cosimo_oriol_1800x1080.jpg
Cosimo Rusconi und Oriol Romero-Isart lassen einen Magnetkreisel schweben.

Quantenphysik lässt Nano­magnete stabil schweben

Quanteneigenschaften lassen Nanomagnete über einem statischen Magnetfeld schweben, obwohl das laut dem klassischen Earnshaw-Theorem eigentlich unmöglich ist. Das zeigen Innsbrucker Quantenphysiker um Oriol Romero-Isart in zwei aktuellen Arbeiten. Verantwortlich dafür ist der Drehimpuls von Elektronen, aus dem auch der Magnetismus entspringt.

Mit Dauermagneten kann man keine stabil schwebende Konstruktion errichten, das hat der Brite Samuel Earnshaw bereits 1842 nachgewiesen. Lässt man einen Magneten über einem anderen schweben, genügt die kleinste Störung, um ihn abstürzen zu lassen. Der Magnetkreisel, ein beliebtes Spielzeug, umgeht dieses Earnshaw-Theorem. Bei einer Störung richtet die Kreiselbewegung ihn wieder so aus, dass die Stabilität erhalten bleibt. Nun haben Physiker um Oriol Romero-Isart vom Institut für Theoretische Physik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften gemeinsam mit Forschern am Max-Planck-Institut für Quantenoptik in Garching erstmals gezeigt, dass Nanomagneten auch in Ruhe über einem statischen Magnetfeld schweben können. „In der Quantenwelt können winzige Nanoteilchen ruhend über einem Magnetfeld schweben“, sagt Oriol Romero-Isart. „Verantwortlich dafür sind Quanteneigenschaften, die in der makroskopischen Welt nicht wahrnehmbar sind, bei Nanoobjekten aber stark hervortreten.“

Stabilität durch gyromagnetischen Effekt

Albert Einstein hat gemeinsam mit dem niederländischen Physiker Wander Johannes de Haas 1915 nachgewiesen, dass der Magnetismus auf ein quantenmechanisches Phänomen zurückgeht, nämlich den Drehimpuls von Elektronen, den sogenannten Elektronenspin. Die Physiker um Oriol Romero-Isart zeigen nun, dass dieser Elektronenspin es einem Nanomagneten erlaubt, im Ruhezustand über einem statischen Magnetfeld zu schweben, obwohl das nach dem klassischen Earnshaw-Theorem eigentlich unmöglich ist. Die Theoretiker haben ausführliche Stabilitätsanalysen abhängig vom Radius des Objekts und der Stärke des externen Magnetfelds gemacht. Diese zeigen, dass in Abwesenheit von Reibungsverlusten (Dissipation) sich ein Gleichgewichtszustand einstellt. Verantwortlich dafür ist der gyromagnetische Effekt: bei Änderung der Magnetisierung tritt wegen der Kopplung der magnetischen Momente mit dem Spin der Elektronen ein mechanisches Drehmoment auf. „Dadurch wird der magnetische Schwebezustand des Nanomagneten stabilisiert“, erklärt Erstautor Cosimo Rusconi. Darüber hinaus konnten die Forscher auch zeigen, dass die Freiheitsgrade des schwebenden Nanomagnets miteinander quantenverschränkt sind.

Neues Forschungsfeld

Oriol Romero-Isart und sein Team sind optimistisch, dass diese schwebenden Nanomagnete bald auch im Labor beobachtet werden können. Sie machen Vorschläge, wie dies unter realistischen Bedingungen gelingen könnte. Schwebende Nanomagnete bieten ein völlig neues Experimentierfeld für die Physiker. Unter instabilen Verhältnissen könnten sie zum Beispiel exotische Quantenphänomene offenbaren. Auch könnten mehrere Nanomagnete miteinander gekoppelt und die Ausbreitung der Magnetisierung im Labor simuliert und studiert werden. Technisch sind schwebende Nanomagnete zum Beispiel auch als hochsensible Sensoren interessant.

Finanziell unterstützt wurden die Forschung vom österreichischen Bundesministerium für Wissenschaft, Forschung und Wirtschaft und dem Europäischen Forschungsrat ERC.

Links

Nach oben scrollen