are boson annihilation operators for bath modes of frequency ω propagating
along the s = ± directions, and cn are system operators for the nth qubit. The coupling
strength λn,s(ω) depends on the field amplitude evaluated at the qubit position xn, with
λn,s(ω) ∝ exp[−isωxn/c]. This rather general coupling can accurately describe atoms
coupled to an electromagnetic environment under the electric dipole approximation
or transmon qubits capacitively coupled to a transmission line. We restrict to the
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two-level approximation where system operators become ĉn = σ̂n and the system
Hamiltonian is

Hs =
∑
n

ω0σ
†
nσn . (7.9)

In an interaction picture with respect to the free Hamiltonians Hb and Hs the
density operator for bath plus system χ(t) follows the equation iℏ ˙̃χ = [H̃int, χ̃]. This
differential equation gives way to an integral equation

iℏρ̇ = − 1

ℏ2

∫ t

0
dτ [H̃int(t), [H̃int(t− τ), χ̃(t− τ)]] (7.10)

where bath variables have been traced out to obtain the density matrix of the array ρ.
In writting Eq. (7.10) we have assumed that system and bath are uncorrelated at an
initial time.

Equation (7.10) describes the self-consistent evolution of system and bath, it thus
accounting for the correlations that rise between the two. The description can be
simplified for a large bath weakly coupled to the qubits ω0 ≫ λn,s(ω0) and with a
smooth frequcy spectrum around the qubit resonance frequency. Futher simplification
follows if we consider that the array is sufficiently small so that the only changes in
a qubit as a free bath mode propagates from one end of the array to the other are
given by the qubits free evolution [31,255]. Under these conditions it is possible to
make the Born-Markov approximation. This approximation neglects the correlations
that arise between field and bath and sets the correlation time of the environment as
the shortest time-scale of the system [28]. The upper limit in the temporal integral
can be extended to infinity once this approximation has been made. After performing
the temporal integral, summing over left- and right-propagating modes of the bath,
and eliminating non-resonant terms under the rotating-wave approximation [256],
Eq. (7.10) takes the form

ρ̇ = −i(Heffρ− ρHeff) +
∑
n,m

γ cos k0|xn − xm|σmρσ†n ,

where

Heff =
∑
n,m

1
2γ(sin k0|xn − xm| − i cos k0|xn − xm|)σ†nσm +

∑
n

∆radσ
†
nσn (7.11)

with decay rate γ = π|λn,s(ω0)|2 and radiative frequency shift ∆rad [256]. By moving
to an interaction picture with respect to ∆rad we recover Eq. (1) in the main text.

7.7.2 M-Excitation Dark State

Given a linear chain of N qubits at multiples of λ0 separation coupled to a 1D
waveguide we show the generalization of the dark state presented in the main text to
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M excitations, givenM ≤ N/2. Assuming identical waveguide couplings γ for all qubits,
the single- and two-excitation dark states can be extended to arbitrary excitations
by using the condition that it has to be a combination of the symmetric operators
S†
1 =

∑M
j=1 σ̂

†
j/
√
M and S†

2 =
∑N

j=M+1 σ̂
†
j/
√
N −M , namely ck(S†

1)
M−k(S†

2)
k, with

k ∈ {0, ...,M}. Consequently the eigenvalue equation Ĥeff |Ψ(M)
D ⟩ = 0|Ψ(M)

D ⟩ leads to
a system of M + 1 equations, which can be solved. Alternatively the Gram-Schmidt
procedure can be applied with the initial eigenstate being the symmetricM−excitation

eigenstate up to normalization |Ψ(M)
S ⟩ ∝ (

√
MS†

1 +
√
N −MS†

2)
M |G⟩ with decay rate

γS =M(N −M + 1)γ. The general expression for the M−excitation dark state reads∣∣∣Ψ(M)
D

〉
=

√
(N − 2M + 1)!(N − 2M)!

(N −M + 1)!(N −M)!

×
M∑
k=0

(−1)k
(
N −M − k

M − k

)[√
MS†

1

]M−k[√
N −MS†

2

]k ∣∣∣G〉. (7.12)

This is the unique dark state which involves the operators S1, S2 and is orthogonal

to |Ψ(M)
S ⟩. The cases for M = 1, 2 are already shown in the main text, the dark state

for M = 3 excitations is given by∣∣∣Ψ(3)
D

〉
=

√
N − 5

N − 2

[√
3(S†

1)
3

2
− 3(S†

1)
2S†

2

2
√
N − 3

+

√
3S†

1(S†
2)

2

N − 4
−

√
N − 3(S†

2)
3

(N − 4)(N − 5)

]∣∣∣G〉.
(7.13)

Given the expression for the M-excitation dark state, the excited state population
in the first M qubits is expressed as

M∑
j=1

⟨Ψ(M)
D |σ̂†j σ̂j |Ψ

(M)
D ⟩ = N − 2M + 1

N − 2M + 2
. (7.14)

The choice of letting the first M qubits be excited is arbitrary as, for a qubit separation
of multiples of λ0, any M of the N qubits can be excited in order to prepare the dark

state |Ψ(M)
D ⟩. Also, by letting the distace be odd multiples of λ0/2, the same results

as above hold, in which case the symmetric operators are replaced by anti-symmetric
operators with alternating sign between consecutive qubits. One more note on the

orthogonality of the single-excitation dark state |Ψ(1)
D ⟩ of the main text: let us define

another equally valid dark state |Ψ̃(1)
D ⟩ = 1/

√
N(

√
N − 1σ̂†N −S†

2)|G⟩, where S†
2 creates

the symmetric superposition for the first N − 1 qubits. It follows that these two dark

states are nearly orthogonal for large N , namely, |⟨Ψ̃(1)
D |Ψ(1)

D ⟩| = 1/(N − 1).

7.7.3 Bright/Dark Subspaces

In this section we explain the possible excitation/decay paths for the highly degenerate
effective Hamiltonian at multiples of λ0 qubit separation in more detail, in particular
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to understand the transmission properties if a certain dark state is prepared. Using the
language of Dicke superradiance for collective spins, the symmetric collapse operator for
all qubits, S = (

√
MS1+

√
N −MS2)/

√
N is in the angular momentum representation

for the sum of N spin 1/2 subsystems and defines lowering/raising operations on
the Dicke states, S|N/2,m⟩ ∝ |N/2,m − 1⟩ and S†|N/2,m⟩ ∝ |N/2,m + 1⟩ where
states are generally expressed as |m, s⟩ with the quantum numbers s running from
0 or 1/2 to N/2 and m from −s to s. The Dicke states are explicitly given by the

symmetric M-excitation states |Ψ(M)
S ⟩ with a decay rates M(N −M + 1)γ and are

shown in Fig. 7.5. There are additional bright states, for instance |N/2− 1,m⟩ with
a (N − 1)-fold degeneracy and decay rates (M − 1)(N −M)γ. For multiples of λ0
separation, the Dicke limit, jumps between different excitation manifolds can only be
achieved with the symmetric operator S and a waveguide drive on resonance with the
qubit transition frequency ω0 that excites all qubits equally can be expressed as

Ĥwg(t) = Ωwg(t)
(√

MS†
1 +

√
N −MS†

2 + h.c.
)
, (7.15)

where the qubit chain is partitioned into M and N −M qubit arrays respectively,
and Ωd(t) is the time dependent Rabi frequency which can be pulsed or continuous.
The waveguide drive can now connect Dicke states with the same quantum number m
shown as vertical red arrows in Fig. 7.5 but is not able to access the completely dark
state manifold which requires some asymmetry that is provided here by a coherent
drive on a single or multiple qubits, Ĥd(t) = Ωd(t)

∑
m(σ̂†m+σ̂m), with the requirement

that only up to N−1 qubits are driven, in order to have non-zero overlap with the dark
state manifold. This way, the every dark state (up to the N/2-excitation manifold)

can be driven. Alternatively, the single-excitation dark state |Ψ(1)
D ⟩ can be prepared

by driving a single qubit, subsequently |Ψ(2)
D ⟩ can be prepared by driving another

qubit and so on up to |Ψ(N/2)
D ⟩ as shown in Fig. 7.5. On the other hand, for instance,

the waveguide drive in Eq. (7.15) drives the single-excitation dark state |Ψ(1)
D ⟩ to the

two-excitation bright state

|Ψ(2)⟩ =
√

2

3

(
σ̂†1S†

2 −
√
N − 1

N − 2
(S†

2)
2
)
|G⟩, (7.16)

which decays with a rate (N−2)γ and is observable in the transmission spectrum. The

symmetric single excitation state |Ψ(1)
S ⟩ is driven to the symmetric two-excitation Dicke

state with the superradiant decay rate 2(N − 1)γ. All states shown in Fig. 7.5 except

the symmetric Dicke states |Ψ(M)
S ⟩, the ground state |g⟩⊗N and the totally inverted

state |e⟩⊗N are elements of a subspace with degeneracy dM =
(

N
N−M

)
−
(

N
N−M−1

)
.

The driving strength (for instance from the single- to the two-excitation dark state)
is given by

⟨Ψ(2)
D |Ĥd|Ψ(1)

D ⟩/Ωd(t) =

√
N − 3√
N

(
1 +

1√
(N − 1)(N − 2)

)
, (7.17)

103



Control of Localized Single- and Many-Body Dark States in Waveguide QED

Figure 7.5: Energy level diagram for N = 8 qubits with multiples of λ0 separation
featuring a coherent drive Ĥd(t) on individual qubits and a waveguide
drive Ĥwg(t) exciting all qubits symmetrically. The symmetric Dicke

states |Ψ(M)
S ⟩ decay with the superradiant rate M(N −M + 1)γ which

a maximum at M = N/2. Dark states exist for M ≤ N/2 and |Ψ(M)
D ⟩,

which resides in the dark subspace with M excitations, can be efficiently
prepared by driving M qubits. The state can be probed via a symmetric
waveguide drive on all qubits which excites it into a bright manifold with

decay rate (N − 2M)γ. Qubits prepared in the state |Ψ(N/2)
D ⟩ lead to

complete transmission, as there is no bright manifold above with the
same s quantum number. In between symmetric Dicke states and the
dark state manifold are bright state manifolds with finite decay rates
which are connected by a symmetric excitation to the excitation manifold
below. Each subspace has a certain degeneracy which is shown on the top
and note that there is no mixing between states from different excitation
manifolds due to the absence of collective dephasing (no imperfections).
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where the coherent drive only excites the second qubit and the single-excitation dark
state has the majority of the excited state population in the first qubit.

7.7.4 Effect of Disorder, Imperfections and Non-Identical Waveguide
Couplings

The above results can be generalized to non-identical waveguide couplings, in particular
we assume the first qubit is coupled with rate γ1 and the remaining qubits with rate
γ2. Here we show this actually enhances the effect studied so far, that is, an even
higher fraction of the excited state population is concentrated in the first qubit and
the driving strength of the dark state is equally enhanced. The single-excitation
symmetric state can now be written as

|Ψ(1)
S ⟩ = 1√

γ1 + (N − 1)γ2

(
√
γ1σ̂

†
1 +

√
(N − 1)γ2S†

2

)∣∣∣G〉, (7.18)

where the populations in the individual qubits is not equally distributed since the
different couplings lead to a redistribution of the excitation. The dark state obtains is
readily found to be

|Ψ(1)
D ⟩ = 1√

γ1 + (N − 1)γ2

(√
(N − 1)γ2σ̂

†
1 −

√
γ1S†

2

)∣∣∣G〉. (7.19)

The amount of population in the first qubit for the dark state is given by (N −
1)γ2/(γ1 + (N − 1)γ2) and in particular for γ2 ≫ γ1 most is stored in the first qubit
even for small N . It follows that the dark state can be prepared even more efficiently
given that γ1 < γ2.

The two-excitation dark state, with the first two qubits having a coupling rate γ1,
is given by

|Ψ(2)
D ⟩ = 1√

α

(√
γ1γ2

γ1
(S†

1)
2 +

√
γ1γ2

γ2(N − 2)
(S†

2)
2 −

√
2√

N − 1
S†
1S†

2

)∣∣∣G〉, (7.20)

with

α =
γ22(N − 1)(N − 2) + 2γ1γ2(N − 2) + 2γ21

γ1γ2(N − 2)
. (7.21)

The case of a single qubit interacting with a chain of qubits in the collective
symmetric state can also be realized with two-level atoms in free space. In this analogy
the first qubit is placed at the center of a ring of subwavelength-spaced two-level
emitters where, due to permutational ring symmetry, only the symmetric mode of
the ring couples to the central emitter [257]. The ring plays the role of an antenna
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Figure 7.6: (a) Dark state preparation under dephasing and non-radiative decay for
N = 6 qubits with γ2 = 20γ1 for either the last 4 or last 5 qubits and
d = λ0 and under continuous driving with Rabi frequency Ωd/γ1=0.3
for either the first or the first two qubits. The time evolution of the

fidelity with the target state F (M)(t) = ⟨Ψ(M)
D |ρ(t)|Ψ(M)

D ⟩ is shown. Blue,
red and orange lines correspond to dephasing rates (i) γϕ = 0, (ii)
γϕ = 0.01γ1, (iii) γϕ = 0.1γ1 respectively, with γnr=0. Also shown is
the maximal fidelity for preparing the one- or two-excitation dark state

|Ψ(M)
D ⟩ in the presence of non-radiative loss and dephasing rates γnr and

γϕ. (b) Influence of classical position disorder ϵ/λ0 on the two-excitation
dark state preparation with a rectangular driving pulse on the central
two qubits and decay rate of the dark state for identical waveguide
couplings γ in a chain of N = 10 qubits. The disorder is assumed to be
following a normal distribution of standard deviation ϵ and 200 random
configurations for each value of ϵ are considered. (c) The averaged spatial
correlation |⟨enem|Ψ(t)⟩|2 is shown at γt = 20 for the disordered arrays
in (b).
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focusing most of the incoming radiation into the central emitter, equivalent to driving
N − 1 qubits in the waveguide scenario.

In a realistic scenario both dephasing γϕ and excitation loss γnr into channels
other than the waveguide are present and affect the fidelities of driving the one- and
two-excitation dark state as well as their lifetimes. The non-waveguide decay and
dephasing are included as uncorrelated terms in the Lindbladian and the master
equation for arbitrary distances obtains the form

˙̂ρ = −i[Ĥeff , ρ̂] +
∑
m,n

Γm,nσ̂mρ̂σ̂
†
n + γnr

∑
m

σ̂mρ̂σ̂
†
m + 2γϕ

∑
m

σ̂†mσ̂mρ̂σ̂
†
mσ̂m, (7.22)

and the effective Hamiltonian in the interaction picture is given by

Ĥeff =
∑
m,n

(
Jm,n − i

Γm,n

2

)
σ̂†mσ̂n − i

γnr + 2γϕ
2

∑
m

σ̂†mσ̂m. (7.23)

For instance in Fig. 7.6(a) the influence of individual qubit dephasing and non-
radiative decay on the dark state preparation fidelity is shown for non-identical
waveguide couplings. A high preparation fidelity is prevailing even under considerable
individual dephasing and decay, which in state-of-the-art laboratories working with
superconducting qubits can be held below 10−2γ1 for both. In Fig. 7.6(b) the two-
excitation dark state preparation and decay rate are shown for various degrees of
classical position disorder. Each qubit is randomly displaced around its multiple of λ0
position by a normal distribution of standard deviation ϵ. The overlap with |Ψ(2)

D ⟩
is plotted after performing an average over disorder realizations which is confined
along the 1D chain axis. The number of disorder realizations is 200 and in Fig. 7.6(c)
the averaged spatial correlation |⟨enem|Ψ(t)⟩|2 is shown after the overlap reached the
maximum value. For quantum platforms in the microwave regime e.g. superconducting
transmon qubits, the positional disorder can be kept well below 10−4 but even other
platforms like atoms trapped along a nanofiber exhibit small positional disorder.

Frequency disorder might be a further complication which introduces finite lifetimes
to the dark state and decreases the preparation fidelity. Specifically for superconducting
circuits this can be remedied by additionally adding flux bias lines, which ensures that
we can tune the frequency of all qubits on resonance. Although this means there is
an overhead of one control line per qubit, which should be fine for systems up to e.g.
10-15 qubits or potentially even more. Another point is that with increasing qubit
number N , the resilience to frequency disorder increases as, on the one hand, the
linewidth of the symmetric state scales with N allowing for more detuned remaining
qubits. On the other hand with more qubits it is more likely that at least a handful
are closer to resonanance with each other, thereby allowing them to combine into a
dark state.
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7.7.5 Multilevel Nature of the Transmon Qubit

For the specific platform of superconducting transmon qubits the involved quantum
emitters are inherently anharmonic and due to the multilevel nature it is necessary to
model each emitter as a multilevel quantum emitter to capture the full richness of
possible quantum states. So far we assumed a large enough anharmonicity U between
the first and second excited state in each transmon and therefore neglected the second
excited state to recover the two-level qubit. Here we show that the results obtained
above still prevail in the case of small U and even the harmonic oscillator case U = 0.
Let us first begin to write down the effective Hamiltonian for N transmons, which is
given by

Ĥeff =
∑
m,n

(
Jm,n − i

Γm,n

2

)
â†mân − U

2

∑
m

n̂m(n̂m − I), (7.24)

whereas the Lindbladian retains the same form as in the qubit case. The bosonic
operator â†m creates an excitation on the site m and n̂j is the number operator of the
site m. For many-body dynamics the anharmonicity U serves as an on-site interaction
and the weaker the anharmonicity, the closer the system resembles the harmonic
oscillator. For arbitrary U the transmons generally behave like anharmonic oscillators
but assuming only a single excitation is present in the system, the single-excitation
dark and bright states have the same form as in the qubit case with the exchange
σ̂m ↔ âm. The completely symmetric state with two excitations can be written as

|Φ(2)
S ⟩ =

√
2

N

∑
n,m

â†nâ
†
m|G⟩ =

√
2

N

(
(â†1)

2 +
√
N − 1â†1S†

2 + (N − 1)(S†
2)

2
)
|G⟩, (7.25)

with the superradiant decay rate 2Nγ which is larger than the superradiant rate of
the two-excitation symmetric Dicke state. The two-excitation dark state with two
excitations per site and the majority of the excitation in the first transmon is given by

|Φ(2)
D ⟩ =

√
2

N

(
(â†1)

2 − 2
√
N − 1â†1S†

2 + (S†
2)

2
)
|G⟩, (7.26)

with the fraction 2(N − 1)/N of the population in the first transmon and Nσge2. As
before, any transmon is equally valid to store the majority of the population and
which one is determined whether or not it is excited by an external drive. The other
possible dark state involving superpositions of symmetric states in the sub-arrays is

equivalent to the two-excitation dark state for the qubit case |Ψ(2)
D ⟩ with the exchange

σ̂†m ↔ â†m in S†
1 and S†

2 respectively. Assuming that the first two transmons are
driven by an external drive, the general dark state for arbitrary anharmonicities U is a

superposition of the aforementioned dark states, namely c1|Ψ(2)
D ⟩+ c2|Φ(2)

D ⟩. Notably,
the state |Φ(2)

D ⟩ acquires a energy shift as well coming from the onsite interaction
term in the Hamiltonian and has to be taking into account while driving the quibts
externally. This shows that the effect described for the qubit case extends to the
transmonic regime with the collective dark and bright states having a slightly modified
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distribution in the populations due to their multilevel structure. Typical values for
the anharmonicity are U ∼ 200− 300 MHz whereas the waveguide decay rate γ is in
the range of 1− 100 MHz.

109





8 Publication

Physical Review Research 4(033116), (2022)

Cooperative subwavelength molecular quantum
emitter arrays

R. Holzinger1, S. A. Oh2, M. Reitz2, H. Ritsch1 and C. Genes2

1Institut für Theoretische Physik, Universität Innsbruck,
Technikerstrasse 21, A-6020 Innsbruck, Austria
2Max Planck Institute for the Science of Light,
Staudtstrasse 2, D-91058 Erlangen, Germany

Dipole-coupled subwavelength quantum emitter arrays respond cooperat-
ively to external light fields as they may host collective delocalized excit-
ations (a form of excitons) with super- or subradiant character. Deeply
subwavelength separations typically occur in molecular ensembles, where
in addition to photon-electron interactions, electron-vibron couplings and
vibrational relaxation processes play an important role. We provide analyt-
ical and numerical results on the modification of super- and subradiance in
molecular rings of dipoles including excitations of the vibrational degrees of
freedom. While vibrations are typically considered detrimental to coherent
dynamics, we show that molecular dimers or rings can be operated as
platforms for the preparation of long-lived dark superposition states aided
by vibrational relaxation. In closed ring configurations, we extend previous
predictions for the generation of coherent light from ideal quantum emitters
to molecular emitters, quantifying the role of vibronic coupling onto the
output intensity and coherence.

