Publications

2024

  • D. A. VajnerN. D. KewitzM. von HelversenS. C. WeinY. KarliF. KappeV. RemeshS. F. C. da SilvaA. RastelliG. WeihsC. A. Solanas, and T. Heindel, Towards Photon-Number-Encoded High-dimensional Entanglement from a Sequentially Excited Quantum Three-Level System, Optica Quantum (accepted), https://arxiv.org/abs/2407.05902 
  • Y. Karli, R. Schwarz, F. Kappe, D. A. Vajner, R. G. Krämer, T. K. Bracht, S. F. C. da Silva, D. Richter, S. Nolte, A. Rastelli, D.E. Reiter, G. Weihs, V. Remesh, Robust Single-Photon Generation for Quantum Information Enabled by Stimulated Adiabatic Rapid Passage, Appl. Phys. Lett. 125, 254002 (2024)- featured article, https://doi.org/10.1063/5.0241504 
  • T. K. Bracht, F. Kappe, M. Cygorek, Tim Seidelmann, Y. Karli, V. Remesh, G. Weihs, V. M. Axt, and D.E. Reiter, Theory of time-bin entangled photons from quantum emitters, Phys. Rev. A 110, 063709 (2024), (Editor’s Suggestion) https://doi.org/10.1103/PhysRevA.110.063709
  • P. Mark, S. Gstir, J. Münzberg, G. Weihs, R. Keil, Nonlinear response of telecom-wavelength superconducting single-photon detectors, APL Quantum 1, 046109 (2024) 10.1063/5.0231297 
  • T. Faleo, E. Brunner, J. W. Webb, A. Pickston, J. Ho, G. Weihs, A. Buchleitner, C. Dittel, G. Dufour, A. Fedrizzi, and R. Keil, Entanglement-induced collective many-body interference, Sci. Adv. 10, eadp9030 (2024) 10.1126/sciadv.adp9030.
  • C. PiccininiA. ParalikisJ. F. Neto, A. A. MadigawaP. WyborskiV. RemeshL. VannucciN. Gregersen, and B. Munkhbat, High-purity and stable single-photon emission in bilayer WSe2 via phonon-assisted excitation, arXiv preprint, https://arxiv.org/abs/2406.07097 
  • H. Thiel, L. Jehle, R.J. Chapman, S. Frick, H. Conradi, M. Kleinert , H. Suchomel, M. Kamp, S. Höfling, C. Schneider, N. Keil, and G. Weihs, Time-bin entanglement at telecom wavelengths from a hybrid photonic integrated circuit, Sci Rep 14, 9990 (2024) https://doi.org/10.1038/s41598-024-60758-4 
  • F. Kappe, R. Schwarz, Y. Karli, T. K. Bracht, V.M. Axt, A. Rastelli, V. Remesh, D.E. Reiter, and G. Weihs, Keeping the photon in the dark: Enabling full quantum dot control by chirped pulses and magnetic fields, arXiv preprinthttps://arxiv.org/abs/2404.10708 
  • Y. Karli, D. A. Vajner, F. Kappe, P. C. A. Hagen, L. M. Hansen, R. Schwarz, T. K. Bracht, C. Schimpf, S. F. C. da Silva, P. Walther, A. Rastelli, V.M. Axt, J. C. Loredo, V. Remesh, T. Heindl, D.E. Reiter, and G. Weihs, Controlling the Photon Number Coherence of Solid-state Quantum Light Sources for Quantum Cryptography, npj Quantum Inf 10, 17 (2024) https://doi.org/10.1038/s41534-024-00811-2 
  • F. Kappe, Y. Karli, G. Wilbur, R. G. Krämer, S. Ghosh, R. Schwarz, M. Kaiser, T. K. Bracht, D.E. Reiter, S. Nolte, K. C. Hall, G. Weihs, and V. Remesh, Chirped Pulses Meet Quantum Dots: Innovations, Challenges and Future Perspectives, Adv. Quantum Technol. 2024, 2300352 https://doi.org/10.1002/qute.202300352

