P H R A S A L E K II PHRASEOLOGICAL APPROACHES TO LEXICOGRAPHY #### **PHRASEBASE TALK** Introducing PhraseBase: A linguistic information System for language learners, translators and for NLP Laura Giacomini Laura Rebosio ### Overview - 1. Structure and scope of the PhraseBase project - 2. People - 3. Theoretical foundations and development - 4. Methodology and data ## 1. Structure and scope of the PhraseBase project PhraseBase is a Linguistic Information System consisting of three main components, - a dictionary, - an ontology/thesaurus and - a grammar, primarily for second language acquisition and natural language processing (NLP) PhraseBase → phraseological database The theoretical framework behind PhraseBase is phraseological & cognitivist → Sinclair's theory, Hanks's formalisation, DiMuccio-Failla's further development PhraseBase includes a PAD (Phrase-based Active Dictionary) → currently: multi-monolingual dictionaries for IT, DE, EN Contrastive perspective: search for partial or total equivalence of frames (typical situations) across languages and cultures Ideal user: advanced learner, translator #### PhraseBase Phrase-based Active Dictionary PAD semasiological component inventory of constructions (construction) grammatical component phonological component frame inventory Phrase-based PHRASEnet Phrase-based Wordnet onomasiological component # 2. People | LAURA GIACOMINI (Innsbruck, previously Heidelberg/Hildesheim) | → PI, project initiator, methodological framework, data modelling, data analysis | |---|--| | PAOLO DI MUCCIO-FAILLA (Hildesheim) | → project initiator, theoretical and methodological framework, data modelling/programming, data analysis | | ADRIANA ORLANDI (Modena and Reggio-Emilia) | → organiser of PhrasaLex I, first experiments on FR | | EVA LANZI (Heidelberg) | → data analysis | | SARAH PIEPKORN (Hildesheim) | → data analysis, project on aspectuality of verbs | | FRITZ KLICHE (Hildesheim) | → NLP approaches to data analysis | | LAURA REBOSIO (Innsbruck) | → data analysis, project on ostensive, e.g. frame-based definitions | | LINDA PROSSLINER (Innsbruck) | → data analysis, project on idiomatic expressions for children | | GIULIANO GIAMBERTONE (Innsbruck) | → DB/web programming | ## 3. Theoretical foundations and development #### The lexicon of a language is phraseological in nature. - → Semantic ambiguity can be reduced if one takes in consideration the context in which words are used. - → Chunks of linguistic expressions and not single words are identified as lexical units. - → Meaning distinctions can be (easily) ascertained because they correspond to word usage patterns. Sinclair (cf. 2004: 133): not isolated words, but words in their contextual patterns of normal usage are the most common lexical units of language. Sinclair (1991: 65): *It seems that there is a strong tendency for sense and syntax to be associated*. Hanks (cf. 2013: 192): Normal collocations are statistically significant in a corpus analysis. Asking for the meaning of a word turns out in asking for the **meaning of a pattern**. Words in isolation have only potential meanings. Hanks (cf. 2013: 5): In a better dictionary, it should be listed what is linguistically (semantically) normal and not, what is ever semantically possible. A distinction should be made between **normal meaning variations** and **exploitations**. #### About: word usage patterns Examples: (1) so. puts sth. in a particular place or position \leftarrow I put my phone in your bag. (2) so. puts so. somewhere \leftarrow Dad puts the children to bed. (3) so. puts sth. on so. \leftarrow The boss will put extra pressure on you. A normal word usage pattern generally has only one meaning. - Normal means typical; typical, recurring patterns are the most frequent ones in a corpus; a normal meaning is the common, conventional meaning associated traditionally with that pattern within a specific linguistic community. - A normal word usage pattern is determined by **four features**: its collocation, its colligation, its semantic preference and its semantic prosody. - Intuition and introspection of the lexicographer are crucial in analyzing the data and evaluating evidence. ## The PAD microstructure (1) DiMuccio-Failla & Giacomini (2022) PAD entry FSec – (SSec) FSSec – (SSec) SSec SSec FSSec FSSec SSec WORD SYNT. CONSTRUCTION SENSE FIELD **LEXICAL UNIT** MINOR LEXICAL UNIT FSec = Formal Section FSSec = Formal-Semantic Section SSec = Semantic Section ## The PAD microstructure (2) ## agree \ə 'grix\ VERB, REGULAR #### to AGREE (WITH sb. / s. opinion) (ON/ABOUT s.e.) [opinion] /ABSOLUTELY/TOTALLY/STRONGLY/CERTAINLY / NOT NECESSARILY / NOT QUITE to think that sb. is right <on/about s.e.> ~ to share s. opinion <on/about *> #### to AGREE (with each other) ON s. decision <THAT...>/<TO do sth.