DOI: 10.1103/PhysRevResearch.4.033116

8.1 Introduction

Structured subwavelength arrays of quantum emitters allow for the coherent hop-
ping of excitations via the near-field coupling of neighbouring dipoles [165,258–260].
In addition, they exhibit correlated spontaneous emission and support super- and
subradiant collective modes, which can be exploited to control the interaction with
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impinging light. Possible applications range from the design of highly reflective
quantum metasurfaces [10,261,262] to the engineering of platforms showing robust
transport of excitation in topological quantum optics [263, 264] and of high-fidelity
photon storage devices for quantum information processing [50, 58, 168]. Moreover,
quantum emitter rings have been proposed to act as coherent light sources on the
nanoscale [143].

While subwavelength separations are not easily achieved in standard quantum optics
setups, molecular aggregates (i.e., arrays of identical molecules) can feature deeply
subwavelength separations on the nanometer scale, while retaining the electronic
structure of the individual dipole transitions [265]. They can be artificially synthesized
in a wide variety of forms such as one dimensional chains or two dimensional films
and can also be found in nature, in particular in the photosynthetic light-harvesting
complexes of plants and bacteria [177, 259, 266]. For example, long-lived electronic
quantum coherence in a light-harvesting protein (the Fenna-Matthews-Olson complex)
has been experimentally observed [267] and theoretically tackled [266]. The downside
of such systems is the much more complex structure, which introduces coupling of
electronic degrees of freedom with intra- and inter-molecular vibrations. While it is
well established that the strong coherent near-field interactions give rise to delocalized
exciton states (of the so-called Frenkel excitons) in molecular aggregates [23, 268],
the characterization of the accompanying collective dissipation is usually not fully
taken into account in such systems as vibronic couplings and induced dephasing are
considered to dominate the dynamics, especially at high temperatures. It is therefore
interesting and timely to characterize cooperative dissipative effects in the presence
of vibrations, a task which involves an extension of previously developed methods to
describe electron-photon-phonon interactions on an individual dipole basis [18,269].
Moreover, the addition of localized gain, renders molecular emitter arrays as possible
candidates for the realization of nanoscale coherent light sources as recently introduced
for pure quantum emitters [143]. As an alternative (or addition) to strong near-field
coupling, a modified material response of a molecular ensemble can also be obtained by
collective strong coupling of the ensemble to a cavity which creates similar delocalized
excitaton states among the molecules which are then hybridized with the cavity mode.
The field of molecular polaritonics has recently emerged as a platform for observing
strong modifications of material properties such as charge and energy transport or
chemical reactivity [270–273].
In this work, we perform analytical and numerical studies of cooperative radiative
properties of molecular arrays with particular emphasis on ring configurations, where
we treat the vibronic coupling and electron-photon interactions on equal footing. Our
treatment combines two approaches, a master equation approach, where the thermal
environment of the vibrational degrees of freedom is traced out and a quantum
Langevin equations approach, where the time evolution of both electronic and vi-
brational operators are fully considered. As a first important step, we elucidate the
influence of vibronic couplings on the scaling of collective emission rates: modifications
for the case of molecular systems originate from the Franck-Condon factors, which lead
to a decay of the electronic coherence via coupling to several states of the vibrational
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Figure 8.1: (a) The equilibrium mismatch Rge between the ground and excited state
electronic potential landscapes along a given nuclear coordinate leads to
the standard Franck-Condon physics with a branching of transitions into
different vibrational levels. The electron-vibron coupling is schematically
represented by the link, at coupling strength λ, between an electronic
transition operator σ and a bosonic vibrational mode operator b. (b)
Schematics of a molecular ring where mutual interactions are mediated
by the electromagnetic vacuum at coherent/incoherent rates Ωij and
Γij. The inset shows branching of electronic transitions between the
manifolds of vibrational levels. (c) Preparation of an entangled molecular
dimer with subwavelength separation d≪0 via an impinging short laser
pulse. (d) Schematics of a molecular nanoscale light source where the
central gain molecule is incoherently pumped and coherently coupled to
the symmetric eigenmode of the ring molecules. The ring provides an
effective resonator enhancement leading to the emission of coherent laser
light.

degrees of freedom and the vibrational thermal environment.
Analytical results can be derived and understood more easily by a transformation to

a collective electronic basis, which involves a single bright (symmetric) state and many
more dark (antisymmetric) state of typically superradiant and subradiant character
respectively. This basis allows a simplified understanding of how standard scenarios,
such as Dicke superradiance and the band structure of dipole-dipole induced transport
of excitations, are modified by the electron-vibron interactions.
While vibronic couplings are generally seen as detrimental in the efforts of con-

trolling electronic coherence with light modes, here we present a generic vibronic
dimer model, where bipartite long-lived entanglement is even engineered owing to
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vibrational relaxation. The system involves a nanometer spaced molecular dimer,
where two chromophores exchange energy but not charge. Under favorable conditions,
unidirectional flow of population for a driven symmetric collective state is directed
into a robust, entangled antisymmetric state, via a process similar to the Förster
resonance energy transfer occurring in acceptor/donor configurations.
The same transformation to a collective basis proves useful in the understanding

of molecular nanorings illuminated by incoherent light sources, as recently proposed
for the design of nanoscale coherent light sources [143]. In such systems, symmetric
collective states are almost fully responsible for the generation of emitted light, which
greatly aids our analytical and numerical analysis, allowing for a great reduction of the
relevant Hilbert space dimension and therefore for numerical results with a reasonably
sized molecular nano-rings, where each electronic transition is coupled to at least one
own phonon mode.
The paper is organized as follows: Sec. 9.2 introduces the open system dynamics

formalism for molecules including electron-photon and electron-vibron interactions.
In the following we describe super- and subradiance both in the Dicke limit of closely
spaced ensembles, for population inverted systems, and also in the weak excitation for
arbitrarily spaced chains and rings. We then introduce a particular case of nanoscale
sized molecular dimers, where vibrationally induced couplings between collective sym-
metric and antisymmetric electronic states allow for the addressing of long-lived dark
entangled states. The symmetric/antisymmetric collective basis is then generalized
to the ring geometry with particular relevance to molecular nanoring lasers. We also
provide analytical and numerical results for the scaling of intensity and second order
correlation functions of coherent light emitted by an incoherently pumped nanoscale
molecular ring.

8.2 Model

We consider N identical molecular quantum emitters, each involving electronic trans-
itions between two potential landscapes, with minima slightly shifted from each other
along a nuclear coordinate. This mismatch of the electronic potential energy landscapes
in the ground and excited states gives rise to the electron-vibron coupling, as depicted
in Fig. 10.1(a). External drive of electronic transitions is accompanied, in consequence,
by the excitation of the motion of the nuclei, depicted as eigenstates of a harmonic
potential in Fig. 10.1(a). The electronic transition for molecule j (index running
between 1 and N ) is at frequency splitting ω0 (ℏ = 1) and described by the collapse
operator σj = |g⟩j ⟨e|j and its Hermitian conjugate. The vibrational degree of freedom
is at frequency ν and is described by a bosonic operator bj satisfying the commutation

relations
[
bj , b

†
j

]
= 1. The vibronic coupling is illustrated in Fig. 10.1(a) as a link

between the electronic and vibration operator with magnitude characterized by the
Huang-Rhys factor λ2. The electronic and vibrational degrees of freedom are subject to
loss quantified by the spontaneous emission rate Γ0 and by the vibrational relaxation
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rate Γν , respectively. A standard Jablonski diagram of radiative and non-radiative
processes involving two electronic states with their corresponding vibrational manifold
is illustrated in the inset of Fig. 10.1(b). This complex competition of transitions
shows that molecules are typically inefficient quantum emitters as they do not possess
closed transitions. Furthermore, we will consider rings of N molecules, as illustrated
in Fig. 10.1(b), with ring radius r and interparticle separation d = 2r sin 2π/N . Their
close separation brings into play cooperative effects such as near field dipole-dipole
interactions and collective spontaneous emission, quantified by the distance dependent
rates Ωij and Γij , which are mediated by the quantum electromagnetic vacuum.

The free Hamiltonian for the ensemble of N molecules H0 =
∑

j h
(j)
0 is obtained as

a sum over each particle’s free Hamiltonian

h
(j)
0 =

(
ω0 + λ2ν

)
σ†jσj + νb†jbj , (8.1)

which sees a vibronic shift λ2ν added to the electronic bare transition frequency (which
will later cancel out after a polaron transformation – see supplemental material. The
index j runs from 1 to N for the ring configuration which will be used in the next
section to derive cooperative radiative emission properties of molecular ensembles.
Later we will incorporate an additional index p to describe the situation depicted in
Fig. 10.1(d), which sees the realization of a molecular nanoscale light source with a
gain molecule implanted in the center of the ring.

The vibronic coupling Hamiltonian [20] is now added as a sum HHol =
∑

j h
(j)
Hol over

all particles, where

h
(j)
Hol = −λνσ†jσj(b

†
j + bj). (8.2)

The Holstein Hamiltonian listed above assumes identical molecules and is a minimal
model for electron-vibron interactions derivable from first principles [18] (see the
supplemental material).
For closely spaced quantum emitters, near-field dipole-dipole interactions at rates

Ωjj′ are added, which are strongly dependent on their interseparation (with a standard
|r⃗j − r⃗j′ |−3 dependence in the near field region) and relative orientation of transition
dipoles [19] (see the supplemental material for exact expressions). This can be listed
as

Hd-d =
∑

j ̸=j′ Ωjj′σ
†
jσj′ (8.3)

and describes an excitation transfer via a virtual photon exchange. Notice that by
definition the diagonal terms Ωjj vanish.
To the coherent dynamics one can then add the effects of infinite reservoirs in

an open system dynamics described by a master equation (for the system’s density
operator ρ) in the form

∂tρ = i[ρ,H] + L[ρ], (8.4)

where the total Hamiltonian is H = H0 +HHol +Hd-d. The dissipative, incoherent
dynamics stemming from the coupling of the electronic and vibrational degrees of
freedom to their baths in thermal equilibrium, is included in the Lindblad part as
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a superoperator (an operator acting on density operators). A standard, diagonal
superoperator in Lindblad form [14,16,62,274–276] is defined as

Lγ [ρ] =
γO
2

[
2Oρ(t)O† −O†Oρ(t)− ρ(t)O†O

]
, (8.5)

and describes decay at generic rate γO through a single channel with a generic
collapse operator O. The radiative dynamics stemming from the coupling of electronic
transitions to the electromagnetic vacuum is, however, not in diagonal Lindblad
form [43] but achieves the following expression

Le[ρ] =
∑
j,j′

Γjj′

2

[
2σjρσ

†
j′ − σ†jσj′ρ− ρσ†jσj′

]
. (8.6)

A simple diagonalization of the matrix of decay rates suffices to bring the expression
above into standard Lindblad form and to see the emergence of N collective dissipation
channels. The second contribution to L[ρ] stems from the non-radiative loss of
vibrational excitation and is in standard Lindblad form with rate Γν for all molecules
and collapse operators bj . This is an approximated model, as some care has to be
taken regarding the correct collapse operator since the vibronic coupling can be strong
(λ ∼ 1) and the vibrational relaxation is typically much faster than the spontaneous
emission.

8.3 Radiative properties of vibronically coupled emitters

The non-standard form of the radiative dissipation leads to cooperative effects which
show the imprint of superradiance and subradiance. For ideal quantum emitters, such
effects are well understood [43] and analytically tackled e.g. in Ref. [19]. However,
the vibronic coupling appearing in the Hamiltonian in Eq. (9.1) changes these effects
considerably. We will focus on two distinct situations: i) inverted ensembles, where the
dynamics is followed on the whole Bloch sphere and ii) the single excitation manifold,
relevant under weak excitation conditions. We will make use of both an individual site
basis (described by operators σj), as well as a collective basis, where symmetric and
antisymmetric combinations of the σj operators will be defined. We first show that
vibrations lead to a degradation of the superradiant pulse emission in the Dicke limit.
Then we analyze the symmetric/antisymmetric dynamics to show that both dissipative
dynamics and vibronic effects lead to couplings among collective states of different
symmetries. In the single excitation subspace, states of different symmetry do not
couple via dissipative effects, allowing the derivation of a band structure describing the
dispersion of excitations tunneling between molecules via the near field dipole-dipole
interactions; this behavior is only changed owing to vibronic effects.
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8.3.1 Dissipation under vibronic coupling

Let us first review a few details on the vibronic coupling following the description
in Ref. [18]. For a single molecule indexed by j, the Holstein Hamiltonian can be

diagonalized via a level-dependent polaron transformation U†
j = |g⟩j ⟨g|j +D†

j |e⟩j ⟨e|j
with the standard displacement operator defined as

Dj = e−i
√
2λpj = eλ(b

†
j−bj). (8.7)

In the polaron-displaced basis, the Holstein Hamiltonian h
(j)
0 + h

(j)
Hol becomes diagonal

h̃(j) = U†
j (h

(j)
0 + h

(j)
Hol)Uj = ω0σ

†
jσj + νb†jbj (8.8)

and has simple eigenvectors |g;n⟩j and |e;n⟩j . The eigenvectors in the bare, original
basis can be found by inverting the polaron transformation |g;n⟩j and D |e;n⟩j . The
important property we have used is the transformation of the Pauli matrices under the
vibrational displacement U†

j σjUj = σjDj . The dressed operators describe polarons,
i.e. hybrid electronic-vibrational operators. Furthermore we assume a thermal state
with the average occupancy n̄ = [exp(ℏν/(kBT ))− 1]−1 (where kB is the Boltzmann
constant). The partial trace over the vibronic displacement operators at temperature
T is therefore given by

⟨DjD†
j′⟩T = e−λ2(1+2n̄)(1−δjj′ ). (8.9)

Note that at T = 0 the above trace reduces simply to ⟨DjD†
j′⟩T=0 = exp[−λ2(1− δjj′)]

giving unity on a given molecule but a reduction by the Franck-Condon factor e−λ2

for a two molecule term.
We can now apply the polaron transformation with an operator U† =

∏
j U

†
j such as

to diagonalize the whole vibronic Hamiltonian. We are however left with the polaron
transformed dipole-dipole interaction as well as a polaron transformed Lindblad term,
which describes dissipation via polaron collapse operators

L̃e[ρ] =
∑
j,j′

Γjj′

2

[
2σjDjρD†

j′σ
†
j′ − {D†

jσ
†
jσj′Dj′ , ρ}

]
, (8.10)

where the last term denotes an anticommutator. We will then make the assumption
that the vibrations are in a thermal state and that the electronic and vibrational
states factorize. This leads to a renormalization of the dipole-dipole interaction
Ωλ
jj′ = Ωjj′e

−λ2(1+2n̄) as well as renormalized off-diagonal (or mutual) decay rates as
evident from the polaron transformed Lindblad term

L̃e[ρ] =
∑
jj′

e−λ2(1+2n̄)(1−δjj′ )
Γjj′

2

[
2σjρσ

†
j′ − {σ†jσj′ , ρ}

]
. (8.11)

Notice that for large λ or large thermal occupancies, the off-diagonal elements of the
Lindblad term above (corresponding to cooperative emission) vanish, leading to the
disappearance of any subradiant or superradiant behavior and the recovery of the
independent decay behavior.
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8.3.2 Dynamics on the Bloch sphere

We will first analyze the standard Dicke superradiance phenomenon extended to the
case of molecules, i.e. for a vibronic coupling characterized by a non-zero Huang-Rhys
factor λ = 0. To this end, we will make use of a Bloch sphere representation for the
collective spin of the system as illustrated in Fig. 9.2(a). We use of a non-standard
angular momentum representation for the sum of N spin 1/2 subsystems where a
collective collapse operator is introduced as a symmetric combination S =

∑
j σj/

√
N .

The Cartesian components are Sz =
∑

j σ
(z)
j , Sx = S + S† and Sy = −i(S − S†).

Common eigenstates of the total spin vector S⃗ and Sz are then denoted by |s,m⟩
where the quantum number s runs 0 or 1/2 to N/2 and m from −s to s. In the
symmetric subspace the so-called Dicke states arise denoted by |N/2,m⟩ and obtained
by fixing s to its maximal value N/2. The action of the lowering/raising operators on

the Dicke states is S|N/2,m⟩ = α
(−)
m |N/2,m−1⟩ and S†|N/2,m⟩ = α

(+)
m |N/2,m+1⟩

where the coefficients are

α(±)
m =

1√
N
√

(N/2∓m)(N/2±m+ 1). (8.12)

In the Dicke limit (d = 0) and in the absence of vibrations (λ = 0), the Lindblad term
in Eq. (8.11) can be immediately diagonalized as a single loss channel with collapse
operator S at superradiant rate NΓ0. This is no longer when λ ̸= 0 or d > 0 or both,
as population spills outside the symmetric subspace towards the interior of the Bloch
sphere. This behavior can be easily understood in a collective basis, where additional
N − 1 antisymmetric operators are introduced

Ak =
1√
N

N∑
j=1

σje
2πijk/N , for k ∈ {1, ...,N − 1}, (8.13)

under the requirement that they are orthogonal to the S operator (this can be done
more generally, for example, via a Gram-Schmidt algorithm). The Hamiltonian can
be easily diagonalized in terms of collective operators giving

H = ωλ
SS†S +

N−1∑
k=1

ωλ
kA†

kAk. (8.14)

This is based on the orthonormality condition
∑N

k=1 e
2πik(j−j′)/N = N δjj′ and on

the cyclic symmetry of the ring allowing to write any sums
∑

j′ ̸=j e
2πik(j′−j)/NΩjj′ =∑N

j′=2 e
2πik(j′−1)/NΩ1j′ . The modified eigenenergies are given by ωλ

S = ω0+
∑N

j=2Ω
λ
1j ,

for the symmetric states and

ωλ
k = ω0 +

N∑
j=2

Ωλ
1je

2πi(j−1)k/N , (8.15)
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Figure 8.2: (a) Illustration of the collective Bloch sphere for N emitters. The
symmetric subspace is spanned by N +1 Dicke states, while the inside of
the sphere is spanned by antisymmetric states. (b) Superradiant decay for
an initially fully inverted ring of N = 8 molecules with their vibrational
degree of freedom in thermal equilibrium at various temperatures. (c)
Scaling of the superradiant pulse intensity for a fully inverted system of
molecules in the ring configuration, as a function of increasing positional
disorder ϵ and with vibronic coupling λ = 0.15 (d) Time dependence
of the intensity of emission for a ring of N = 8 molecules driven by a
laser pulse with the frequency matched to the symmetric state resonance
ωℓ = ωS . The inter-molecular separation in all plots is d = 0.040 and
the dipoles are linearly polarized perpendicular to the plane of the ring.
Parameters are fixed to η = 260Γ0, t0 = 0.1/Γ0 and τ = 0.1/Γ0.

for the set of antisymmetric combinations.
The thermally averaged Lindblad term from Eq. (8.11) can now be split into N

decay channels: a symmetric one with loss rate Γλ
S(d) and N − 1 antisymmetric

channels with rates Γλ
k(d). These can be expressed as

Γλ
S,k(d) = Γ0

[
1− e−λ2(1+2n̄)

]
+ Γλ=0

S,k (d)e−λ2(1+2n̄), (8.16)

in terms of the bare rates for zero vibronic coupling Γλ=0
S (d) =

∑N
j=1 Γ1j(d) and

Γλ=0
k (d) =

∑N
j=1 Γ1j(d)e

i2π(j−1)k/N . Notice that for zero distance and no vibronic
couplings, we recover the Dicke superradiance effect with rateNΓ0. For larger distances
this is effect is reduced; additional reduction appears for nonzero vibronic coupling and
temperature. Finally, for large λ or n̄, a complete washout of superradiance occurs
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Figure 8.3: (a) Single-excitation dispersion relation in the first Brillouin zone for a
ring of N = 100 transversely polarized molecules at zero temperature
with nearest-neighbour separation d = 0.050. Bright states enclosed by
the shaded region are characterized by a mode number |k| ≤ ⌈Nd/0⌉
whereas the region beyond is occupied by dark states. (b) Bright states
feature a finite decay rate with the symmetric state located at k =
0. For d ≪0 the dark state decay rates are approximately given by
Γλ
k ∼ (1 − e−λ2