2023

  • H. Thiel, B. Nardi, A. Schlager, S. Frick, and G. Weihs, A practical guide to loss measurements using the Fourier transform of the transmission spectrum, Journal of Physics: Photonics 5, 046001 (2023), 10.1088/2515-7647/acff55
  • V. Remesh, R. G. Krämer, R. Schwarz, F. Kappe, Y. Karli, M. P. Siems, T. K. Bracht, S. F. C. da Silva, A. Rastelli, D.E. Reiter, D. Richter, S. Nolte, and G. Weihs, Compact Chirped Fiber Bragg Gratings for Single Photon Generation from Quantum Dots, APL Photonics 8, 101301 (2023)https://doi.org/10.1063/5.0164222
  • F. Kappe, Y. Karli, T. K. Bracht, S. F. C. da Silva, T. Seidelmann, V.M. Axt, A. Rastelli, D.E. Reiter, G. Weihs and V. Remesh, Collective Excitation of Spatio-Spectrally Distinct Quantum Dots Enabled by Chirped Pulses, Mater. Quantum. Technol. 3, 025006 (2023), https://iopscience.iop.org/article/10.1088/2633-4356/acd7c1
  • C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer, R. Prevedel, J. Rarity, A. Shields, and G. Weihs, Applications of single photons in quantum metrology, biology and the foundations of quantum physics, Nat. Rev. Phys. 5, 354 (2023),  https://doi.org/10.1038/s42254-023-00589-w
  • C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer, R. Prevedel, J. Rarity, A. Shields, and G. Weihs, Applications of single photons to quantum communication and computing, Nat. Rev. Phys. 5, 326 (2023), https://doi.org/10.1038/s42254-023-00583-2
  • S. Frick, R. Keil, V. Remesh, and G. Weihs, Single‐Photon Sources for Multi‐Photon Applications in Photonic Quantum Technologies: Science and Applications 1, 53 (2023), https://doi.org/10.1002/9783527837427.ch4
  • H. Thiel, M. Wagner, B. Nardi, A. Schlager, R.J. Chapman, S. Frick, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Fabrication of low-loss III-V Bragg-reflection waveguides for parametric down-conversion, Opt. Mater. Express 13, 1278 (2023), https://doi.org/10.1364/OME.487434
  • T. K. Bracht, T. Seidelmann, Y. Karli, F. Kappe, V. Remesh, G. Weihs, V.M. Axt, and D.E. Reiter, Dressed-state analysis of two-color excitation schemes,  Phys. Rev. B 107, 035425 (2023), https://doi.org/10.1103/PhysRevB.107.035425

2022

  • Y. Karli, F. Kappe, V. Remesh, T. K. Bracht, J. Münzberg, S. F. C. da Silva, T. Seidelmann, V.M. Axt, A. Rastelli, D.E. Reiter,  and G. Weihs, SUPER Scheme in Action: Experimental Demonstration of Red-detuned Excitation of a Quantum Dot,  Nano Lett. 22 6567 (2022), [featured on the front cover] https://doi.org/10.1021/acs.nanolett.2c01783 
  • J. Münzberg, F. Draxl, S. F. C. da Silva, Y. Karli, S. Manna, A. Rastelli, G. Weihs, and R. Keil, Fast and efficient demultiplexing of single photons from a quantum dot with resonantly enhanced electro-optic modulators, APL Photonics 7, 070802 (2022)https://doi.org/10.1063/5.0091867
  • P. Aumann, M. Prilmüller, F. Kappe, L. Ostermann, D. Dalacu, P. J. Poole, H. Ritsch, W. Lechner, and G. Weihs, Demonstration and modeling of time-bin entangled photons from a quantum dot in a nanowire, AIP Advances 12, 055115 (2022). https://doi.org/10.1063/5.0081874 

2021

  • C. Dittel, and G. Weihs, Complementarity Between One- and Two-Body Visibilities, in Quantum Arrangements, G. Jaeger, D. Simon, A. V. Sergienko, G. D., and Z. A., eds. (Springer, Cham, 2021), pp. 177. https://doi.org/10.1007/978-3-030-77367-0_9 
  • S. Gstir, E. Chan, T. Eichelkraut, A. Szameit, R. Keil, and G. Weihs, Towards probing for hypercomplex quantum mechanics in a waveguide interferometer, New J. Phys. 23, 093038 (2021). https://doi.org/10.1088/1367-2630/ac2451
  • C. Dittel, G. Dufour, G. Weihs, and A. Buchleitner, Wave-Particle Duality of Many-Body Quantum States, Phys. Rev. X 11, 031041 (2021), https://doi.org/10.1103/PhysRevX.11.031041
  • A. Schlager, M. Götsch, R. J. Chapman, S. Frick, H. Thiel, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Difference-frequency generation in an AlGaAs Bragg-reflection waveguide using an on-chip electrically-pumped quantum dot laser, Journal of Optics 23, 085802 (2021). https://doi.org/10.1088/2040-8986/ac13ae
  • M. Neumann, F. Kappe, T. K. Bracht, M. Cosacchi, T. Seidelmann, V. M. Axt, G. Weihs, and D. E. Reiter, Optical Stark shift to control the dark exciton occupation of a quantum dot in a tilted magnetic field, Phys. Rev. B 104, 075428 (2021), https://doi.org/10.1103/PhysRevB.104.075428
  • J. Münzberg, C. Dittel, M. Lebugle, A. Buchleitner, A. Szameit, G. Weihs, and R. Keil, Symmetry Allows for Distinguishability in Totally Destructive Many-Particle Interference, PRX Quantum 2, 020326 (2021), https://doi.org/10.1103/PRXQuantum.2.020326
  • S. Auchter, A. Schlager, H. Thiel, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Understanding photoluminescence in semiconductor Bragg-reflection waveguides, J. Opt. 23 (2021), https://doi.org/10.1088/2040-8986/abd888
  • U. Czopak, M. Prilmüller, K. Winkler, C. Schneider, S. Höfling, and G. Weihs, Polariton Lasing in Micropillars With One Micrometer Diameter and Position-Dependent Spectroscopy of Polaritonic Molecules, submitted to SciPost Physics (2021),  
    https://arxiv.org/abs/2102.04186 
  • M. Ehrhardt, R. Keil, L. J. Maczewsky, C. Dittel, M. Heinrich, and A. Szameit, Exploring complex graphs using three-dimensional quantum walks of correlated photons, Science Advances 7, eabc5266 (2021), https://doi.org/10.1126/sciadv.abc5266 
  • S. Meraner, R. Chapman, S. Frick, R. Keil, M. Prilmüller, and G. Weihs, Approaching the Tsirelson bound with a Sagnac source of polarization-entangled photons, SciPost Physics 10, 017 (2021), https://doi.org/10.21468/SciPostPhys.10.1.017