> [expr. of decision] to decide to do sth. together ~ to choose sth. together - 1 to AGREE <WITH a given person> ... - ... <ON a given SUBJECT/TOPIC/ISSUE> OR <ABOUT a certain entity> to think that a given person's opinion/assessment <ON → OR <about → is right EXAMPLES: ① ... SYNONYMS: ① [FML.] to CONCUR <WITH → <ON/ABOUT → ② to share a given person's opinion <ON/ABOUT → ③ [FML.] to BE IN AGREEMENT <WITH → <ON/ABOUT → ④ to THINK THE SAME <AS a given person> <ON/ABOUT → ⑤ to HAVE THE SAME OPINION=MIND <AS a given person> <ON/ABOUT → ⑥ to DISAGREE <WITH → <ON/ABOUT → ② [FML.] to NOT SEE EYE TO EYE <WITH → <ON/ABOUT ## The PAD microstructure (3) DiMuccio-Failla & Giacomini (2022) #### LEXICAL UNIT level FSSec + SSec semantic examples typical pragmatic relations label cases LU definition subject regional antonyms synonyms label label #### Cognitivist account on polysemy (cf. DiMuccio-Failla: forthcoming) Brugman & Lakoff (1988: 478): in a speaker's mind, the related senses of a word are organised in a radial set around one or more prototypical concepts. Each individual sense is a conceptual category organised around prototypical members. <u>Example</u>: The central sense of *over* combines elements of both *above* and *across*. → The links between the senses are instances of metonyms, metaphors, image-schema transformations, shifts within a semantic frame, ect. The boundaries of a single sense need not to be clear-cut. The lexical network is a **network** of minimally differing senses (Norvig & Lakoff 1987: 195). Johnson (1987): embodiment of mental concepts: Image-schemata are structures for organizing our experience and comprehension (cf. p. 29). #### **Presentation of word meaning through ostensive aids** (PhD project) GOALS: 1) issuing guidelines for a systematic identification of polysemous senses and ordering them in the entry according to semantic-cognitive principles, with 'core/prototypical meaning' first. - → syntactic constructions and cognitive representations of meaning are often at odds - → what is the prototypical meaning? - → can the user easily find the linguistic expression for the concept he/she has in mind? (active) - 2) presenting word meaning through ostensive aids, e.g. phrase-based pictorial frames - → what kind of visual aids are suitable for which words? - → pictures have, like prototypical concepts, no boundaries - → implementing AI? ## 4. Methodology and data - Gathering collocations from corpora, general dictionaries, collocation dictionaries, ... - Grouping collocations according to their colligation and their meaning \rightarrow search for appropriate semantic types - Constant evaluation and introspection: selection of typical cases, examples, ect. - Compiling the entry #### References Brugman, Claudia/Lakoff, George (1988): 'Cognitive topology and lexical networks', in Small, Steven L./Cottrell, Garrison W./Tenenhaus, Michael K. (eds.), Lexical ambiguity resolution: Perspectives from psycholinguistics, neuropsychology and artificial intelligence. San Mateo (CA): Morgan Kaufmann Publishers, pp. 477–508. DiMuccio-Failla (forthcoming): 'A theory for usage-based cognitive lexicography'. DiMuccio-Failla, Paolo V./Giacomini, Laura (2017a): 'Designing a learner's dictionary with phraseological disambiguators', in Mitkov, Ruslan (ed.), Computational and Corpus-Based Phraseology, Proceedings of the second international conference EUROPHRAS 2017 (London, UK). Cham: Springer, pp. 290–305. DiMuccio-Failla, Paolo V./Giacomini, Laura (2017b): 'Designing a learner's dictionary based on Sinclair's lexical units by means of corpus pattern analysis and the Sketch Engine', in Kosem, Iztok/Tiberius, Carole/Jakubíček, Miloš/Kallas, Jelena/Krek, Simon/Baisa, Vít (eds.), Electronic lexicography in the 21st century, Proceedings of the eLex 2017 conference (Leiden, Netherlands). Brno: Lexical Computing CZ, pp. 437–457. DiMuccio-Failla, Paolo V./Giacomini, Laura (2022): 'A proposed microstructure for a new kind of active learner's dictionary', Lexicographica 38(1): 475–499. Hanks, Patrick (2013): Lexical analysis – Norms and exploitations. Cambridge (MA)/London: MIT Press. Johnson, Mark (1992 [1987]): The body in the mind – The bodily basis of meaning, imagination, and reasoning. Chicago/London: The University of Chicago Press. Kilgarriff, Adam/Rychlý, Pavel/Smrž, Pavel/Tugwell, David (2004): 'The Sketch Engine', in Williams, Geoffrey/Vessier, Sandra (eds.), *Proceedings of the 11th EURALEX international congress* (Lorient, France). Lorient: UBS, pp. 105–116. Kilgarriff, Adam/Baisa, Vít/Bušta, Jan/Jakubíček, Miloš/Kovář, Vojtěch/Michelfeit, Jan/Rychlý, Pavel/Suchomel, Vít (2014): 'The Sketch Engine: ten years on', Lexicography 1: 7–36. Sinclair, John (1991): Corpus, concordance, collocation. Oxford: Oxford University Press. Sinclair, John (2004): *Trust the text – Language, corpus and discourse*. London/New York: Routledge.