)Γ0 whereas the bright state decay rate approaches

Γλ
S ∼ Γ0 + e−λ2

(N − 1)Γ0 . (c) Dispersion curves in the full vibrational
Hilbert space (for λ = 0.15). States with n vibrational energy quanta are
shifted by nν with respect to the zero-vibrational states. Vibrations lead
to coherent population transfer from bright states with lower vibrational
quantum state excitation to dark states with higher vibrational quantum
state excitation, at a coupling strength λν/

√
N . The process is followed

by non-radiative vibrational relaxation into the dark state with zero
vibrations at a rate Γν ≫ Γ0.

and the first term in the expression above indicates the independent rate Γ0 for both
symmetric and antisymmetric states.
For a better understanding of the coupling between states of different symmetries, we
now perform an analysis in the full Hilbert space, i.e. without tracing over the thermal
bath. Instead, intuitive understanding is offered by an additional transformation to a
collective basis for the vibrational degrees of freedom as well, introduced via

Qk =
1√
N

N∑
j=1

e2πijk/N (bj + b†j), (8.17)

where k ∈ {1, ...,N} (with k = N corresponding to the symmetric vibrational mode)
and with the momentum quadratures satisfying [Qk, Pk′ ] = 2iδkk′ . An interaction
term emerges, coupling the symmetric state to the antisymmetric manifold

HSA
int = − λν√

N

N−1∑
k=1

(QkS†Ak + h.c.), (8.18)

via the position quadratures of the collective vibrations. This coupling is responsible
for the spilling of population into the interior of the Bloch sphere even when fully
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symmetric driving for the system takes place. The effect will be useful in order to
understand the dynamics of the coherent nanoscale source analyzed in Sec. 8.5. In
addition, couplings within the antisymmetric states manifold emerge via

HAA
int = − λν√

N

N−1∑
k ̸=k′

(Qk−k′A†
kAk′ + h.c.). (8.19)

This Hamiltonian shows a redistribution of energy within the whole manifold of
antisymmetric states. In the mesoscopic limit, a very large number of such states exist,
leading to a quick energy loss from the symmetric subspace to all other subspaces
orthogonal to it. This observation could constitute the basis for an effective theory as
developed in Ref. [277], which allows for the derivation of an effective unidirectional
Markovian loss dynamics for the symmetric operator.
Let us now numerically illustrate the Dicke superradiant behavior for a tightly

packed system of emitters and check the analytically obtained results. We depart
now from the ideal case of zero separation, and consider a ring of N = 8 molecules
with a separation of d = 0.040. The inclusion of the inherent coherent dipole-dipole
interactions leads to a shift of the collective symmetric state which we effectively target
in the numerical simulations. These results are illustrated in Fig. 9.2(b) as a function
of the environmental temperature for λ = 0.15. One can clearly observe the washing
out of the standard Dicke superradiant pulsed decay, plotted as the intensity of the
emitted pulse as a function of time. In the large temperature limit, the independent
decay behavior is recovered, signaling that temperature effects hinder the build up
of two-particle correlations necessary for the emergence of superradiant behavior. In
Fig. 9.2(c), some robustness to positional disorder is observed where each molecule
is randomly displaced around its equilibrium position by a normal distribution of
standard deviation ϵ. The trajectories are plotted after performing an average over
100 disorder realizations with λ = 0.15.

Finally, we numerically illustrate time dynamics under resonant laser drive (ωℓ = ωS),
modeled by a pulsed excitation with electric field amplitude

Ein(t) = Ωℓ(t)

N∑
j=1

(
e−ik⃗ℓ·r⃗jeiωℓtσj + eik⃗ℓ·r⃗je−iωℓtσ†j

)
. (8.20)

The laser pulse is considered to be impinging from the xy-plane with a linear polariza-
tion êz coinciding with the dipole orientation of the molecules. The time dependence
is a Gaussian envelope of the form Ωℓ(t) = η exp[−(t− t0)

2/τ2], with maximum amp-
litude η and duration τ and the wave vector of the laser is assumed to be k⃗ℓ = k0êx.
The situation is depicted in Fig. 9.2(d) and shows that superradiant emission is reached
even at large temperatures, via the properly tailored pulsed, resonant addressing. In
fact, vibronic coupling not only leads to an increase of possible states reachable by the
laser which in the Dicke regime (d≪0) would otherwise be prohibited, but additionally
decreases the dephasing stemming from the coherent dipole-dipole interaction and
thereby leads to an increased photon emission after the pulse is switched off. Let us
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now use our approach to compare our results to analytical predictions [39,278] which
show that superradiant decay of a fully inverted ensemble of two-level emitters can
be predicted purely by the geometry of the system by observing that a positive slope
of the total emitted intensity

∑
ij Γij⟨σ†iσj⟩(t) at t = 0 is a good criterion for super-

radiant emission. The condition derived in these references reads
∑N

k=1 Γ
2
k > 2NΓ2

0,
where Γk are the collective decay rates corresponding in our case to a fixed distance
d and zero vibronic coupling. This can be immediately translated to the case of
N identical molecules, where the factor exp[−λ2(1 + 2n̄)] is crucial, leading to the
following condition for the emergence of superradiant decay

N∑
k=1

(
Γλ=0
k

)2
>

1 + e−2λ2(1+2n̄)

e−2λ2(1+2n̄)
NΓ2

0. (8.21)

This shows that with increasing temperature and/or vibronic coupling the condition
for superradiance to occur is more difficult to meet and in the Dicke limit only one
collective decay rate is non-zero and the inequality reduces to

N >
1 + e−2λ2(1+2n̄)

e−2λ2(1+2n̄)
, (8.22)

which sets an upper bound of λ2(1 + 2n̄) < log(N − 1)/2 for the Huang-Rhys factor
λ2. It then follows that for molecular systems at zero temperature and in the Dicke
limit (d/0 = 0), the criteria for the Huang-Rhys factor for which superradiant effects
can still be observed is λ2 < log(N − 1)/2.

8.3.3 Dynamics in the single excitation subspace

The single excitation subspace is especially relevant for the case of mesoscopic systems of
quantum emitters driven with a very weak excitation pulse. Dipole-dipole interactions
induce tunneling behavior between neighboring emitters, allowing the understanding
of the system’s properties in terms of the band structure or dispersion relations for
the propagation of collective excitations. Non-hermitian, dissipative effects such as
superradiance and subradiance of such linear systems can also be understood in terms
of the localization of collective states within or outside a light cone.

Restricting the Hilbert space to a single excitation, one can recast the Hamiltonian
in Eq. (9.2) into the following non-Hermitian form (by disregarding the recycling term
in the Lindbladian)

H = ω0

N∑
j

σ†jσj +

N∑
jj′

[
Ωλ
jj′(d)− i

Γλ
jj′(d)

2

]
σ†jσj′ . (8.23)

As mentioned in the previous subsection, the collective basis offers a diagonalization
of the dynamics. As opposed to the full Bloch sphere case, in the single excitation one
can proceed with diagonalization of both coherent and incoherent parts by writing
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H =
∑N

k=1 ω̄
λ
kA

†
kAk where by definition the symmetric state operator corresponds to

the case S = Ak=N . The eigenenergies and the decay rates are given by the real and
imaginary part of the complex eigenvalues

ω̄λ
k = ω0 +Ωλ

k(d)− i
Γλ
k(d)

2
. (8.24)

The excitations can be understood in terms of the quasimomentum q = 2πk/(Nd),
where due to the periodicity we can define the first Brillouin zone by the index
k = 0,±1, ... ± ⌈(N − 1)/2⌉ where ⌈x⌉ denotes the ceiling function. Note that the
center of the Brillouin zone k = 0 corresponds to the symmetric mode and the edges
at k± = ±⌈(N − 1)/2⌉ to the most subradiant modes with degenerate eigenvalues ωk± .
This can be understood from the wave equation q2 + q2⊥ = (2π/0)

2 which requires that
for modes with |q|σge2π/0, the radial electric field components are evanescent, i.e.,
exponentially decaying, and the excitation is guided along the ring. Modes inside the
region |q| ≤ 2π/0 on the other hand have electric field components transverse to the
ring and are therefore radiating energy away into the vacuum.
In Fig. 9.3(a) the dispersion relation for a ring of N = 100 molecules is shown for

the cases with and without vibronic coupling λ. The region defined by the integer
number |k|σge⌈Nd/0⌉ is occupied by dark states as shown in Fig. 9.3(b) whose decay
rates (for a fixed k) are decreasing exponentially with the number of emitters for
λ = 0 [58]. For molecules with a non-zero vibronic coupling λ the exponential scaling
gets strongly modified and the decay rates for eigenstates with mode number k are
approximately given by Γλ

k/Γ0 ∼ (1− e−λ2
).

While Figs. 9.3(a) and (b) show the real and imaginary parts of the dispersion
relation using the reduced Hamiltonian, one can also discuss the dispersion relation
in the collective basis including vibrations. The term in Eq. (9.5) illuminates the
fact that the presence of vibrations causes a coherent transfer of population between
the symmetric mode S and the dark modes Ak. The coupling strength between the
symmetric mode in the vibrational ground state and a dark mode with one vibrational
excitation is given by λν/

√
N which is illustrated in Fig. 9.3(c). Since the vibrational

relaxation rate Γν is fast compared to the timescale 1/Γ0 of the electronic decay rate,
the population relaxes quickly to the dark state with no vibrational quanta. In general
the coupling strength between S with n vibrations and mode Ak with n+1 vibrations
is given by ⟨S, n|H |Ak, n+ 1⟩ =

√
(n+ 1)/Nλν where the Hamiltonian includes the

vibrational degrees of freedom and in particular the terms in Eq. (9.5)-(8.19) which
mediate the coherent transfer. The rate of transfer for a ring geometry is derived in
section 8.4 and generally the large vibrational linewidth Γν ≫ Γ0 will create resonances
between multiple modes thereby enhancing the population transfer to the dark state
manifold.
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Figure 8.4: (a) Energy diagram showing population transfer between symmetric
(superradiant) and antisymmetric (subradiant) collective states via their
mutual coupling to the vibrational bath. (b) Illustration of a molecular
dimer where two identical chromophores are separated by an insulating
bridge. Energy transfer between the two chromophores can take place via
near field coupling on length on the order of nanometers. The situation
depicted here shows in-plane dipoles (resulting in Ω < 0). (c) Energy
transfer rates between the symmetric and antisymmetric dimer state as
a function of the vibrational frequency. (d) Time evolution of a fully
inverted molecular dimer. The fully excited state decays exponentially
via the symmetric state which transfers energy to the antisymmetric state.
The analytical results in dashed-dotted lines show a good agreement.
Parameters are ν = 2Ω, d =0 /40,Γν = 30Γ0, λ = 0.1,Ω(d) ≈ 191.1Γ0

and polarization perpendicular to dimer axis.

8.4 Subradiant state preparation in molecular dimers and rings

Molecular dimers are ideal for the study of dipole-dipole induced energy shifts at very
small separations and for the study of the interplay between electronic and vibrational
quantum superpositions [279]. In such compounds, two chromophores are linked by
insulating bridges which do not allow for charge migration and do not shift the bare
electronic transitions. In Ref. [280], an experimental study of molecular dimers shows
the possibility to control the inter-chromophoric distance from 1.3 nm to 2.6 nm while
keeping the orientation of each chromophore dipole fixed. Previous theoretical studies
have focused mainly on the purely coherent interactions and have neglected the effects
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of vibrational relaxation and collective spontaneous emission [281–283].
Here, we show that the coupling between symmetric (bright) and antisymmetric

(dark) collective states in a vibronic dimer, combined with the vibrational relaxation
can lead to an efficient preparation of long-lived quantum entangled states of the
two chromophores (see Fig. 8.4). The mechanism is reminiscent of the process of
FRET (Förster resonance energy transfer) between donor and acceptor molecules,
where coherent energy exchanges followed by quick vibrational relaxation can lead to
a unidirectional flow of energy.

The model is described by the free Hamiltonians h
(1)
0 + h

(2)
0 to which we add

h
(2)
Hol + h

(2)
Hol and the two-particle term Hd-d = Ω(σ†1σ2 + σ†2σ1) describing excitation

exchange between the two chromophores via the near field dipole-dipole coupling. We
make use of the collective basis representation with S = (σ1+σ2)/

√
2 as the symmetric

operator and a single antisymmetric, orthogonal operator A = (σ1 − σ2)/
√
2. We

define collective vibrational quadratures Q± = (q1 ± q2)/
√
2 and P± = (p1 ± p2)/

√
2

as well. The free Hamiltonian of electronic and vibrational degrees of freedom then
can be expressed as

Hdim
0 = ωSS†S + ωAA†A+

ν

4

∑
k=±

(Q2
k + P 2

k ), (8.25)

where the collective states frequencies ωS = ω̃0 +Ω− λνQ+/
√
2 and ωA = ω̃0 − Ω−

λνQ+/
√
2 become now operators which include the symmetric vibrational coordinate.

The energy scheme of the dimer is presented in Fig. 8.4(a) showing vibrationally-
dressed collective electronic states. While in the absence of motion the symmetric and
antisymmetric states are orthogonal to each other, this is no longer the case when
vibrations are included allowing for transitions between them. The vibrational degrees
of freedom then couple the two states via the relative motion coordinate Q−

Hdim
int = − λν√

2
Q−(S†A+A†S), (8.26)

such that the total dimer Hamiltonian expresses as Hdim
0 +Hdim

int . The interaction term
in Eq. (8.26) can mediate transfer of excitation between the bright and dark state
through the annihilation or creation of a vibrational quantum of the relative motion
coordinate. Under the assumption that the vibrational relaxation is fast as compared
to the coherent coupling Γν ≫ λν as well as all other decay rates, a perturbative set
of rate equations for the populations p= ⟨†⟩ and p= ⟨†⟩ can be obtained (for derivation
see Appendix 8.7.3)

ṗ = −(Γ+κ→)p+κ→p, (8.27a)

ṗ = −(Γ+κ→)p+κ→p, (8.27b)

with transfer rate from the symmetric to antisymmetric state

κ→ =
λ2ν2Γν/2

(Γν/2)2 + (2Ω− ν)2
. (8.28)
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Figure 8.5: (a) Absorption spectrum in steady state for a ring with N = 7 molecules
with the linewidth of the symmetric state broadened by the sum of the
energy transfer rates to the dark state manifold. The dashed-dotted line
is a Lorentzian with linewidth given by ΓS +

∑
k κS→Ak

and maximum
at ωℓ = ω0 +Ωλ=0

S . (b) Laser pulse with a Gaussian time profile as in
Eq. (8.20) with η = 2.5 Γ0, t0 = 2/Γ0, τ = 1/Γ0. The laser frequency
ωℓ is tuned to the superradiant mode k = 0. The single excitation
manifold is populated almost with unity and decays with a subradiant
rate ∼ Γ0(1− e−λ2

) afterwards. Further parameters for both plots are
d =0 /30,Γν = 100Γ0, λ = 0.15, ν = 120Γ0.

The transfer from the antisymmetric to symmetric state κ→ has a similar expression,
however with a term (2Ω + ν) present in the denominator. For Ω > 0 the resonance
condition is given by 2Ω = ν leading to unidirectional transfer from the symmetric to
the antisymmetric state while the back transfer is off-resonant and therefore suppressed
[see Fig. 8.4(c)]. In Fig. 8.4(d) we plot the time dynamics of a dimer initialized in the
fully excited state |E⟩ under this resonance condition. Initial decay to the symmetric
state is followed immediately by a rapid transfer to the antisymmetric state, causing
only a small temporary population in the symmetric state and a large accumulation
of population in the antisymmetric state. Remarkably, this can lead to a near-unity
population in the antisymmetric state even for moderate vibronic coupling strengths λ.
Since vibrational frequencies are on the order of ν/2π ∼ 10THz and the spontaneous
emission rate is on the order of Γ0/2π ∼ 10MHz, this resonance condition requires
dipole-dipole shifts on the order of ∼ 106 Γ0 which can be achieved by dimers with
nm separations.

Let us finally remark that the dark state preparation scheme described here for the
dimer can be extended to configurations of many molecules in the ring configuration.
To this end we have performed numerical simulations showing the drive of collective
states which are not accessible via direct illumination but are populated via the
incoherent, vibrationally mediated transfer. In Fig. 8.5(a), the enhanced absorption
profile for a ring of N = 7 molecules signals the transfer of population from the
symmetric, laser accessible collective state to a number of initially dark states. The
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increase in the linewidth is simply given by the sum of all transfer rates to the dark
state manifold which are obtained as a generalization of the dimer result∑

k

κS→Ak
=
∑
k

λ2ν2Γν/2

(Γν/2)2 + (ΩS − ΩAk
− ν)2

. (8.29)

In Fig. 8.5(b) the total population is shown following a pulsed excitation with the
laser frequency tuned to the superradiant mode. The numerical fit shows that most
population is trapped into dark states with an effective overall decay constant equal
to Γ0(1− e−λ2

), as predicted in Sec. 8.3.3.

8.5 Molecular coherent light sources

The formalism developed in the previous section allows us to tackle platforms such as
molecular nano-rings illuminated by incoherent light, as recently advanced in Ref. [143].
It has been suggested that these might act as natural filters with coherent light as
output. The situation is illustrated in Fig. 10.1(d): an incoherently pumped (at rate
ηp) central emitter couples to the waveguide-like light modes supported by the ring
of surrounding N emitters. While the treatment in Ref. [143] has been restricted
to ideal, identical two level systems and strongly relied on numerical evidence, we
aim here at providing a deeper analytical understanding and the natural extension to
more complex, molecular quantum emitters. Our analysis is based on simplifications
brought on by the transition from the bare basis to the collective basis.
We will make use of results in the following section and notice that the central

pump molecule is solely coupled to the symmetric combination of the ring molecules
with the Hamiltonian

Hp = ωpσ
†
pσp +

√
NΩλ

p(d)
[
σ†pS + S†σp

]
. (8.30)

As the symmetric operator creates delocalized excitations over the whole ring, the coup-
ling above benefits from the collective enhancement with

√
N multiplying the dipole-

dipole exchange rate Ωλ
p(d) which is dependent on the ring radius r = d/[2 sin (2π/N )].

Notice that the effect of vibrations has already been taken into account by the renormal-
ization of any dipole-dipole coherent and incoherent exchanges with the Huang-Rhys
factor (denoted by the index λ). The effect is mainly detrimental as the coherent
coupling between the pump emitter and the waveguide emitters is scaled down both
with λ and with temperature.
The dissipative part of the master equation governing the whole system’s evolution
includes the usual terms characterizing the decay of the ring molecules, adding to the
diagonal decay of the pump molecule and the mutual incoherent coupling between
pump and ring molecules of the form

Lp[ρ] =

√
NΓλ

p(d)

2

[
2Sρσ†p + 2σpρS† − {S†σp + σ†pS, ρ}

]
, (8.31)
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where Γλ
p(d) the incoherent coupling between the pump molecule and each of the

ring molecules. In addition, incoherent pump is modeled as an inverted spontaneous
emission process: this is in Lindblad form but with a collapse operator σ†p and rate ηp

Lηp [ρ] =
ηp
2

[
2σ†pρσp − {σpσ†p, ρ}

]
. (8.32)

To characterize the emission properties of the system, one makes use of both the

Figure 8.6: (a) State dependent decay rates via symmetric and antisymmetric loss
channels for the ring configuration of N = 14 emitters placed in in
the xy-plane with separation d = 0.10 and dipole polarization in the
z-direction. A comparison with the full Dicke limit is provided. (b) The
ratio between the state dependent symmetric decay rate and the sum
of the dark decay rates as a function of the inversion quantum number
m. It can be seen that loss of excitations takes place mainly via the
symmetric decay channel even at distances of the order d = 0.20.

emitted light intensity Iout as well as of the g(2)-function at zero time delay. We proceed
by using the definitions from Ref. [143] in the uncoupled basis before performing
our analysis in the alternative collective basis. The intensity in the bare, uncoupled
basis is a sum over the following terms Iout =

∑N+1
jj′ Γλ

jj′⟨σ
†
jσj′⟩, where now the sum

extends to the additional site which is the pump molecule. In the collective basis this
can be expressed as

Iout = Γλ
S(d)⟨S†S⟩+

N−1∑
k=1

Γλ
k(d)⟨A†

kAk⟩ (8.33)

+ 2
√
NΓλ

p(d)Re⟨S†σp⟩+ Γ0⟨σ†pσp⟩.