2019

  • K. Laiho, M. Schmidt, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, J. Beyer, G. Weihs, and S. Reitzenstein, Photon-number parity of heralded single photons from a Bragg-reflection waveguide reconstructed loss-tolerantly via moment generating function, New J. Phys. 21, 103025 (2019), https://doi.org/10.1088/1367-2630/ab42ae 
  • H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides, J. Opt. 21, 054001 (2019), https://doi.org/10.1088/2040-8986/ab0fe9 

2018

  • M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs, and A. Predojević, Hyperentanglement of Photons Emitted by a Quantum Dot, Phys. Rev. Lett. 121, 110503 (2018). http://doi.org/10.1103/PhysRevLett.121.110503 
  • H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Time-bin entangled photon pairs from Bragg-reflection waveguides, APL Photonics 3, 080804 (2018). http://doi.org/10.1063/1.5038186 
  • C. Dittel, G. Dufour, M. Walschaers, G. Weihs, A. Buchleitner, and R. Keil, Totally Destructive Many-Particle Interference, Phys. Rev. Lett. 120, 240404 (2018). http://doi.org/10.1103/PhysRevLett.120.240404 
  • C. Dittel, G. Dufour, M. Walschaers, G. Weihs, A. Buchleitner, and R. Keil, Totally destructive interference for permutation-symmetric many-particle states, Phys. Rev. A 97, 062116 (2018). http://doi.org/10.1103/PhysRevA.97.062116 
  • Siddarth Koduru, P. Jacques, C. R. Timothy, C. Luigi, M. Will, R. John, G. Dirk, L. Jin Gyu, M. Vadim, F. Ivette, S. Thomas, B. Erik, B. Mohamed, B. David Edward, C. Adán, C. Jose, C.-C. Alberto, D. Eleni, D. Miloslav, E. Dominique, G. Angelo, H. H. Robert, J. Thomas, K. Rainer, A. K. Michael, L. Hoi-Kwong, M. Christoph, M. Gerard, P. Momtchil, P. Andreas, P. Valerio, R. Renato, S. Christophe, S. Johannes, S. Nikolaos, S. Mario, P. T. Juan, T. Morio, V. Paolo, W. Ian, W. Gregor, W. Harald, Z. Anton, Ż. Marek, and a. Rupert Ursin, Space QUEST mission proposal: experimentally testing decoherence due to gravity, New J. Phys. 20, 063016 (2018). http://doi.org/10.1088/1367-2630/aac58b 
  • B. Pressl, K. Laiho, H. Chen, T. Günthner, A. Schlager, S. Auchter, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Semi-automatic engineering and tailoring of high-efficiency Bragg-reflection waveguide samples for quantum photonic applications, Quant. Sci. Technol. 3, 024002 (2018). http://doi.org/10.1088/2058-9565/aaa2a2 