For small inter-emitter separation d≪0 the ring contribution can be expressed purely
in terms of the symmetric mode as decay into antisymmetric states is negligible
Γλ
k(d)/Γ0 ≪ 1. This can be easily justified by computing the branching of loss rates

from a given symmetric state |N/2,m⟩ into the symmetric manifold and outside of it,
into any dark decay channel k by via the Lindbladian in Eq. (8.5). One obtains the

state dependent decay rates Γλ=0
k,m (d) = α

(−)2
m Γλ=0

k (d)/(N − 1) and the state dependent
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decay into the symmetric channel Γλ=0
S,m(d) = α

(−)2
m Γλ=0

S (d). In Fig. 8.6 we plot these

rates as a function of the quantum number m as well as the ratio Γλ=0
S,m/

∑
k Γ

λ=0
k,m

to show that the restriction of the dynamics to the symmetric subspace is a good
approximation for small but still finite distances.
Moreover, this approximation is also well justified under weak excitation conditions

Figure 8.7: (a) Molecular ring acting as a waveguide coupled to a central, incoher-
ently pumped molecule, at electronic transition frequency ωp optimally
adjusted to fit a waveguide resonance ω0+Ωλ=0

S +Ωλ=0
p . (b) The g(2)(0)-

function in the case of N = 5 ring emitter in the absence of vibronic
coupling for various tunings ωp and coupling strengths Ωp for ηp = 3Γ0.
(c) A cut along the optimal resonance frequency ωp showing the steady
state emission rate alongside the g(2)(0)-function for ηp = 3Γ0, r = 0.050.
(d) Steady state photon emission for ηp = Γ0 taking only the symmetric
ring contribution in Eq. (8.33) into account. A clear threshold for the
ring emission emerges at a coupling strength Ωλ=0

p /Γ0 ≈ 1. The dashed-
dotted lines represent λ = 0.15 and the continuous lines λ = 0 in all
plots.

and with small vibronic couplings. The reason is transparent from Eq. (8.30) which
shows that the incoherent pump of the central molecules feeds only the symmetric
mode which, in the single excitation regime can only decay back to the ground state,
thus not allowing to trap population into robust, antisymmetric states. This is no
longer true at higher excitations and in the presence of strong vibronic coupling, where
antisymmetric collapse operators can bring population out of the symmetric manifold.
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In Fig. 8.7(d) we illustrate the intensity of emitted light taking only the symmetric
ring mode into account, namely Γλ

S(d)⟨S†S⟩ as a function of the coupling strength
with a threshold at Ωλ

p(d) ≈ Γ0 after which the emission intensity is sharply increasing.
While analytical calculations are possible for a wide range of parameters, the results
are cumbersome; we therefore restrict here to the simplified case with Γλ

p = 0 (for full
set of equations see the supplemental material):

⟨S†S⟩ =
N Γ̄ηpΩ

λ
p
2

Γλ
S(Γ0 + ηp)

[(
Γ̄/2

)2
+Ωλ

S
2
]
+ Γ̄2NΩλ

p
2
, (8.34)

where Γ̄ = Γ0 + ηp + Γλ
S . The situation is relevant for the ideal geometry chosen in

Ref. [143] which insured a maximal coherent coupling between the pumped, central
emitter while allowing for the mutual dissipative coupling to vanish.

In order to characterize statistics of the emitted light, the second order correlation
function with zero time delay is used which is defined via the electric field radiated
by an ensemble of dipole emitters [62]. Due to the symmetrical ring geometry, the
g(2)-function in steady state at a detection distance |r| ≫0 in the plane of the ring
can be expressed purely in terms of the electronic transition operators as [143]

g(2)(0) =

∑N+1
ijkl ⟨σ†iσ

†
jσkσl⟩(∑N+1

ij ⟨σ†iσj⟩
)2 =

4N⟨S†Sσ†pσp⟩+ 4N 3
2Re⟨S†S†Sσp⟩+N 2⟨S†S†SS⟩(

N⟨S†S⟩+ 2
√
NRe⟨S†σp⟩+ ⟨σ†pσp⟩

)2 .

(8.35)

A second order correlation function equal to unity is used as a figure of merit
for coherent light emission and in Fig. 8.7(b) it is shown that an optimal resonance
frequency ωp = ω0 + Ωλ=0

S + Ωλ=0
p for the central molecule leads to coherent light

emission in particular in the strong coupling regime Ωλ=0
p ≫ Γ0. Setting the optimal

resonance frequency for the pumped molecule, Fig. 8.7(c) shows the total steady
state intensity alongside the g(2)(0) as a function of the coupling strength where the
sudden increase of intensity stems from the ring contribution as shown in Fig. 8.7(d).
This sudden increase originates from a coupling strength which attains the same
magnitude as the incoherent loss rate into the vacuum modes Γ0 of the pumped
molecule. Consequently, in the strong coupling regime the majority of the excitation
in the center is coherently transfered to the ring.

8.6 Conclusions

We have provided a largely analytical approach to the description of light-matter
cooperativity in molecular arrays, where subwavelength emitter-emitter separations
lead to the occurrence of a strong coherent and incoherent collective response. The
effect of molecular vibrations has been incorporated via the Holstein Hamiltonian, that
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describes vibronic coupling between electronic and nuclear degrees of freedom. In a
first step, we have identified analytical scaling laws which characterize phenomena such
as super- and subradiance in molecular rings. The ring configuration, as characterized
by periodic boundary conditions, allow for the natural extension to mesoscopic systems.
For the situation of Dicke superradiance, we find that a collective basis description
provides insight into how the superradiant pulse intensity is lost into antisymmetric,
dark channels coupled via vibrations. In the low excitation regime, we have analyzed
the open system band diagram and found the imprint of the vibrational coupling
on both energy and loss rate bands. For molecular dimers, in which case near field
couplings are considerably large, we have shown that long-lived bipartite entanglement
at the level of electronic degrees of freedom can be produced via dissipative effects
such as vibrational relaxation. For incoherently pumped, nanoscale coherent light
sources, we have provided analytical results supplementing the results in Ref. [143]
and an extension to molecular emitters.
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8.7 Supplemental material

8.7.1 Vibronic coupling

Let us justify the form of the Holstein Hamiltonian in Eq. (9.1) by following a first-
principle derivation for a single nuclear coordinate R of effective mass µ. We assume
that, along the nuclear coordinate, the equilibria for ground (coordinate Rg , state
vector |g⟩) and excited (coordinate Re and state vector |e⟩) electronic orbitals are
different. Assuming equilibrium positions Rg and Re for the potential surfaces of
electronic ground and excited states, one can write the total molecular Hamiltonian
describing both electronic and vibrational dynamics as

Hmol =

[
ω0 +

P̂ 2

2µ
+

1

2
µν2

(
R̂−Re

)2]
σ†σ +

[
P̂ 2

2µ
+

1

2
µν2

(
R̂−Rg

)2]
σσ†, (8.36)

where µ is the reduced mass of the vibrational mode. The kinetic and potential energies
are written in terms of the position Q̂ and momentum operator P̂ describing the nuclear
coordinate under consideration, with commutation [Q̂, P̂ ] = i. Introducing oscillations
around the equilibria Q̂ = R̂−Rg and subsequently R̂−Re = Q̂+Rg−Re =: Q̂−Rge
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we obtain

Hmol =
P̂ 2

2µ
+

1

2
µν2Q̂2 + ω0σ

†σ − µν2Q̂Rgeσ
†σ +

1

2
µν2R2

geσ
†σ. (8.37)

We can now rewrite the momentum and position operators in terms of bosonic
operators Q̂ = qzpm(b

† + b), P̂ = ipzpm(b
† − b). The bosonic operators satisfy the

usual commutation relation [b, b†] = 1 and the zero-point motion displacement and
momentum are defined as qzpm = 1/

√
2µν and pzpm =

√
µν/2. Reexpressing the

terms above yields the Holstein Hamiltonian [20]

Hmol = (ω0 + λ2ν)σ†σ + νb†b− λν(b† + b)σ†σ. (8.38)

The dimensionless vibronic coupling strength λ is given by λ = µνRgeqzpm (λ2 is called
the Huang-Rhys factor and is typically on the order of ∼ 0.01− 1).

The polaron transformation

The Holstein Hamiltonian can be diagonalized via a level-dependent polaron trans-
formation U† = |g⟩ ⟨g| + D† |e⟩ ⟨e| with the standard displacement operator D =

e−i
√
2λp = eλ(b

†−b). In the polaron-displaced basis, the Holstein Hamiltonian becomes
H̃mol = U†HmolU = ω0σ

†σ + νb†b and has simple eigenvectors |g;n⟩ and |e;n⟩. The
eigenvectors in the bare, original basis can be found by inverting the polaron trans-
formation |g;n⟩ and D |e;n⟩. The polaron-transformed probe Hamiltonian is then
expressed as H̃ℓ = iη(σ†D†e−iωℓt − σDeiωℓt). One can now look for selection rules
applying to processes such as stimulated emission and absorption induced by the
external optical drive. To this end, we focus on absorption (as emission is similar) by
assuming an initial state |g; 0⟩ in the displaced basis and asking for the probability of
exciting the system to state |e;n⟩. This is easily computed to lead to

Pabs(n) = | ⟨e;n|σ†D† |g; 0⟩ |2 = e−λ2 λ2n

n!
, (8.39)

which is the expected Poissonian distribution leading to the Franck-Condon prin-
ciple for molecular transitions. For dissipative radiative processes, we notice that
the Lindblad collapse operator is also transformed to the polaron one σD such that
spontaneous emission follows the same Poissionian distribution in taking the electronic
state from |e; 0⟩ to |g;n⟩.
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Thermal averaging of vibrational effects

Assuming a thermal state for the vibrational modes we are going to calculate the trace
of a single vibrational displacement operator D† = e−λ2/2e−λb†eλb:

⟨D†⟩T = Tr[D†ρth] = e−λ2/2Tr[e−λb†eλbρth] = (8.40)

= e−λ2/2
∞∑
n=0

e−βνn(1− e−βν) ⟨n|
∑
m,l

(−λm)λl

m!l!
(b†)mbl|n⟩

= e−λ2/2
∞∑
n=0

e−βνn(1− e−βν)

n∑
m=0

(−λ2)m
m!

(
n

m

)

= e−λ2/2(1− e−βν)
∞∑

m=0

(−λ2)m
m!

∞∑
n=m

e−βνn

(
n

m

)
,

where we made use of the sum identity
∑n

i=k

∑i
j=k ai,j =

∑n
j=k

∑n
i=j ai,j in the last

step. Additionally making use of the binomial identity
∑∞

n=k

(
n
k

)
yn = yk

(1−y)k+1 one

readily obtains

⟨D†⟩T = e−λ2/2
∞∑

m=0

(−λ2)m
m!

e−βνm

(1− e−βν)m
= e−λ2/2(1+2n̄) = e

−λ2

2
coth

(
ℏν

2kBT

)
. (8.41)

8.7.2 Vacuum mediated coherent and incoherent coupling rates

The vacuummediated dipole-dipole interactions for an electronic transition at wavelength

0 (corresponding wave vector k = 2π/0) between an identical pair of emitters separated
by rij is

Ωij =
3

4
Γ0

[
(1− 3 cos2 θ)

(
sin(krij)

(krij)2
+

cos(krij)

(krij)3

)
− sin2 θ

cos(krij)

(krij)

]
. (8.42)

The quantity θ is the angle between the dipole moment d and the vector rij . The
associated collective decay is quantified by the following mutual decay rates

Γij =
3

2
Γ0

[
(1− 3 cos2 θ)

(
cos(krij)

(krij)2
− sin(krij)

(krij)3

)
+ sin2 θ

sin(krij)

(krij)

]
. (8.43)

8.7.3 Vibrationally mediated energy transfer rates in the collective basis

The Holstein Hamiltonian rewritten in a collective basis both for the electronic as well
as the vibrational degrees of freedom has the following form

Hdim = ωS(Q+)S†S + ωA(Q+)A†A− λν√
2
Q−(S†A+A†S) + ν

∑
k=±

b†kbk, (8.44)
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where the energies of the collective state frequencies depend on the symmetric vibra-
tional coordinate ωS(Q+) = ω0 + λ2ν +Ω− λνQ+/

√
2 and ωA(Q+) = ω0 + λ2ν −Ω−

λνQ+/
√
2. We note that the Q+-dependent shifts can be removed by the collective

polaron transforms US = eiλP+S†S/
√
2 and UA = eiλP+A†A/

√
2 which transform the

symmetric nuclear coordinates as

USQ+U†
S = Q+ +

√
2λS†S, (8.45a)

UAQ+U†
A = Q+ +

√
2λA†A, (8.45b)

and lead to a renormalization of the state energies ω̃A = ω0 + λ2ν/2 + Ω and ω̃S =
ω0 + λ2ν/2− Ω. The equations of motion for the operators are given by

Ṡ = −
[
iω̃+

Γ

2

]
S +

iλν√
2
Q−A+

√
ΓSin, (8.46a)

Ȧ = −
[
iω̃+

Γ

2

]
A+

iλν√
2
Q−S +

√
ΓAin, (8.46b)

where Sin = (σ1,in + σ2,in)/
√
2 and Ain = (σ1,in − σ2,in)/

√
2 are the collective noise

terms which we will neglect from now on as they do not contribute to the transfer
process.

To calculate the transfer rate from the symmetric state to the antisymmetric state
we assume some initial population in the symmetric state and no population in
the antisymmetric state, additionally we assume that the symmetric state decays
independently and formally integrate

S(t) = S(0)e−(iω̃+Γ/2)t, (8.47a)

A(t) = A(0)e−i(ω̃+Γ/2)t +
iλν√
2

∫ t

0
dt′e−i(ω̃+Γ/2)(t−t′)Q−(t

′)S(t′), (8.47b)

and for the expectation value of the populations we get

˙⟨S†S⟩ = −Γ⟨S†S⟩ −
√
2λν Im⟨S†AQ−⟩, (8.48a)

˙⟨A†A⟩ = −Γ⟨A†A⟩ −
√
2λν Im⟨A†SQ−⟩. (8.48b)

Therefore, the term −
√
2λν Im⟨A†SQ−⟩ will be responsible for population transfer

from the symmetric to the antisymmetric state at a rate κS→A and we can calculate

−
√
2λν⟨A†SQ−⟩ = −iλ2ν2

∫ t

0
dt′e−ϵ(t−t′)⟨Q−(t

′)Q−(t)⟩⟨S†(0)S(0)⟩e−ϵ′te−ϵ∗t

= −iλ2ν2⟨S†(0)S(0)⟩e
−Γt − e−((Γν+Γ−Γ)/2+i(ω−ω−ν))t

(Γν + Γ−Γ)/2 + i(ω−ω−ν)
, (8.49)

where we used the fact, that the expectation values for S and Q− factorize and
defined ϵ= − (Γ/2− iω̃) and ϵ= − (Γ/2− iω̃). The correlations for Q− are evaluated
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Figure 8.8: (a) Transfer rate from the symmetric to the antisymmetric state for a
molecular dimer as a function of the vibronic frequency. The maximum
transfer occurs at the resonance ν = Ωλ

S − Ωλ
A. (b) Transfer rates for a

molecular ring of N = 20 molecules from the symmetric state with mode
number k = 0 to the N−1 dark states. Resonances occur at ν = Ωλ

S−Ωλ
k

for k = 1, ..., ⌈(N − 1)/2⌉ and the range of vibrational frequencies at
which transfer to the dark state manifold occur is increasing with N as
well as the linewidth of the vibrational resonance Γν . Parameters are
d = 0.0250, Γν = 100Γ0, λ = 0.15 and the dipole polarization is chosen
perpendicular to the ring plane.

assuming free evolution of the vibrations (to lowest order) and zero temperature for
the vibrational modes:

⟨Q−(t
′)Q−(t)⟩ =

1

2

(
⟨b1(t′)b†1(t)⟩+ ⟨b2(t′)b†2(t)⟩

)
= e−(Γν/2−iν)(t−t′). (8.50)

In the case of a fast vibrational relaxation rate Γν ≫ Γ,Γ the transfer rate can be
written as:

κS→A =
λ2ν2

2

Γν + Γ−Γ
(Γν+Γ−Γ2

)

4 + (ω−ω−ν)2
. (8.51)

The transfer rate from the antisymmetric to the symmetric state can be calculated
similarly, assuming initial population in the antisymmetric state:

κA→S =
λ2ν2

2

Γν + Γ−Γ
(Γν+Γ−Γ2

)

4 + (ω−ω−ν)2
. (8.52)

Generalization to N molecules

The generalization to an arbitrary number of molecules is straightforward by first
writing the full Hamiltonian in a collective basis for both the electronic as well as the
vibrational modes.
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Hcoll = ωS(QN )S†S +

N−1∑
k=1

ωk(QN )A†
kAk

− λν√
N

N−1∑
k=1

(QkS†Ak + h.c.)− λν√
N

N−1∑
k ̸=k′

(Qk−k′A†
kAk′ + h.c.) + ν

N∑
k=1

b†kbk,

(8.53)

where the energies of the collective states are shifted by the contribution of the
symmetric vibrational mode ωk(QN ) = ω0 + λ2ν +Ωk − λνQN /

√
N for k = 1, . . . ,N .

Similarly to the dimer case, the QN -dependent energy shifts can be removed by the

collective polaron transformation
∏N

k=1 UAk
=
∏N

k=1 e
iλPNA†

kAk/
√
N which leads to

a renormalization of the collective state energies as ω̃k = ω0 + λ2ν/2 + Ωk. The
crucial term is however the coupling between the symmetric states and the dark state
manifold. Similar to the molecular dimer case we assume initial population in the
symmetric state and solve the Heisenberg equations of motion neglecting the noise
terms

Ṡ = −iω̃SS − ΓS
2
S +

iλν√
N

N−1∑
k=1

QkAk, (8.54a)

Ȧk = −iω̃kAk −
Γk

2
Ak +

iλν√
N
Q†

kS +
iλν√
N

N−1∑
k′ ̸=k

Qk−k′Ak′ . (8.54b)

After solving for the population ⟨S†S⟩(t) and tracing out the vibrational modes one
finds transfer rates κS→Ak

between the symmetric state and the dark state manifold:

κS→Ak
=
λ2ν2

2

Γν + Γk − ΓS
(Γν+Γk−ΓS)2

4 + (ΩS − Ωk − ν)2
. (8.55)
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We study the photophysics of molecular aggregates from a quantum
optics perspective, with emphasis on deriving scaling laws for the fast
non-radiative relaxation of collective electronic excitations, referred to
as Kasha’s rule. At deep subwavelength separations, quantum emitter
arrays exhibit an energetically broad manifold of collective states with
delocalized electronic excitations originating from near field dipole-dipole
exchanges between the aggregate’s monomers. Photoexcitation with visible
light addresses almost exclusively symmetric collective states, which for
an arrangement known as H-aggregate, have the highest energies (hypso-
chromic shift). The extremely fast subsequent non-radiative relaxation
via intramolecular vibrational modes then populates lower energy, subra-
diant states which results in the effective inhibition of fluorescence. Our
treatment allows for the derivation of an approximate linear scaling law of
this relaxation process with the number of available low energy vibrational
modes and reveals its direct proportionality to the dipole-dipole interaction
strength between neighbouring monomers.

DOI: 10.48550/arXiv.2304.10236

9.1 Introduction

Molecular aggregates [265,284,285] are self-ordered arrangements of monomers with a
strong optical transition dipole strength. Owing to the dense packing of monomers
within the aggregate, at the level of tens of nanometers, thus much below an optical
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Scaling law for Kasha’s rule in photoexcited subwavelength molecular aggregates

wavelength and despite inhomogeneous broadening and separation disorder, they
exhibit delocalized excitons [286]. This allows strong coupling to external light modes,
resulting in collectively modified fluorescence rates. Following the discovery of J- and H-
aggregates in the 1930s by Scheibe [287] and Jelley [288] their standard understanding
is based on the original approach introduced by Kasha in the 1960s [21]. Currently,
J-aggregates are widely employed in light-matter coupling experiments aiming at
the modification of material properties via the manipulation of the electromagnetic
vacuum mode density around electronic resonances [289].

In quantum optics, there is a growing interest in the cooperative behavior of
subwavelength matter systems [19], confined to regions comparable to the typical
wavelength λ of visible light. Implementation platforms include synthetic systems such
as atoms in optical lattices, vacancy centers, quantum dots, etc., strongly building on
the seminal work of Dicke [2] in the 1950s. Dicke predicted that the rate of radiative
emission from indistinguishable electronic systems, such as a number N of atoms
placed within a volume much smaller than λ3, scales quadratically with particle number
N . This phenomenon, called Dicke superradiance [4,47], is accompanied by the closely
related effect of subradiance, where the emission rate of collective states can be much
lower than that of an isolated single quantum emitter [290]. Subradiance holds many
promises towards applications of robust quantum state design or in quantum metrology
and sensing [19,58]. Moreover, the open system dynamics combined with the study of
naturally occurring photosynthetic systems have triggered many investigations into
providing design principles of subwavelength biomimetic systems [143,259,291,292].

Such cooperative behavior can also be naturally studied in molecular aggregates
even at room temperature [259]. First, their small overall dimensions means that under
external illumination the light-matter interaction strength is collectively enhanced by
a factor

√
N - the number of monomers, due to the increase in the oscillator strength.

The symmetric superposition of the individual electronic excitation states exhibits the
lowest energy for a head-to-tail arrangement, i.e. a J- aggregate [284]. Consequently,
the symmetric state is protected against further vibrational relaxation and hence
the J-aggregate’s fluorescence is strongly increased. For the opposite case of parallel
arrangement of the dipole moments (H-aggregate), i.e. the side-by-side configuration,
fluorescence is inhibited due to vibrational relaxation to subradiant lower energy states.
These states deplete the symmetric state, in this case situated on top of the energy
band, in a process generally denoted as Kasha’s rule. Consequently, fluorescence is
decreased and the system can undergo other processes such as the singlet to triplet
transition followed by intersystem crossing and subsequently radiative relaxation via
phosphorescence. At close distances, not only the radiative emission is modified but
the inherent near-field dipole-dipole interactions lead to observable energy shifts in
the absorption peak tied to the symmetric state. It is shifted towards higher energies
(bathochromic) for H-aggregates and to lower energy (hypsochromic) for J-aggregates
when compared to the bare monomer’s absorption peak [284,285].

To shed some new light into some of these phenomena we follow here a quantum
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optics inspired approach [18] to analyse the photophysics of molecular aggregates.
The aim is to provide an analytical description of Kasha’s rule taking into account
dipole-dipole interactions, electron-vibron couplings and vibrational relaxation. Our
treatment involves a formulation where N monomers in a linear chain configuration
with separation d form an aggregate, as depicted in Fig. 10.1(a). Each monomer is
described as a two level electronic quantum emitter with an intrinsic coupling to a
number n of vibrational degrees of freedom (see Fig. 10.1(b)). The near-field dipole-
dipole couplings between monomers leads to the possibility of excitation migration
within the whole aggregate and thus to the creation of delocalized excitons. We
characterize these delocalized states by their collective energy shifts, seen as an energy
dispersion curve in Fig. 10.1(c) and by their radiative properties. Notice that for
such small separations, the light cone basically includes a single state characterized
by a quasi-momentum q = 0 (the symmetric superposition) while all other states
fall outside this light cone [58]. Uniform illumination leads to the activation of the
symmetric electronic superposition, which in turn can indirectly redistribute energy to
a manifold of asymmetric, dark collective states. In the specific case of H-aggregates,
the higher energetic symmetric state relaxes quickly via vibronically-aided processes
to the bottom asymmetric states characterized by subradiance. This presents an
effective reduction of fluorescence, thus favoring transitions to triplet states and thus
phosphorescence. The mechanism is roughly depicted in Fig. 10.1(c) as the initial
excitation slides down quickly to the bottom of the dispersion curve. Snapshots
of this process in time are shown in Fig. 10.1(d) describing the time evolution of
the excitation from the symmetric, quickly decaying collective state to the bottom
asymmetric, robust electronic states. A perturbative treatment allows us to derive an
analytical expression for this rate, revealing independence of the number of monomers
and a linear scaling with the number of nuclear vibrations available for the dissipation
of electronic energy into low energy vibrations. Moreover, the timescale of the process
is set by the strength of the nearest neighbor dipole-dipole interaction.

The manuscript is structured as follows: we first introduce the model for N coupled
molecular quantum emitters in Sec. 9.2. We then quickly review the transformation
from the bare monomer basis to the collective aggregate basis as introduced formally
in Ref. [22]. In Sec. 9.3 we derive rate equations for collective state populations and
compare with numerical simulation for the specific case of H-aggregates.

9.2 Model

We consider a deep subwavelength ensemble of molecular quantum emitters in an
equidistant chain configuration (see Fig. 10.1(a)) mimicking a molecular aggregate
comprised of N identical monomers and with a typical inter-monomer distance d in
the nm range. As photoexcitation is performed with light sources of wavelength 2π/k0
(with k0 the wavevector) in the µm range, the condition k0d ≪ 1 is fulfilled. Each
monomer is assumed to undergo a single electronic transition which in turn is coupled
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Figure 9.1: (a) Illustration of a tail-to-tail arrangement of monomer dipoles (H-
aggregate configuration). With separations in the nm range, the condition
k0d≪ 1 is fulfilled leading to strong near-field dipole-dipole interactions
with nearest-neighbour strengths Ω. (b) Diagram describing electron-
vibron interactions within each monomer. A single electronic transition
operator σ is coupled to n vibrational mode operators bm with frequencies
νm, linewidths Γm and Huang-Rhys factors sm, where m runs from 1
to n. (c) Energy band diagram for a mesoscopic chain as a function of
the quasi-momentum q. Upon photoexcitation, only the symmetric state
(q = 0) is initially populated. Subsequently, an almost instantaneous
relaxation towards lower energy states takes place. On the right side,
the population distribution of the collective excitation modes for k0d =
0.0126 is presented in snapshots at different times, showing that the
electron-vibron coupling combined with vibrational relaxation leads to
the migration of energy towards the lowest energy asymmetric modes.
We have considered a large n spanning the range of frequencies from 0
to 4Ω, with Γm = νm/10 and identical sm = 10−2.

to a n vibrational modes. Each vibrational mode has a frequency νm and relaxation
rate Γm, where m runs from 1 to n. The monomer can undergo spontaneous emission
at rate γ0, owing to the coupling to the electromagnetic environment.

Electron-vibron interactions - For each monomer j, the electronic transition is at
frequency splitting ω0 (ℏ = 1) and is described by the collapse operator σj = |g⟩j ⟨e|j .
The vibrational degrees of freedom are described by bosonic operators bjm satisfying the
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commutation relations
[
bjm, b

†
j′m′

]
= δjj′δmm′ . The vibronic couplings are illustrated

in Fig. 10.1(b) as links between the electronic and vibration operators with magnitude
characterized by the Huang-Rhys factors sm. The electronic and vibrational degrees of
freedom are subject to loss quantified by the spontaneous emission rate γ0 and by the
vibrational relaxation rates Γm, respectively. The Hamiltonian for all N monomers is
obtained as a sum over each particle’s Hamiltonian

h(j) = ω̄0σ
†
jσj +

n∑
m=1

νm

(
b†jmbjm −√

smσ
†
jσj(b

†
jm + bjm)

)
. (9.1)

Notice that the bare frequency is Stokes shifted ω̄0 = ω0 +
∑

m smνm. This shift will
later be eliminated after a polaron transformation (see Apendix 8.7.1 for more details).

Collective electronic excitations - Dipole-dipole exchanges at rates Ωjj′ have a
strong imprint at nm distances, owing to their scaling with the inverse cube of the
particle separation |r⃗j − r⃗j′ |−3 in the near field region [19]. This can be listed in the
Hamiltonian as

Hd-d =
∑

j ̸=j′ Ωjj′σ
†
jσj′ (9.2)

and describes an excitation transfer between pairs of monomers via a virtual photon
exchange. The coherent exchange is mediated by the dipole-dipole frequency shifts
Ωjj′ , which in units of the optical emission rate γ0 are given by Ωjj′/γ0 = −3π/k0 µ⃗

∗ ·
Re GGG(r⃗j , r⃗j′ , ω0) · µ⃗, namely, proportional to the real part of the Green’s tensor in free
space (see Appendix 8.7.2). In the following we will consider the particular case of
side-by-side arrangement, where all transition dipoles µ⃗ are parallel to each other and
perpendicular to the chain direction.

Radiative and vibrational loss - In a master equation formulation for the system
density operator ρ written as ∂tρ = i[ρ,H]+L[ρ] loss can be included via the Lindblad
superoperator Lγ [ρ] = γO/2

[
2Oρ(t)O† −O†Oρ(t)− ρ(t)O†O

]
, describing decay at

generic rate γO through a single channel with a generic collapse operator O. For
vibrational loss, the collapse rate for each mode m is Γm and the corresponding
collapse operator is bjm −√

smσ
†
jσj . This form for the collapse operator is derived

in analogy to the dissipative physics of optomechanical systems in the ultrastrong
coupling regime [293]. The radiative loss is not in diagonal Lindblad form but achieves

the following expression Le[ρ] =
∑

j,j′ γjj′/2
[
2σjρσ

†
j′ − σ†jσj′ρ− ρσ†jσj′

]
. This form

can be diagonalized and it shows the emergence of N independent decay channels,
each corresponding to some collective electronic superposition state [19]. At very small
separation, deep into the subwavelength regime, the fully symmetric superposition
decays at a superradiant rate roughly equal to Nγ0 while all other states have van-
ishingly small decay rates (which we will assume in the following to be exactly zero).
This is by no means a limitation of our treatment as one can easily generalize this to
the case of non-zero decay rates of the dark manifold [19,22].
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Collective basis formulation - The model can be better tackled in the collective
basis, as has been previously considered in Ref. [22]. In the mesoscopic limit, where N
is very large, the system illustrated in Fig. 10.1(a) can be considered translationally
invariant and periodic boundary conditions can be invoked. Furthermore, in the deep
subwavelength regime where k0d≪ 1, the eigenstates of the Hamiltonian in Eq. (9.2)
are collective excitation states. A single symmetric mode can be distinguished with
state vector obtained by the application of the symmetric operator S† =

∑
j σ

†
j/
√
N

to the collective ground state. To a good approximation the system can be considered
to be in the Dicke limit where a single superradiant emission rate roughly estimated
by γS = Nγ0 characterizes this ’bright’ state. In addition, the other orthogonal
N − 1 asymmetric states are obtained via the application of asymmetric operators
Aq =

∑N
j=1 e

iqjdσj/
√
N indexed by the quasi-momentum q = 2πk/(Nd) obtained by

a rescaling of the index of the mode k = ±1, ...,±(N − 1)/2 as used in Ref. [22] (for
simplicity of notations, we restrict the discussion here to the N odd case). These
states are non-radiative at such deep subwavelength molecular separations and we
dub them therefore as ’dark’ as they are situated outside the light cone.

The collective excitations are eigenstates of the dipole-dipole interaction Hamiltonian

Hd−dAq|g⟩⊗N = ΩqAq|g⟩⊗N , (9.3)

where by definition we fix the symmetric shift ΩS ≡ Ωq=0. With periodic boundary
conditions imposed, in the mesoscopic limit, one can derive the collective shifts as
Ωq = 2

∑
j Ω1j cos(q(j − 1)d) [22, 58]. Further simplifications occur by considering

the nearest neighbour approximation and the collective eigenenergies become Ωq =
2Ωcos(qd), where the nearest-neighbour coupling is simply denoted by Ω ≡ Ω12. The
dipole-dipole Hamiltonian can now be recast in terms of the collective operators in
the single excitation subspace

Hd−d = ΩSS†S +
∑
q ̸=0

ΩqA†
qAq (9.4)

which is derived by using the orthonormality condition
∑

q e
iqd(j−j′) = N δjj′ . Closely

following the procedure introduced in Ref. [22], one can analyze the coupling between
states of different symmetries via electron-vibron couplings by an additional transform-
ation to a collective basis for the vibrational degrees of freedom as well. This is done

by introducing collective vibrational modes Q
(m)
q =

∑N
j=1(bm,j + b†m,j)e

iqjd/
√
N , with

the momentum quadratures satisfying [Q
(m)
q , P

(m)
q ] = i and m labels the vibrational

mode running from 1 to n. The Hamiltonian coupling the symmetric state to the dark
state manifold is then given by

HSA
int = −

n∑
m=1

∑
q ̸=0

√
smνm√
N

(
Q(m)

q S†Aq + h.c.
)
, (9.5)

via collective vibrations. This coupling is responsible for funneling population into
the long lived dark state manifold after the initial driving of the fully symmetric
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state under uniform illumination. This mechanism is fundamental to understand the
dynamics associated with Kasha’s rule which we tackle in Sec. 9.3. In addition, within
the dark state manifold an all-to-all coupling Hamiltonian acts with the following form

HAA
int = −

n∑
m=1

∑
q ̸=q′

√
smνm√
N

(
Q

(m)
q−q′A†

qAq′ + h.c.
)
, (9.6)

and the sum implies that q, q′ ̸= 0. This indicates that a redistribution of energy takes
place within the whole manifold of dark states. After transforming the system Hamilto-
nian, the energies of the collective states are shifted by the contribution of the symmet-

ric vibrational mode −∑m

√
smνmQ

(m)
0 /

√
N . The energy shifts can be removed by

the collective polaron transformation U =
∏

q

∏n
m=1 e

i
√
sm/

√
NP

(m)
0 A†

qAq which leads
to a renormalization of the collective state energies as ω̄q = ω0 +

∑
m smνm/2 + Ωq.

9.3 Photophysics of J- and H-aggregates

The crucial point in analyzing the photophysics of aggregates is their small dimension
and the very small monomer-monomer separation with respect to the incoming optical
excitation wavelength. This means that laser driving takes place by the excitation of
the symmetric collective mode which leads to a rescaling of the Rabi driving with a
factor of

√
N : this can be seen equivalently as an increase of the oscillator strength by√

N , thus rendering aggregates of any kind as good candidates for strong light-matter
coupling. In addition, the particularity of the subsequent aggregate electronic dynamics
lies within the shape of the energy band. For example, J-aggregates present an energy
band where the symmetric mode at q = 0 lies at the bottom of the band thus leading
to a bathochromic frequency shift (to the left of the bare monomer frequency) and
subsequently shows not only an enhanced absorption cross section but also enhanced
fluorescence at a superradiant rate. In contrast, H-aggregates have the symmetric
state located at the top of the energy band corresponding to a hypsochromic shift (to
the right of the monomer bare frequency, see Fig. 9.2(c)). Most importantly, quick
dynamics follows the optical excitation involving the relaxation of the collective state
towards low energy dark states. This takes place owing to the Hamiltonian in Eq. (9.5)
which couples the symmetric state to the manifold of asymmetric states via vibrational
Huang-Rhys factors and which is followed by quick vibrational relaxation.

Analytical results. Rate equations. - Let us now derive an analytical expression
for the timescale associated with Kasha’s rule, for the relaxation of the collective
symmetric state. We largely follow the derivation in Ref. [22] which we generalize here
to incorporate the crucial aspect that many vibrational modes have to be taken into
account. Under the assumption that the vibrational relaxation rates are fast compared
to the coherent couplings and radiative loss rates, a set of rate equations for the
populations of the symmetric state pS = ⟨S†S⟩ and all dark states pq = ⟨A†

qAq⟩ can
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Figure 9.2: (a) The initially excited symmetric mode is linked to all asymmetric

modes via collective vibrational modes Q
(m)
q . Elimination of the vibra-

tional degrees of freedom reveals a unidirectional transfer of energy into
the dark state manifold. (b) Diagram illustrating the transfer S → q′

into a number ϵm of asymmetric states located around a vibrational
resonance νm (top). (Bottom) Only a limited number of vibrational
modes, from 1 to nmax can efficiently mediate resonant transfer between
the symmetric state and the dark manifold. These modes are within
the 4Ω bandwidth. (c) Absorption profile of a H-aggregate, exhibiting a
hypsochromic frequency shift to the right of the monomer resonance. (d)
Vibrational spectral density for equidistantly spaced vibrational frequen-
cies νm, with identical Huang-Rhys factors s = 0.01 and relaxation rates
Γm = νm/10. (e) Linear scaling of the transfer rate κS as a function
of the number of vibrational modes, with the same parameters as in
(d) and N = 20 molecules at k0d = 0.0126 separation. The scaling
law from Eq. (9.11) provides a very good fit to the rate equations in
Eq. (9.8). (f) Time dynamics of 20 molecules initialized in the symmetric
state. Numerical results in the single excitation manifold show excellent
agreement with an exponential decay given by e−κS t, and governed by
the analytical formula in Eq. (9.11) (Same parameters as in (d)-(e)).

be derived (see Appendix 9.5.1 for more details). The intermediate step is the tracing
out the vibrational modes as introduced in Ref. [22] and illustrated in Fig. 9.2(a).
With the definitions κS - total loss rate of the symmetric state, κq - loss rate for dark
state q, κq→S - incoherent repopulation rate from the dark to the bright state and
κq′→q - incoherent rate for redistribution of energy within the dark state manifold,
one can write

ṗS = −(γS + κS)pS +
∑
q ̸=0

κq→Spq, (9.7a)

ṗq = −κqpq +
∑
q′ ̸=q

κq′→qpq′ . (9.7b)

The rate equations show that the symmetric state energy spills into the whole dark
state manifold via rate κS and in addition, higher energy dark states spill into the lower
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energy ones via κq. The quasi-unidirectionality of the process is ensured by the fact
that, in this perturbative treatment, the coherent coupling between states is followed
by quick vibrational relaxation, making the reverse process, governed by rates κq→S
and κq′→q from lower energy state to higher ones, very unlikely (as shown in Ref. [22]
for the two monomer case). Mathematically, the condition is

√
smνm/

√
N ≪ Γ.

Analytically, one can get an expression for the transfer rate between the symmetric
mode and any dark mode q mediated by vibrational mode m as

κ
(m)
S→q =

2smν
2
m(Γm + γS)/N

(Γm + γS)2 + 4(ΩS − Ωq − νm)2
(9.8)

and construct the total rate to all states spanned by the index q by summing

κS =
∑nmax

m=1

∑
q κ

(m)
S→q over all vibrations up to an index nmax within the frequency

interval covered by 4Ω where the electronic collective states are positioned in energy.
Moreover, we will consider the standard underdamped harmonic oscillator model for
the molecular vibrations, i.e. the dissipation rate is much smaller than the resonance
frequency for any mode Γm ≪ νm. Equivalently, one can state that the quality factor
of any vibrational mode is much larger than unity νm/Γm ≫ 1.

In order to further proceed with analytical estimates, let us first make some comments
regarding typical timescales. Given that vibrational relaxation is in the order of tens
to hundreds of GHz while spontaneous emission is in the range of tens of MHz, a very
quick non-radiative path from the symmetric to low energy asymmetric states can be
achieved on ps timescales. For monomer separations in the nm range, expected near
field shifts Ω in the range of 1 THz to tens of THz are expected. This means that only
a few, low energy, molecular vibrations can fit in the window of 4Ω (see Fig. 9.2(b),
bottom) and aid the relaxation process. This allows us to derive an approximate
scaling law for κS as a function of a given number of vibrational modes nmax that can
efficiently mediate the relaxation of the symmetric state into the dark state manifold.

We proceed by first consider a given vibrational modem and asking for the condition
that this mode can transfer excitation from the symmetric mode to any of the dark
states. This procedure is illustrated in Fig. 9.2(b) (top). We notice that with the
condition that Γm ≪ νm (it is also implied that γS ≪ νm even for large N ) the
resonance condition requires that the states to which resonant transfer can take place
are only in the vicinity of the mode q fulfilling Ωq = ΩS − νm. Of course, in this case
one can immediately observe that any modes with νm > 4Ω cannot take part in this
transfer. Assuming a constant density of all N collective states spread within the
interval 4Ω, we can then estimate that a number of approximately ϵm = ΓmN/(4Ω)
states fall close to the resonance Ωq = ΩS−νm, i.e. within the linewidth Γm. Summing
over all these contributions gives the total rate for all transitions mediated by mode
m to states close to q as ∑

q

κ
(m)
S→q ≈

ϵm
N

2smν
2
m

(Γm + γS)
. (9.9)

The next step is the summation over all possible relaxation paths that participate
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in the transfer giving thus an estimate for the total rate

κS ≈
nmax∑
m=1

Γm

2Ω

smν
2
m

(Γm + γS)
. (9.10)

In order to estimate the sum above, knowledge of the particular nature of the monomer’s
frequencies, Huang-Rhys factors and vibrational relaxation rates is necessary. However,
while later we will numerically investigate random distributions of frequencies and
Huang-Rhys factors, we aim first at deriving a simple scaling law. To this end we will
proceed by making some simplifying assumptions, among which the first is that the
vibrational spectrum is equally spaced in the interval from 0 up to 4Ω. We denote the
frequency of mode m by νm = m4Ω/nmax. Let us also consider that all Huang-Rhys
factors are equal to s (later we compare with a randomized distribution with an
average s). Moreover, we neglect the contribution of γS as it is much smaller than Γm

(this should be typically very well fulfilled as γ0/Γm is expected to be around 10−5).

Summing over all vibrational modes within the interval of 4Ω gives us an approxim-
ated scaling law

κS ≈ 4sΩ

3

(nmax + 1)(2nmax + 1)

nmax
. (9.11)

The result shows independence of the total number of monomers N and a quasi
linear dependence on the total number of available low frequency vibrational modes
which can resonantly participate in Kasha’s relaxation process from the high energy
symmetric state to the bottom of the dark state manifold. Notice that the predicted
timescale is dictated by the nearest neighbor dipole-dipole coupling strength Ω which
in turn depends on the inverse cube of the monomer-monomer separation. In a first
step, we can estimate that the analytical scaling is in very good agreement with the
results of the rate equations, as seen in Fig. 9.2(e). The distribution of vibrational
modes and their spectral density is shown in Fig. 9.2(d). However, the important test
of validity will be performed against numerical simulations of the full Hamiltonian
and loss processes.

Comparison to numerics - The previously derived rate equations are obtained in
the limit where the quickest timescale in the system is set by the rates Γm and for
smaller than unity Huang-Rhys factors. The validity of this approach can be easily
checked against numerical simulations restricted to the single excitation subspace of
the total Hamiltonian in Eqs. (9.1) and (9.2). We therefore perform simulations in the
single excitation subspace and follow the time evolution of the system assuming unit
population of the symmetric state at the initial time t = 0. As Γm is larger than the
coherent rates, any excitation of a vibration is followed by quick relaxation, justifying
the assumption that any double excitation can be neglected.

The basis set is picked as a tensor product |j⟩ ⊗ |j′⟩(m) where by definition |j⟩ =
|g, g, ...ej , ...⟩ - only emitter j excited electronically and |j′⟩ = |0, 0, ...1j′ , ...⟩(m) - only
mode m in emitter j′ has one vibrational excitation. Instead of solving the master
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equation directly, one can use the quantum jump formalism to evaluate single stochastic
quantum trajectories using the Monte Carlo wave function method (MCWF). The
advantage is that instead of describing the state of the quantum system by a density
matrix of size N 4×n2 the stochastic method only requires state vectors of size N 2×n.
This is somewhat counteracted by the stochastic nature of the formalism which makes
it necessary to repeat the simulation until the wanted accuracy is reached. However,
in most scenarios, especially for higher dimensional quantum systems, the necessary
number of repetitions is much smaller than the system size N 2×n and therefore using
the MCWF method is advantageous (see Appendix 9.5.2 for more details). For the
simulation we write

|Ψ⟩ =
N∑

j,j′=1

n∑
m=1

α
(m)
jj′ |g, g, ...ej , ...⟩ ⊗ |0, 0, ...1j′ , ...⟩(m), (9.12)

with coefficients α
(m)
jj′ and where the first part refers to the electronic excitation of

molecule j and the second part to the excitation of the m-th vibrational mode of
molecule j′.

In a first step, we compare the numerical results with the analytical scaling of
Eq. (9.11), for an equidistant vibrational spectrum, in Fig. 9.2(f). A very good
agreement is obtained showing that the time evolution of the symmetric state is well
reproduced by an exponential decay following e−κS t. In the next step we pick a set
of randomly drawn vibrational frequencies ν1, ...νnmax in the window 0 to 4Ω and
Huang-Rhys factors s1, ...snmax in the interval [0, 0.2] (with an average s = 0.1). The
results plotted in Fig. 9.3(a) show that a good fit is obtained with the simplified result
of Eq. (9.11) which assumes evenly spaced vibrational frequencies and a Huang-Rhys
factor at the level of the distribution average s = 0.1. Furthermore, an average of the
numerical results over 200 random realizations predicts an excellent agreement to the
linear fit predicted by Eq. (9.11).

Effects of frequency disorder - Let us now proceed with analyzing the effect
of frequency disorder. As aggregates are immersed in solvents and usually under
room temperature conditions, they are expected to present a large inhomogeneous
broadening, at the level of THz. We consider a distribution of the N monomer
frequencies around ω0 such that the frequency of each monomer becomes ω0 + δj
where δj is randomly drawn from a distribution of width δω. In the collective basis,
the symmetric state couples to any asymmetric state and acquires a shift as well [294].
The coupling of S to a state q mediated by disorder is simply given by the Fourier
transform of the distribution

δq =
1√
N

N∑
j=1

eiqjdδj , (9.13)

while the shift of the collective state δS = 1/
√
N∑N

j=1 δj is the average of the
distribution, thus close to zero. According to Ref. [294], disorder induced couplings
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Figure 9.3: (a) Numerical results for κS plotted against increasing nmax for a ran-
domly drawn set of vibrational frequencies ν1, ...νnmax in the window 0
to 4Ω and Huang-Rhys factors s1, ...snmax in the interval [0, 0.2]. The fit
is performed with the analytical scaling in Eq. (9.11) for evenly spaced
vibrational frequencies and Huang-Rhys factor at the level of the dis-
tribution average s = 0.1. (b) Further comparison of the analytical
scaling from Eq. (9.11) with an average over 200 random realizations
shows almost perfect agreement. (c) Decay of the initial symmetric state
population under the influence of random static frequency disorder with
fluctuation δω around ω0. Further parameters in all plots: N = 20
molecules, k0d = 0.0126, Γm = νm/10, Ω ≈ 3.759× 105γ0.

introduce an additional loss channel, thus slightly increasing the Kasha rate. This is
indeed consistent with numerical simulations shown in Fig. 9.3(c) where the dynamics
of the symmetric state without disorder and with considerable disorder at δω = Ω and
δω = 2Ω are compared. The upshot is that the analytically derived loss rate holds
well even for considerable disorder levels.

9.4 Conclusions

Molecular aggregates are a perfect showcase of cooperative phenomena as their
photophysics is naturally characterized by coherent and incoherent effects brought
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on by the positioning of individual monomers in the near field of each other. Effects
widely explored in quantum optics, such as Dicke superradiance and subradiance,
naturally occur in the theoretical description of such compounds, albeit in the presence
of more complex, additional interactions between electrons and a vast number of
molecular vibrations. We have provided a theoretical approach to the dynamics of
collective electronic states making the connection, at the analytical and numerical
level, with the physical mechanism introduced long ago by Kasha, stating that photon
emission (fluorescence or phosphorescence) occurs in appreciable yield only from the
lowest excited state of a given multiplicity. Our analytical conclusions predict that
the Kasha loss rate from the symmetric, high energy, optically addressable state to
the lower energy states of an H-aggregate is roughly independent of the number of
monomers but strongly dependent on the number of low energy vibrational modes
which can be excited and then dissipate the accumulated energy afterwards.

Further investigations will focus on aspects such as the role of quantum coherence
in such systems. An important direction is the application of the methods presented
in this manuscript to photosynthetic systems under various conditions of illumination,
ranging from spatially and time coherent laser light to spatially and time incoherent
light sources.
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9.5.1 Deriving rate equations

Starting from the Holstein Hamiltonian in Eqs. (9.4)-(9.6) for N identical molecules
with n vibrational modes each. The Heisenberg equations for the collective electronic
modes are given by
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Ṡ = −i
(
ΩS − γS

2

)
S +

i
√
smνm√
N

n∑
m=1

∑
q

Q(m)
q Aq + noise, (9.14a)

Ȧq = −iΩqAq +
n∑

m=1

i
√
smνm√
N

(
Q(m)

q

†S +
∑
q′ ̸=q

Q
(m)
q−q′Aq′

)
+ noise. (9.14b)

The collective noise terms will be neglected from now on as they do not contribute
to the transfer process.

To calculate the transfer rate from the symmetric state to the antisymmetric states
we assume some initial population in the symmetric state and no population in
the antisymmetric states, additionally we assume that the symmetric state decays
independently and formally integrate

S(t) = S(0)e−(iΩ+γ/2)t, (9.15a)

Aq(t) = Aq(0)e
−iΩqt +

n∑
m=1

i
√
smνm√
N

∫ t

0
dt′e−iΩq(t−t′)

(
Q(m)

q (t′)S(t′)

+
∑
q′ ̸=q

Q
(m)
q−q′(t

′)Aq′(t
′)
)
, (9.15b)

and for the expectation value of the populations we get

˙⟨S†S⟩ = −γ⟨S†S⟩ −
n∑

m=1

∑
q

2
√
smνm√
N

Im⟨S†AqQ
(m)
q ⟩, (9.16a)

˙⟨A†
qAq⟩ = −

n∑
m=1

2
√
smνm√
N

Im
(
⟨A†

qSQ(m)
q ⟩+

∑
q′ ̸=q

⟨A†
qAq′Q

(m)
q′−q⟩

)
. (9.16b)

Therefore the terms −2
√
smνm/

√
N Im⟨A†

qSQ(m)
q ⟩ will be responsible for population

transfer from the symmetric to the antisymmetric state with quasi-momentum q at a

rate κ
(m)
S→q. We can calculate the rates explicitly up to order O(smν

2
m) and assuming

that correlations between vibronic and electronic operators factorize.

− 2
√
smνm/

√
N⟨A†

qSQ(m)
q ⟩

= −ismν2m
∫ t

0
dt′e−Ωq(t−t′)⟨Q(m)

q (t′)Q(m)
q (t)⟩⟨S†(0)S(0)⟩e−ϵ′te−ϵ∗t

= −ismν2m⟨S†(0)S(0)⟩e
−γt − e−((Γm+γ)/2+i(Ω−Ωq−νm))t

(Γm + γ)/2 + i(Ω−Ωq − νm)
, (9.17)
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where we defined ϵ= − (γ/2− iΩ) and used the fact that different vibrational modes

are uncorrelated at all times, i.e. ⟨Q(m′)
q (t′)Q

(m)
q (t)⟩ = 0 for m′ ≠ m. The correlations

for Q
(m)
q are evaluated assuming free evolution of the vibrations (to lowest order) and

zero temperature for the vibrational modes:

⟨Q(m)
q (t′)Q(m)

q (t)⟩ = 1

N
N∑
j=1

⟨bjm(t′)b†jm(t)⟩ = e−(Γm/2−iνm)(t−t′). (9.18)

The transfer rate can be written as

κ
(m)
S→q =

2smν
2
m(Γm + γS)/N

(Γm + γS)2 + 4(ΩS − Ωq − νm)2
, (9.19)

given fast vibrational relaxation rates Γm ≫ γ compared to the electronic decay rates.

9.5.2 Single excitation subspace

The numerical diagonalization and subsequent time dynamics are evaluated in the
single-excitation sector for both the electronic and vibrational degrees of freedom.
This allows to rewrite the effective Hamiltonian in non-hermitian form as (ℏ = 1)

Heff =
N∑
j=1

(
h(j) +

N∑
j′=1

(
Ωjj′ − i

γjj′

2

)
σ†jσj′ −

i

2

n∑
m=1

ΓmO†
jmOjm

)
, (9.20)

where h(j) is defined in Eq. (9.1) and Ojm = bjm −√
smσ

†
jσj . The dynamics of the

electron-vibron density matrix ρ can be described by a von Neumann equation of the
form

i
d

dt
ρ(t) = [Heffρ− ρHeff ], (9.21)

and the expectation value of observable O becomes Ō = tr(ρO). However, instead of
solving the von Neumann equation directly, one can use the quantum jump formalism to
evaluate single stochastic quantum trajectories using the Monte Carlo wave function
method (MCWF). For large numbers of trajectories, the statistical average then
approximates the result of the Master equation. The huge advantage is that instead
of describing the state of the quantum system by a density matrix of size N 4 × n2

these trajectories work in terms of state vectors of size N 2 × n. This is somewhat
counteracted by the stochastic nature of the formalism which makes it necessary to
repeat the simulation until the wanted accuracy is reached. It turns out, however,
that for many cases, especially for high dimensional quantum systems, the necessary
number of repetitions is much smaller than the system size N 2×n and therefore using
the MCWF method is advantageous.
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The system size stems from the fact, that in the single excitation subspace for both
electronic and vibronic modes a general state vector can be written as

|Ψ⟩ =
N∑
j=1

α
(m)
jj′ |g, g, ...ej , ...⟩ ⊗

n∑
m=1

N∑
j′=1

|0, 0, ...1j′ , ...⟩(m), (9.22)

with coefficients α
(m)
jj′ and where the first part refers to the electronic excitation of

molecule j and the second part to the excitation of the m-th vibrational mode of
molecule j′. Thus, the single excitation assumption substantially reduces the Hilbert
space dimension from 2N × nNcut × n to N 2 × n (where ncut is the cut-off of the Fock
space dimension for the vibrational modes), allowing the simulation of mesoscopic
numbers of molecules.
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A ring of sub-wavelength spaced dipole-coupled quantum emitters features
extraordinary optical properties when compared to a one-dimensional chain
or a random collection of emitters. One finds the emergence of extremely
subradiant collective eigenmodes similar to an optical resonator, which fea-
ture strong 3D sub-wavelength field confinement near the ring. Motivated
by structures commonly appearing in natural light harvesting complexes
(LHCs), we extend these studies to stacked multi ring ring geometries. We
predict that using double rings allows to engineer significantly darker and
better confined collective excitations over a broader energy band compared
to the single ring case. These enhance weak field absorption and low loss
excitation energy transport. For the specific geomtry of the three rings
appearing in the natural LH2 light harvesting antenna we show that the
coupling between the lower double ring structure and the higher energy
blue shifted single ring is very close to a critical value for the actual size of
the molecule. This creates collective excitations with contributions from
all three rings, which is a vital ingredient for efficient and fast coherent
interring transport. This geometry thus should also prove useful for the
design of sub-wavelength weak field antennae.

DOI: 10.3390/nano13050851

10.1 Introduction

The optical properties of a quantum emitter, such as its excitation lifetime and
transition frequency, are strongly modified when it is placed close to a second emitter,
due to vacuum fluctuations that mediate dipole-dipole interactions between them.
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As a remarkable example, the decay rate of a collection of emitters separated by
subwavelength distances can be enhanced or suppressed, leading to the well known
phenomena of superradiance or subradiance, respectively [1,2,5,115]. These phenomena
are expected to be strongly enhanced in ordered subwavelength arrays of emitters,
where maximal interference of the scattered fields can be observed [9,50,58,61,116,
117,119,120,122–129,131–136,168].

Among the different array geometries, a ring-shaped structure formed by regularly
placed emitters has very special optical properties. It has been shown before [50,
58,116], that a linear chain of emitters whose inter-particle distance is smaller than
half of the light wavelength supports collective modes that can guide light and are
extremely subradiant with the excitation lifetime increasing polynomially with the
atom number. The lifetime limitation arises from photon scattering off the ends of
the chain. Remarkably, by joining the ends of the chain to form a closed ring, the
lifetime can be exponentially increased with atom number [58,165,184].

Such extraordinary optical properties can be exploited for applications including
efficient energy transfer, single photon sources or light harvesting [296,297]. We have
previously shown [165, 184], that tailoring the geometry, orientation and distance
between two such nanorings allows for lossless and high fidelity transport of subradiant
excitations, as if the two rings were two coupled nano-scale ring resonators. Besides
subradiant states confining and guiding light, these nanorings also feature radiant
modes whose corresponding electromagnetic field is strongly focused at its center.
By placing an extra emitter at its center, these modes can be exploited to create a
nano-scale coherent light source with a spectral line width which is strongly suppressed
compared to the single atom decay rate [143]. In this case the collective optical modes
of the ring play the role of the cavity modes and the central atom acts as the gain
medium when incoherently pumped. Furthermore, if the central emitter is absorptive,
the system can be tailored to achieve a strong absorption cross section way beyond the
single atom case, while the outer ring behaves as a parabolic mirror when illuminated
externally by a coherent light field [298].

In this work, we analyse in detail how the optical properties of two or more of
these nanorings are modified when they are stacked in a concentric way. Note that
this system is radically different compared to the case previously studied of two rings
coupled side by side [165,184], as it preserves some rotational symmetry. The study
of this geometry is strongly motivated by the abundant presence in nature of highly
efficient photosynthetic complexes sharing a similar stacked structure [176,299]. In
particular, the active core photosynthetic apparatus of certain bacteria is formed by
chromophores, featuring an optical dipole transition, which are arranged symmetrically
forming a complex structure of stacked concentric coupled nanorings. Some of these
units are specialized in transforming the absorbed energy into chemical energy (LH1),
while a larger number of them (LH2 and LH3) do not have a reaction center but
efficiently capture and funnel light towards the LH1 units.

In this system, coherence effects between the chromophores have already shown to
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play a crucial role in the energy transfer and light harvesting [300–302]. A natural
question is whether collective decay, i.e., superradiance and subradiance, plays an
essential role in this process, and whether nature chooses a particular geometry in
order to optimize its effects. In this work, we aim at shedding light on this question,
by analyzing the optical properties and exciton dynamics in realistic structures.
Furthermore, similar mechanisms could be in principle exploited for artificial light
harvesting. Proving these concepts could be already possible using state-of-the-
art experimental setups, such as neutral atoms trapped in optical lattices, optical
tweezer arrays, microwave coupled superconducting q-bits or solid-state quantum
dots [172,173].

The paper is organized as follows. We first introduce the theoretical framework to
describe a system of dipole-dipole interacting quantum emitters, and demonstrate
that a structure of coupled symmetric nanorings can be described in a particularly
simple form in terms of Bloch eigenmodes. Next, we summarize the optical properties
of single nanorings, which can exhibit special radiating properties. We then move to
study the case of two coupled nanorings, displaying two energy bands. Thereafter,
we apply a similar analysis to elucidate the radiating properties of a realistic natural
light-harvesting complex (LH2), which contains a closely double ring structure with
a shifted third ring at higher resonance frequencies. Studying this geometry we find
that the rings geometry and size is critically close to the case where the energy bands
of all rings overlap to for common superradiant exciton states.

10.2 Bloch Eigenmodes

Let us consider first a ring-shaped array (or regular polygon) of N identical two-level
quantum emitters with minimum inter-particle distance d. The emitters possess a
single narrow optical dipole transition around the frequency ω0 with dipole orientation
℘̂i = sin θ cosϕ êϕ,i + sin θ sinϕ êr,i + cos θ êz (i = 1, . . . , N), where êz and êr,i(ϕ,i)
denote unit vectors along the vertical and radial (tangential) direction defined with
respect to the emitter i, respectively [see Fig. 10.1(a)]. In this work we will then
consider a configuration where two or more of these rings are stacked concentrically
around the ẑ-axis [see Fig. 10.1(b)].

All the emitters are dipole-dipole interacting via the electromagnetic field vacuum
fluctuations. After integrating out the optical degrees of freedom in the Born-Markov
approximation [43], the atomic reduced density matrix is governed by the master
equation ρ̇ = −i[H, ρ] + L[ρ] (ℏ ≡ 1), with the dipole-dipole Hamiltonian

H =
∑
ij;i ̸=j

Ωij σ̂
ge
i σ̂

eg
j , (10.1)

and Lindblad operator

L[ρ] = 1

2

∑
i,j

Γij

(
2σ̂gei ρσ̂

eg
j − σ̂egi σ̂

ge
j ρ− ρσ̂egi σ̂

ge
j

)
, (10.2)
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with i and j running over all dipoles. The coherent Ωij and dissipative Γij dipole-dipole
couplings can be written in terms of the Green’s tensor G(r, ω0) in free space:

Ωij = −3πΓ0

k0
Re
{
℘̂∗

i ·G(ri − rj , ω0) · ℘̂j

}
, (10.3)

Γij =
6πΓ0

k0
Im
{
℘̂∗

i ·G(ri − rj , ω0) · ℘̂j

}
, (10.4)

where ri is the position of the i-th dipole and G(r, ω0) is given by

G(r, ω0) =
eik0r

4πk20r
3

[
(k20r

2 + ik0r − 1)I − (k20r
2 + 3ik0r − 3)

r⊗ rT

r2

]
. (10.5)

Here, k0 = ω0/c = 2π/λ is the wavenumber associated with the atomic transition, λ
the transition wavelength, and Γ0 = |℘|2 k30/3πϵ0 is the decay rate of a single emitter
with dipole moment strength |℘|.

The scattered electromagnetic field can be also retrieved from a generalized input-
output relation [58,127] once the atomic coherences are known:

E+(r) =
|℘|k20
ϵ0

∑
i

G(r− ri, ω0) · ℘̂iσ̂
ge
i . (10.6)

Motivated by realistic conditions in natural light harvesting complexes, this work
focuses on the linear optical properties and response of the system at low light
conditions. Therefore, we will restrict our study to the case where at most a single
excitation is present in the system. In this situation, the first term in the Lindblad
operator Eq.(10.2) (also known as recycling term) only modifies the ground state
population and it is not relevant for the observables of interest (e.g. scattered fields
or excitation population). The remaining terms in the equation can be recast as an
effective non-Hermitian Hamiltonian:

Heff =
∑
ij

(
Ωij − i

Γij

2

)
σ̂egi σ̂

ge
j . (10.7)

with Ωii = 0. In this situation, the dynamics of the system can then be fully understood
in terms of the collective modes defined by the eigenstates of Heff . Each of these modes
have associated a complex eigenvalue, whose real and imaginary parts correspond to
the frequency shift and decay rate of the collective mode, respectively. As we will see
next, for a symmetric ring-shaped structure these modes have a particularly simple
form as they correspond to Bloch functions.

10.3 Bloch Eigenmodes in Rotationally Symmetric Ring
Structures

We will consider here ring structures possessing an N−fold rotational symmetry,
similarly to those arising in certain natural light harvesting complexes [176,299]. In
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Figure 10.1: (a) Schematics of a single ring with lattice constant d. Each emitter
features an optical dipole moment (indicated by the red solid arrow)
with orientation ℘̂ = sin θ cosϕ êϕ+sin θ sinϕ êr +cos θ êz, where θ and
ϕ are the polar and azimuth angle, respectively. The vertical, radial
and tangential unit vectors are indicated by êz, êr and êθ, respectively.
The red dashed arrow denotes the projection of the dipole onto the ring
plane. (b) Double ring structure: two rings of radius R1 and R2 and
lattice constants d1 and d2 are stacked concentrically and separated
by the vertical distance z. The two rings are in general rotated by an
angle δ. The dashed-line rectangle encloses the two sites (one from each
of the rings) forming a possible unit cell (see main text).

this case, as we will see, the eigenmodes corresponding to the single excitation manifold
will be of the Bloch form, i.e., delocalized states with well defined angular momentum
m. The N -fold rotational symmetry enables defining N different unit cells (for an
example, see Fig. 10.1), which will be denoted by j = 1, · · · , N . Each cell contains in
general d dipoles with given orientations ℘̂jα with α = 1, · · · , d. We can then rewrite
Eq.(10.7) as

Heff =

N∑
i,j=1

d∑
α,β=1

Gαβ
ij σ̂

eg
iασ̂

ge
jβ, (10.8)

with Gαβ
ij ≡ ℘̂∗

iα ·G(riα − rjβ) · ℘̂jβ. We note that a structure consisting of several
coupled concentric rings with the same emitter number, each ring being rotationally
symmetric, can also be described within this model. In this case, the unit cell contains
one site of each of the rings, and it has as many components as rings are. In the
following, we demonstrate that the eigenmodes of the coupled structure are of the
Bloch form. The symmetry of the system imposes that the position and polarization
vectors associated with dipole iα transform under a rotation U of angle 2π/N (around
the ẑ−axis) according to riα → Uriα = ri+1α and ℘̂iα → U℘̂iα = ℘̂i+1α. By noting
that G is a tensor containing terms proportional to the identity and to riα ⊗ rTjβ , and

thus it transforms under the same rotation as G(riα − rjβ) → UG(riα − rjβ)U† =

G(ri+1,α − rj+1,β), we can then conclude that Gαβ
ij = Gαβ

i+1,j+1. Thus, this coupling

matrix can be relabelled as Gαβ
i+1,j+1 ≡ Gαβ

ℓ , with ℓ = j − i (ℓ = 0, · · · , N − 1), as it is
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a periodic function only depending on the difference between the two indices i and j.
This property allows to write the Hamiltonian Eq.(10.8) in terms of Bloch modes as
follows:

Heff =
N∑
i

N−1∑
ℓ=0

d∑
α,β=1

Gαβ
ℓ σ̂egiασ̂

ge
i+ℓ,β

=
∑
m

d∑
α,β=1

G̃αβ
m σ̂egmασ̂

ge
mβ, (10.9)

where G̃αβ
m ≡∑N−1

ℓ=0 ei2πmℓ/NGαβ
ℓ , and we have defined the creation and annihilation

operators of a collective Bloch mode with well defined angular momentum m:

σ̂eg(ge)mα =
1√
N

N−1∑
ℓ=0

e(−)i2πmℓ/N σ̂
eg(ge)
ℓα .

Here, the periodicity of the wavefunction under a 2π rotation imposes m to be an
integer value, and thus, N linearly independent eigenstates can be constructed by
choosing m = 0,±1,±2, · · · , ⌈±(N − 1)/2⌉, where ⌈·⌉ is the ceiling function. Eq.(10.9)
is not yet in its full diagonal form (except if the unit cell contains a single dipole), but
it already tells us that the angular momentum is a good quantum number. For each
value of m, the eigenmodes consist in general of a superposition of each excited dipole
in the unit cell and it can be easily found by diagonalizing the d × d complex G̃αβ

m

matrix, leading to Ĥeff =
∑

m,λ (Ωmλ − iΓmλ/2) σ̂
eg
mλσ̂

ge
mλ. Here, Ωmλ (Γmλ) is the real

(imaginary) part of the eigenvalue associated with Bloch mode m and λ, whereas σ̂egmλ

is the corresponding creation operator.

10.4 Results

10.4.1 Optical properties of a single nano-ring

Let us first summarize some of the most relevant optical properties for a single ring
with N dipoles, i.e., the case where the unit cell contains just a single dipole. As
previously shown in [165,184] the optical properties of the ring strongly depend on
the size of the ring compared to the light wavelength and on the dipole orientations.
In the following, we focus on two different limiting regimes: a dense large ring (quasi
linear chain) and a small ring (Dicke limit).

Dense and large ring case (quasi-linear chain limit)

A large ring with a large number of emitters locally resembles a linear array, and
can support optical modes which do not propagate into the three-dimensional space
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but are rather confined and guided through the array. These modes correspond to
spin-waves (Bloch modes) whose quasi-momentum along the chain is larger than the
light wavenumber k0. This leads to an evanescent field along the transverse directions
to the array. In the very large ring case, one can identify the linear momentum
kz ↔ 2πm/Nd, and the condition kz > k0 sets the value of the angular momentum of
the guided subradiant modes to be mm0, with m0 = Nd/λ associated with the light
line. Moreover, such states can only exist if d < λ/2, as the maximum value of kz (or
equivalently m) is given by the boundary of the first Brillouin zone.

Despite these similarities, a striking difference between linear and closed ring
configurations is the scaling of the subradiant decay rates with emitter number.
Indeed, by closing the ends of the open chain in a ring structure losses can be strongly
reduced, leading to an exponential suppression of the decay rates with atom number,
in contrast to the polynomial suppression for the linear chain.

On the other hand, the modes for which mm0 are in general radiant. The angular
momentum of the brightest state however, strongly depends on the polarization
direction of the atoms. In Fig. 10.2(a) we have plotted the collective decay rates
versus m, for a ring of N = 100 emitters and different polarization orientations
℘̂i = {êz, êr,i, êϕ,i}. For comparison, we also plot the result for an infinitely long linear
chain with the same lattice constant (solid line). Clearly, in this regime, the radial and
transverse (tangential) polarization decay rates tend to those for the perpendicularly
(longitudinally) polarized linear chain, with maximally bright modes close to the light
line m = m0 (m = 0).

Besides studying the radiative properties, it is also interesting to analyse the sign of
the frequency shifts in the collective modes arising due to dipole-dipole interactions.
Figure 10.2(c) shows the frequency shifts corresponding to Fig. 10.2(a). We find that
the symmetric m = 0 mode has a positive (negative) shift when the dipoles are aligned
transversely (longitudinally). This is not so surprising when thinking of interacting
classical static dipoles which repel (attract) each other if they are aligned in parallel
(in a head-to-tail configuration). Note also that in this regime the bright states are
always energetically lower than the guided subradiant modes.

Small ring case (Dicke limit)

We now focus on a different regime where the ring diameter is small compared to the
light wavelength, i.e., Rλ/2 (Dicke limit). This regime will be relevant in the study of
natural light harvesting complexes, given the small inter-particle distances which are
few orders of magnitude smaller than the light wavelength. In this case, the emitters
radiate as if they were a single dipole with effective moment strength and decay rate

℘̂m,eff = N−1/2
∑
ℓ

ei2πmℓ/N ℘̂ℓ, Γm = |℘̂m,eff |2Γ0. (10.10)
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Figure 10.2: Single Ring Optical Properties. (a)-(b) Collective decay rates
Γm and (c)-(d) frequency shifts Ωm versus angular momentum m,
depending on polarization orientation (blue open, blue solid and orange
are for transverse, radial and tangential polarization, respectively). Left
panels correspond to a large ring with d/λ = 1/3 and N = 100. For
comparison, solid lines show the result for an infinite linear chain with
transverse (blue) and longitudinal (orange) polarization. Right panels
are for d/λ = 0.05 and N = 20 (Dicke regime). In this case there
are only one (two) bright modes at m = 0 (m = ±1) for transverse
(tangential and radial) polarization. For tangential polarization the
bright (dark) modes are energetically low (high), whereas the opposite
behavior is found for radial and transverse polarization.

From this expression, one can then easily see that for transverse polarization only
the mode with m = 0 has a non-vanishing value of the effective dipole moment
℘̂m,eff =

√
Nêz, and thus it is bright and decaying at rate Γm=0 ∼ NΓ0. Instead for

tangential or radial polarization there are two bright modes m = ±1 with ℘̂m,eff =√
N/2 (êx ± iêy) and Γm=±1 ∼ NΓ0/2. The remaining modes are dark with vanishing

effective dipole moment and Γm → 0. Figure 10.2(c) shows the decay rates for a
ring in this regime (d/λ = 0.05, N = 20) with different polarization orientations
℘̂i = {êz, êr,i, êϕ,i}. Moreover, note that in general, a ring with polarization ℘̂i =
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cos θ cosϕ êϕ,i + cos θ sinϕ êr,i + sin θ êz (i = 1, . . . , N) will have three different bright
modes m = 0,±1 with decay rates Γm=0 = NΓ0 sin

2 θ and Γ±1 = (NΓ0/2) cos
2 θ.

In this limit, the collective frequency shifts also acquire a particularly simple co-
sinusoidal form. Indeed, in this regime the interactions Ωij between first neighbouring
sites dominate, and one can approximate

Ωm ≈ N−1
∑
ℓ

(
Ωℓ,ℓ+1e

i2πm/N +Ωℓ,ℓ−1e
−i2πm/N

)
= 2Ωd cos (2πm/N) , (10.11)

where we use again the discrete rotational symmetry of the ring. Here the sign and
strength of first-neighbour coupling Ωd strongly depends on the polarization direction.
For the same general polarization as before,

Ωd = −(3Γ0/4k
3
0d

3)
[
cos2 θ(3 cos2 ϕ− sin2(π/N))− 1

]
(10.12)

[184]. Therefore, the bright modes will be energetically high (low) for transverse /
radial (tangential) polarization, as it is shown in Fig. 10.2(d) for the same parameters
as before. Moreover, for polarization angles cos θ ≈ 1/

√
3 cosϕ and large number of

emitters, a nearly degenerated flat band emerges, with frequency shifts that basically
vanish [184].

Finally, it is also possible to evaluate the electromagnetic field generated by one of
these eigenmodes, by using Eq.(10.6). The result will strongly depend on the angular
momentum m, polarization orientation, and size of the ring. For the ring geometry,
we find that strongly subradiant modes radiate with very low intensity basically along
the ring plane, while the field is evanescent in the transverse direction, as shown in the
top row of Fig. 10.6 and Fig. 10.7 for a ring of N = 9 tangentially polarized emitters
and m = 4. Instead, the brightest modes (which in this case correspond to m = ±1)
exhibit a strong field at the center of the ring and propagates also transversally to the
ring plane, as shown in the same figures.

10.4.2 Optical properties of two coupled nano-rings

We now analyze the case of two rings of radius R1 and R2 that are arranged concent-
rically and separated by a vertical distance Z. In general, we will also allow in the
model a general rotation of angle δ ∈ [0, 2π/N) of one of the rings around the ẑ-axis
(see Fig. 10.1). In this case the unit cell consists of only two dipoles (d = 2).

Coupled identical non-rotated rings (δ = 0)

We first focus on the case of two identical rings (R1 = R2) concentrically stacked on
top of each other and with no rotation angle δ. Because the two rings are identical, and
due to δ = 0, the matrix G̃αβ

m is complex symmetric, and the eigenmodes of Eq.(10.8)
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Figure 10.3: Two coupled identical non-rotated nanorings (δ = 0). (a)-
(c) Collective decay rates Γm and (d)-(f) frequency shifts Ωm versus
angular momentum m, for two coupled rings of N = 9 emitters each
and R/λ = 0.05. The blue (orange) dashed lines denote the symmetric
(anti-symmetric) eigenmodes. For comparison, the single ring solution
for the same parameters is shown (grey solid line). The two rings are
separated by the vertical distance Z = 0.5R, and the emitters have
transverse, radial or tangential polarization (left, middle or right panels,
respectively). For transverse (radial and tangential) polarization the
symmetric band is lower (higher) in energy.

can be chosen as the symmetric and the anti-symmetric superposition of Bloch states
corresponding to each ring with well defined angular momentum m, which will be
denoted as |Ψ±

m⟩ = (|m, 1⟩ ± |m, 2⟩)/
√
2 (with |mα⟩ ≡ σ̂egmα |g⟩). The corresponding

collective frequency shifts and decay rates are then simply given by Ω±
m = Ωm ∓Ωinter

m

and Γ±
m = Γm ± Γinter

m , where Ωm and Γm are the frequency shift and decay rate
corresponding to a single ring, whereas Ωinter

m = Re[G̃12
m ] and Γinter

m = −2Im[G̃12
m ] are

the dispersive and dissipative inter-ring couplings, respectively.

In Fig. 10.3 we plot for two rings in the Dicke regime (R/λ = 0.05) and separated
by vertical distance Z = 0.5R the decay rates and frequency shifts of the two emerging
bands: symmetric |Ψ+

m⟩ (orange line) and anti-symmetric |Ψ−
m⟩ (blue line). For

comparison, we overlay the result for two independent rings (grey line). We find that,
regardless of the emitters polarization, the anti-symmetric solution is always more
subradiant than the symmetric one. Moreover the darkest state is Ψ−

max[m], i.e., the
anti-symmetric superposition of the darkest state of a single ring. Looking at the
frequency shifts, we find that the behavior with angular momentum m is similar to
that for the single ring case, but shifted in energy. In particular, the symmetric band
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Figure 10.4: Two coupled identical non-rotated nanorings (δ = 0). Scaling of
the most subradiant eigenmode decay rate for two coupled rings (blue)
with Z/λ = 0.009 versus the atom number N of each of the rings. For
comparison, we overlay the most subradiant decay rate for a single
ring of N atoms (a) and a single ring of Ntot = 2N atoms (b) (green)
with fixed inter-particle distance d/λ = 1/3 and transverse polarization.
Similar results are found in case of tangential polarization.

is shifted to lower energies (higher energies) for transverse (tangential and radial)
polarization of the emitters. This fundamental difference in the energy shift sign can
be intuitively understood in analogy to the energy of two interacting static dipoles.
For the case with transverse polarization, two closer emitters from the two different
rings are in a tail-to-head configuration, thus decreasing its total energy if they are
in phase. Instead, for the case of tangential and radial polarization the emitters
polarization is parallel, increasing its energy when they have the same phase. In
conclusion, these results show that the polarization of the emitters can fundamentally
modify the optical properties of the emerging bands and determine the ordering of
states in energy, something which is relevant in the excitation transfer between the
different energy bands. In particular the energy transfer in photosynthetic processes
involving dipole interacting chromophores is understood via H- and J-aggregation. In
J-aggregates, neighboring chromophores are oriented in a head-to-tail arrangement,
resulting in a negative coherent nearest-neighbor coupling Ωd and the positioning
of the optically allowed (m = 0) Bloch mode at the bottom of the energy band,
whereas for H-aggregates the orientation is parallel and the symmetric (m = 0) mode
is positioned at the top of the energy band. Another interesting property of this
system is the scaling of the most subradiant state decay rate with the atom number N .
For a fixed inter-particle distance d/λ, we show in Fig. 10.4(a) the decay rate of the
most subradiant state of two coupled rings of N emitters each, compared to that of a
single ring of N emitters (left panel). We observe that, in addition to a lower decay
rate, the double ring structure shows always a stronger exponential suppression with
the atom number compared to a single ring of the same size and interparticle distance
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Figure 10.5: Two coupled identical non-rotated nanorings (δ = 0). (a)
Most subradiant decay rate of two coupled rings with N = 9 emitters
and transverse polarization, as a function of ring constant d/λ and
inter-ring distance z/λ. Subradiant states can exist even beyond the
threshold d/λ < 1/2 and z/λ < 1/2 due to destructive wave interference.
(b) Overlap of the most subradiant eigenmode with the Bloch waves
corresponding to angular momentum |m|. The Bloch waves of each ring
can form symmetric and antisymmetric superpositions and it can be
seen, that at various distances the symmetric superposition of m = 0
Bloch waves can be subradiant. The parameters are identical to (a)
and the overlap oscillates when varying the ring parameters, as soon as
d, zλ/2.

d. In Fig. 10.4(b) we also compare the double-ring result but with a single ring of 2N
emitters and the same density. We find that in this case, for small inter-ring distances
z and ring atom number N , the coupling between the two rings is still strong enough
to lead to more subradiance compared to the single ring case with the same total
number of atoms. However, if N is too large, then the single ring will always support
the most subradiant state, as the curvature and therefore losses will experience a
strong suppression as the system approaches an infinite linear chain, for which it
is known that the decay rates are exactly zero. For this threshold the exponential
suppression with N overcomes the coupling effect between the two rings. Interestingly,
the most subradiant decay rate does not show a monotonic behavior with the lattice
constant d/λ or the inter-ring distance z/λ. In 10.5(a) we plot the most subradiant
decay rate versus these two ratios. We observe that the decay rate oscillates due
to wave interference and that there can still exist subradiance beyond the values
d/λ = 1/2 and z/λ = 1/2. As previously discussed, such subradiant state is always the
anti-symmetric superposition of two Bloch waves of well defined angular momentum m.
For small rings such that d/λ < 1/2, the most subradiant state always corresponds to
the superposition of the two most subradiant states, i.e., |m| = ⌈(N − 1)/2⌉. However,
for d/λ > 1/2 the value of m that produces the most subradiant state periodically
varies. This behavior is shown in 10.5(b), where we have plotted the overlap of the
Bloch waves of particular absolute value of the angular momentum. Additionally
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the Bloch waves can be in a symmetric or antisymmetric superposition and even the
symmetric superposition of the symmetric m = 0 modes can lead to subradiance at
various distances.

We finally discuss the striking differences in the field patterns generated by the
eigenmodes |Ψ±

m⟩, with m = 0, 1, 4. In Fig. 10.6 and Fig. 10.7 we plot (middle and
bottom rows) the field intensity as a function of real space position, for two identical
coupled concentric rings of N = 9 emitters with tangential polarization, lattice constant
d/λ = 0.1 and separated by a vertical distance Z/λ = 0.2. For comparison, we have
added in the top row the result for a single ring with the same parameters. We find
that the symmetric superposition shows a pattern which is very similar to the single
ring case. The brightest mode (m = 1 in this case) shows an enhanced field intensity
along the central axis of the rings. In the symmetric mode, the field is enhanced in the
region between the two rings, whereas in the anti-symmetric superposition, it shows a
striking different pattern with suppressed field in the region between the two rings.

Coupled unequal rings with rotation (δ ̸= 0)

We now consider the more general case where the two rings can have different radius
and are rotated by an angle δ. Note that in this case the matrix describing the single
excitation manifold G̃αβ

m is in general not complex symmetric. However, for the equal
radius case (R1 = R2) in the Dicke regime, the off-diagonal elements satisfy G̃αβ

m =

(G̃βα
m )∗ (α ̸= β). This leads to eigenmodes of the form |Ψ±

m⟩ = (|m, 1⟩ ± eiη |m, 2⟩)/
√
2

with η = atan
[
ImG̃12

m/ReG̃
12
m

]
.

The behavior of the eigenmodes and eigenvalues with the rotation angle δ is not
trivial and strongly depends on the polarization orientation and inter-particle distances.
For transverse polarization and a small vertical separation between the rings (Z = 0.1R,
R/λ = 0.05 we find a value of δc ∼ 0.15 for which the frequencies of the two eigenmodes
with m = ⌈(N − 1)/2⌉ feature an avoided level crossing. Interestingly, at this point
the nature of the state changes. While for δ < δc the highest energy state is radiant
with η ∼ 0, for δ > δc the highest energy state becomes subradiant with η ∼ π. These
features are shown in Fig. 10.11 (top panels) and disappear for too small value of Z.
Similar results can be found for other values of m. Moreover, the decay rate of the
most subradiant state presents a broad minimum around π/N and with η ∼ π/2, i.e.,
when the sites of the second ring lie exactly in between those of the first ring. At this
point and because the interparticle distances are larger, the frequency shifts are also
smaller.

Similar results can be found for other polarization orientations and also when varying
the relative radius between the two rings. As an example, we show in Fig. 10.11
(bottom panels) the same analysis for two co-planar rings (Z = 0) with tangential
polarization and R1 = 0.9R2. As it can be seen in the figure, in this case there
is also an avoided level crossing (inset) at value δc ∼ 0.07, where the state of the
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highest energy state changes to be subradiant. As in the previous case, we find also
the broad minimum around δ ∼ π/N , where the frequency shifts almost vanish. It
is worth noting that in the natural light harvesting complex LH2 (see next section)
the dipoles of the B850 band are arranged in a similar configuration with rotation
angle δ ∼ π/N . An intriguing question is whether this is an accidental coincidence or
whether the broad minimum emerging in the decay rate, which is thus robust against
small fluctuations in the emitters position, can play a relevant role in the energy
transfer and the light harvesting processes.

Figure 10.6: Two coupled identical non-rotated nanorings (δ = 0). Field
intensity pattern versus real space coordinates in units of the transition
wavelength λ (cut at z = 6R) generated by the eigenmodes with m =
0, 1, 4 as indicated in the panels. Middle and bottom rows correspond
to the symmetric and anti-symmetric eigenmodes, respectively. Top
panels are for the single ring, for comparison. (N = 9, d/λ = 0.1,
Z/λ = 0.2, tangential polarization.)
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Figure 10.7: Two coupled identical non-rotated nanorings (δ = 0). Field in-
tensity pattern versus real space coordinates (cut at y = 6R) generated
by the eigenmodes with m = 0, 1, 4 as indicated in the panels. Middle
and bottom rows correspond to the symmetric and anti-symmetric
eigenmodes, respectively. Top panels are for the single ring, for com-
parison. (N = 9, d/λ = 0.1, Z/λ = 0.2, tangential polarization.)

10.4.3 B850 and B800 bands in LH2

As already anticipated, the study of the optical properties of two (or more) coupled
nanorings is motivated by the existence of similar structures in nature that enable
efficient light harvesting and energy transfer [160, 176–181, 189–193]. Indeed, while
most biological systems are soft and disordered, photosynthetic complexes in certain
purple bacteria exhibit crystalline order. The complexes are composed by antenna units
that show a n-fold symmetry [179] which in turn, are arranged forming a maximally
packed hexagonal pattern [202]. Purple bacteria are among the oldest living organisms
and most efficient in turning sunlight into chemical usable energy. One of the most
common species (Rhodopseudomonas Acidophila) contains two well differentiated
types of complexes: a larger one containing the reaction center where the energy
conversion takes place (LH1), and a second one (LH2) which is more abundant and
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Figure 10.8: Two coupled rotated nanorings (δ ≠ 0). (Top panels) Two
identical nanorings (R = 0.05λ) with transverse dipole orientation
separated by a vertical distance Z = 0.1R, depending on the rotation
angle δ ∈ [0, 2π/18]: (a) decay rate and (b) frequency shift of the
two eigenmodes with m = ⌈(N − 1)/2⌉. An avoided level crossing
emerges at δ ∼ 0.15, where the highest energy level changes from being
subradiant to radiant, and from being antisymmetric to symmetric.
(Bottom panels) Two coplanar unequal nanorings (Z = 0) with
radius R1 = 0.05λ and R2 = 0.9R1 and tangential dipole orientation,
depending on the rotation angle δ: (c) decay rate and (d) frequency
shift of the two eigenmodes with m = ⌈(N − 1)/2⌉. Similarly as before,
an avoided level crossing (shown amplified in the inset) emerges at
δ ∼ 0.07, where the highest energy level changes from being radiant to
subradiant, and from being symmetric to anti-symmetric.

whose main role is the absorption of photons and efficient subsequent energy transfer
towards the LH1 units. The two complexes are formed by the same light-absorbing
pigments: carotenoids (absorbing wavelengths ranging from 400 to 550 nanometers)
and bacteriochlorophyl-a (BChla, absorbing in the red and infrared). The BChla
features a two-level optical dipole transition around 800− 875 nanometers (depending
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on the complex). These pigments are sustained by a hollow cylinder of apoproteins
whose diameter is few tens of Å.

Here we will focus on the LH2 complex and the optical properties displayed by the
BChla. Early x-ray crystallography data [299] together with subsequent molecular
dynamics simulations suggests a ring structure with 9-fold symmetry. This structure
consists of a ring of 9 emitters maximally absorbing at 800 nm (the so-called B800
band) concentrically arranged and coupled to another two-component ring with 9-fold
symmetry (with a total of 18 emitters) maximally absorbing at 850 nm (the so-called
B850 band). The dipoles orientation also preserves the 9-fold rotational symmetry and
are mostly contained in the plane of the ring, except for a small vertical component
(see inset in Fig. 10.9). Therefore, the whole structure can be regarded as a ring of
9−unit cells of 3 components (denoted by purple, blue and yellow in the figure).

In the following, we analyse the eigenmodes and collective optical properties of the
two bands (B800 and B850) using the parameters extracted from [179]. This analysis
can be relevant for the understanding of the efficient energy transfer between the B800
and the B850 bands, but also for energy transfer between the LH2 and the LH1 units.
Taking into account that the lifetime of the excited state in the BChla is of the order
of nanoseconds, the energy transfer process is expected to occur at a much faster time
scale. Figure 10.9 shows and compares the decay rates and frequency shifts of the
collective eigenmodes as a function of the angular momentum quantum number m,
considering the rings are uncoupled (left) or coupled (right). The dispersive couplings
between the two components of the B850 band (denoted by yellow and blue in the
figure) are very large due to the small inter-particle distances, and of the order of
106Γ (being Γ ∼ 25 MHz the estimated decay rate of the excited state in the dipole
transition). This leads to the emergence of a two-band structure with large frequency
splitting where the two components of the B850 ring strongly hybridize: a higher
energy band which is mostly subradiant, and a lower energy band containing only two
bright modes at m = ±1. For completeness, we show in Fig. 10.10 the excited state
population of each of the components for the coupled system eigenmodes. Clearly, the
excitation is delocalized over the two components of the ring.

In the inset of Fig. 10.10 we show the small contributions of the lower double ring
configuration to the excited state population of the third band. A similar behavior
emerges in case of the first and second band, where the B800 ring gives a non-vanishing
contribution to the population of the first and second band.

In contrast, the coupling between the B850 and B800 band (indicated by purple
in the plot) is ten times smaller (of the order 105Γ), whereas the energy transition
difference is of the order of 107Γ, and therefore, the B800 band remains mostly
decoupled. However, it is worth noting that after the B850 bands are coupled, the
higher energy band lies close to the B800 band.

Finally let us point out a very special property of the naturally occurring geometry.
Indeed it can be seen that the actual geometry is very close to the critical transition
point, where the up shifted eigenstate energies of the lower double ring just overlap
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Figure 10.9: LH2 dipole configuration. (a)-(b) Collective decay rates and (c)-
(d) frequency shifts as a function of angular momentum index m for
the LH2 structure (B800 and B850 bands) parameterized according
to [179]. Left and Right panels correspond to uncoupled and coupled
rings, respectively. The B850 band consists of a two-component unit cell
ring with 9-fold symmetry (denoted by blue and orange), whereas the
B800 band is a single component ring with 9-fold symmetry (denoted
by violet). The B800 ring is far in energy and thus only couples very
weakly to the B850 rings. However, the two components of the B850
band are strongly coupled, due to the reduced inter-particle distance,
what leads to a broad dispersion in the frequency shifts. Two bands
emerge: a darker band which is higher in energy and close to the B800
band, and a brighter band (with two bright modes corresponding to
m = ±1) which is lower in energy. This band structure is relevant for
the excitation energy transfer occurring between the B800 and B850
bands.
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Figure 10.10: LH2 dipole configuration. Individual ring occupation propabilities
for each of the three eigenmodes as a function of angular momentum
index m. Blue and yellow correspond to the two B850 rings (as
indicated in Fig. 10.9), whereas violet is the occupation of the B800
ring. Each panel is a different eigenmode, indicated with the same
code color as in Fig. 10.9.

with the upper ring energies. For this in Fig. 10.11 we plot the corresponding exciton
energies as function of the overall size of the molecule, where we only consider small
size variations Rα,i = αRi around the actually measured size. We see that closely
below the value of α = 1 the energy bands cross and eigenstates appear which posses
similar contributions of all three rings. Close to this resonance condition any excitation
in one of the rings is thus coherently transported to the other rings in short time.
Interestingly the crossing point depends on the angular index m shifting further away
from α = 1 with growing m. From this sensity behaviour one could expect tune-ability
of the ring properties via the local refractive index or small deformations of the
complex.

10.5 Conclusions

Our calculations show that structures involving multiple concentric rings exhibit
strongly modified exciton properties and in particular, feature extremely subradiant
states with sub-wavelength confined fields. For two identical rings at close enough
distances, we find that the anti-symmetric superposition of the individual ring radiative
modes, which inherits the angular symmetry of the setup, is always more subradiant
than the corresponding symmetric combination. In particular, the most subradiant
states are obtained by choosing the individual ring darkest eigenmodes. We have
shown that the spontaneous emission of such states decays faster with the emitter
number compared to the single ring case. Moreover, important radiative properties,
such as the ordering in frequency of the optical modes, can be controlled via a relative
rotation or size differences of two otherwise identical rings. For instance, we find that
by modifying these parameters, the highest energy level changes from being subradiant
to superradiant. When we apply our model to the specific geometry of the triple ring
LH2 structure including the natural distances, energy shifts and dipole polarization, we
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Figure 10.11: LH2 dipole configuration. (a) Frequency shift and (b) ring oc-
cupation probabilities for the third band as function of the overall
size of the molecule at the m = 1, 4 mode. The size of ring i is varied
via Rα,i = αRi around the actual size (α = 1). Solid (dashed) lines
correspond to the m = 1 (m = 4) mode. The color code is equivalent
to the one in Fig. 10.9. Dependent on the mode m the second and
third band as well as the excited state populations cross at αc < 1.
For systems with α < αc, the third band is occupied by the B850 ring
whereas for α > αc it is occupied by the B800 ring.

find most of the collective modes are extremely dark. Most interestingly the collective
energy shifts from the lower double B850 ring structure, for which the interparticle
distances are very small, is of the order of the 50 nm energy shift of the upper ring, so
that the energy spectrum spans almost the full gap between the rings. More specifically,
two bands emerge due to the strong coupling between the two B850 components. A
subradiant band which is higher in energy and close to the B800 band, and a brighter
band which is much lower in energy. The realistic dipole orientations and distances
lead to only two bright modes corresponding to a quasi-symmetric superposition of
the angular momentum m = 1 and m = −1 modes. This emerging band structure
could be helpful for any phonon induced collective energy transfer processes, which
are, of course, beyond our model here, but which we plan to explore in future work.
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At the onset of this thesis, we gave a compact introduction to the quantum optical
framework necessary to follow the research presented in the following chapters. We
laid out numerous studies, which demonstrate the usefulness of collectively interacting
quantum emitters in various platforms. In the beginning, we explored the possibilities of
dissipatively preparing long-lived subradiant states in atoms with an internal multi-level
structure, featuring two excited states. Even though preparation is not straightforward
without for instance applying magnetic fields to lift the degeneracy, there remains still
a significant fraction of the excited state population in the atoms after long waiting
times. After that, we focused on possible applications of the collective nature of
interacting quantum emitters in free space. In particular, we analyzed the possibility
of having a coherent light source with a spatial extent of less than a micrometer. Here
the subradiant character of the system allowed us to realize a continuous source of
coherent light with a linewidth that is below that of a single independent emitter.
Next, we found that a chain of deeply subwavelength-spaced emitters can be utilized
to implement a continuous single-photon source, with directional emission and an
emission rate larger than that of a single emitter. We showed, that if the extent of the
ensemble exceeds a wavelength of light, the resulting emission obtains directionality
and is focused in a narrow emission angle as opposed to emission into all directions
for a single photon source in free space. We quantified the quantum character of the
emitted light via the second order correlation function between the emitter coherences.
Enhanced light-matter interactions in free-space can also be realized employing again
a ring of quantum emitters. The geometry was initially inspired by natural light-
harvesting complexes, which exhibit ring-shaped units acting as antennas for collecting
sunlight. We showed, that a single ring, surrounding an emitter, can enhance the
effective absorption rate of the central emitter by many times. Consequently, the
central emitter can be engineered to have an additional trapping channel through which
the light can be extracted. As yet another example for the extraordinary properties
of cooperativity, we showed that in case of quantum emitters with a periodic infinite
range interaction, as is the case for superconducting qubits coupled via one-dimensional
transmission lines, one can realize a protocoll which, deterministically controls the
storage and release of multiple photons simultaneously. Finally, we demonstrated that
molecules with vibrational couplings, at finite temperatures can show collective effects
such as super- and subradiance. In particular their extremely subwavelength spacing
renders them ideal candidates for harnessing collective states. In particular, we showed
how the vibrational degrees of freedom lead to a strong unidirectional transfer of the
excitation energy between collective states with a decreasing energy gradient, known as
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Kasha’s rule. In summary, the collective nature of interacting quantum emitters can be
harnessed to strongly modify light-matter interactions. Particularly intriguing to me
is the persistence of these collective properties in the face of environmental influences,
such as ambient temperature, disorder, dynamical dephasing and unwanted decay
channels. Here I envision future research which explores possible design principles
for artifical light collection, sensing, transport and trapping. As was shown in the
above research, the tools are essentially in place and have to be combined in order to
tackle potential problems such as understanding the natural design of bacterial light
harvesting complexes. Such an understanding should turn out be extremely useful
for quantum technological applications ranging from artifical solar cells to quantum
sensors for medical applications. Harnessing collective effects in interacting quantum
emitters hold the promise to push the boundaries of quantum technologies beyond
what is currently possible. It is also intriguing to take inspiration from nature to design
not only robust quantum devices, but devices that actually benefit from environmental
influences, disorder and noise up to a limit of course. Long-term, devices that harness
quantum features but are embedded in real-world applications will be superior if they
can thrive under contact with the environment, as opposed to systems that demand
pristine laboratory conditions or are robust but show diminished performance when
interacting with the environment.
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[45] Z. Ficek, R. Tanaś, and S. Kielich, “Quantum beats and superradiant effects in
the spontaneous emission from two nonidentical atoms,” Physica A: Statistical
Mechanics and its Applications, vol. 146, no. 3, pp. 452–482, 1987.

[46] G. Agarwal and A. K. Patnaik, “Vacuum-induced coherences in radiatively
coupled multilevel systems,” Physical Review A, vol. 63, no. 4, p. 043805, 2001.

[47] M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective
spontaneous emission,” Physics Reports, vol. 93, no. 5, p. 301, 1982.

[48] M. Lukin, S. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles
by trapping correlated photon states,” Physical Review Letters, vol. 84, no. 18,
p. 4232, 2000.

[49] C.-W. Chou, H. De Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, and H. J.
Kimble, “Measurement-induced entanglement for excitation stored in remote
atomic ensembles,” Nature, vol. 438, no. 7069, p. 828, 2005.

[50] D. Plankensteiner, L. Ostermann, H. Ritsch, and C. Genes, “Selective protected
state preparation of coupled dissipative quantum emitters,” Sci. Rep., vol. 5,
p. 16231, 2015.

[51] C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, “Creation of entangled
states of distant atoms by interference,” Physical Review A, vol. 59, no. 2, p. 1025,
1999.

[52] J.-M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entangle-
ment with atoms and photons in a cavity,” Reviews of Modern Physics, vol. 73,
no. 3, p. 565, 2001.

[53] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experi-
mental realization of a three-qubit entangled w state,” Physical review letters,
vol. 92, no. 7, p. 077901, 2004.

[54] X. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled four-photon w
state,” Physical Review A, vol. 66, no. 4, p. 044302, 2002.

[55] M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state
polaritons,” Physical Review A, vol. 65, no. 2, p. 022314, 2002.

[56] T. Chaneliere, D. Matsukevich, S. Jenkins, S.-Y. Lan, T. Kennedy, and
A. Kuzmich, “Storage and retrieval of single photons transmitted between
remote quantum memories,” Nature, vol. 438, no. 7069, p. 833, 2005.

[57] V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomo-
geneously broadened ensemble of two-level systems coupled to a low-q cavity,”
Physical Review Letters, vol. 95, no. 24, p. 243602, 2005.

[58] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E.

180



Bibliography

Chang, “Exponential improvement in photon storage fidelities using subradiance
and ”selective radiance” in atomic arrays,” Phys. Rev. X, vol. 7, p. 031024, 2017.

[59] S. L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J. Schachenmayer,
T. L. Nicholson, R. Kaiser, S. F. Yelin, M. D. Lukin, A. M. Rey, and J. Ye,
“Collective atomic scattering and motional effects in a dense coherent medium,”
Nature Communications, vol. 7, no. 1, p. 11039, 2016.

[60] D. Bhatti, R. Schneider, S. Oppel, and J. von Zanthier, “Directional dicke
subradiance with nonclassical and classical light sources,” Physical review letters,
vol. 120, no. 11, p. 113603, 2018.

[61] M. Hebenstreit, B. Kraus, L. Ostermann, and H. Ritsch, “Subradiance via
entanglement in atoms with several independent decay channels,” Physical
Review Letters, vol. 118, no. 14, p. 143602, 2017.

[62] C. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-
Markovian quantum stochastic methods with applications to quantum optics,
vol. 56. Springer Science & Business Media, 2004.
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