2017

  • Dufour, T. Brünner, C. Dittel, G. Weihs, R. Keil, and A. Buchleitner, Many-particle interference in a two-component bosonic Josephson junction: an all-optical simulation, New J. Phys. 19, 125015 (2017). http://doi.org/10.1088/1367-2630/aa8cf7 
  • T. Huber, M. Prilmüller, M. Sehner, G. S. Solomon, A. Predojević, and G. Weihs, Interfacing a quantum dot with a spontaneous parametric down-conversion source, Quant. Sci. Technol. 2, 034016 (2017). http://doi.org/10.1088/2058-9565/aa7b65 
  • M. Khoshnegar, T. Huber, A. Predojević, D. Dalacu, M. Prilmüller, J. Lapointe, X. Wu, P. Tamarat, B. Lounis, P. Poole, G. Weihs, and H. Majedi, A solid state source of photon triplets based on quantum dot molecules,  8, 15716 (2017), DOI: 10.1038/ncomms15716.
  • A. Schlager, B. Pressl, K. Laiho, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Temporally versatile polarization entanglement from Bragg reflection waveguides, Optics Letters 42, 2102 (2017), DOI: 10.1364/OL.42.002102.
  • S. Agne, T. Kauten, J. Jin, E. Meyer-Scott, J. Z. Salvail, et al., Observation of Genuine Three-Photon Interference, Physical Review Letters 118, 153602 (2017), DOI: 10.1103/PhysRevLett.118.153602.
  • T. Kauten, R. Keil, T. Kaufmann, B. Pressl, Č. Brukner, and G. Weihs, Obtaining tight bounds on higher-order interferences with a 5-path interferometer, New J. Phys. 19, 033017 (2017), DOI: 10.1088/1367-2630/aa5d98.
  • C. Dittel, R. Keil, and G. Weihs, Many-body quantum interference on hypercubes, Quantum Science and Technology 2, 015003 (2017), DOI: 10.1088/2058-9565/aa540c.

2016

  • K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, et al., Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation, Nanotechnology 27, 434003 (2016), DOI: 10.1088/0957-4484/27/43/434003.
  • T. Huber, A. Predojević, G. S. Solomon, and G. Weihs, Effects of photo-neutralization on the emission properties of quantum dots, Opt. Express 24, 21794 (2016), DOI: 10.1364/OE.24.021794.
  • R. Keil, T. Kaufmann, T. Kauten, S. Gstir, C. Dittel, et al., Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase, APL Photonics 1, 081302 (2016), DOI: 10.1063/1.4960204.
  • R. Keil, C. Poli, M. Heinrich, J. Arkinstall, G. Weihs, et al., Universal Sign Control of Coupling in Tight-Binding Lattices, Phys. Rev. Lett. 116 (2016), DOI: 10.1103/PhysRevLett.116.213901.
  • T. Huber, L. Ostermann, M. Prilmuller, G. S. Solomon, H. Ritsch, et al., Coherence and degree of time-bin entanglement from quantum dots, Phys. Rev. B 93, 201301 (2016), DOI: 10.1103/PhysRevB.93.201301.
  • Ostermann, T. Huber, M. Prilmüller, G. S. Solomon, H. Ritsch, et al., Coherent two-photon excitation of quantum dots, in Proceedings of Quantum Optics, J. Stuhler, and A. J. Shields, eds. (Brussels, 2016), 9900, pp. 99000T (SPIE, 2016), DOI: 10.1117/12.2230071.
  • Weimann, A. Perez-Leija, M. Lebugle, R. Keil, M. Tichy, et al., Implementation of quantum and classical discrete fractional Fourier transforms, Nature Commun. 7, 8 (2016), DOI: 10.1038/ncomms11027

2015

  • B. Pressl, T. Günthner, K. Laiho, J. Geßler, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, Mode-resolved Fabry-Perot experiment in low-loss Bragg-reflection waveguides, Opt. Express 23, 33608 (2015), DOI: 10.1364/OE.23.033608.
  • T. Huber, A. Predojević, D. Föger, G. S. Solomon, and G. Weihs, Optimal excitation conditions for indistinguishable photons from quantum dots, New J. Phys. 17, 123025 (2015), DOI: 10.1088/1367-2630/17/12/123025.
  • R. Keil, B. Pressl, R. Heilmann, M. Gräfe, G. Weihs, and A. Szameit, Direct measurement of second-order coupling in a waveguide lattice, Appl. Phys. Lett. 107, 241104 (2015), DOI: 10.1063/1.4937807.
  • T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide, Journal of Optics 17, 125201 (2015), DOI: 10.1088/2040-8978/17/12/125201.
  • G. Weihs, Teleportation im Doppelpack, Physik Journal 14, 18 (2015).
  • L. Einkemmer, Z. Vörös, G. Weihs, and S. Portolan, Polarization entanglement generation in microcavity polariton devices, phys. stat. solid. (b), n/a (2015), DOI: 10.1002/pssb.201451704.
  • Z. Vörös, and G. Weihs, Foucault's method for measuring the speed of light with modern apparatus, European Journal of Physics 36, 035013 (2015), DOI: 10.1088/0143-0807/36/3/035013.
  • M. Covi, B. Pressl, T. Günthner, K. Laiho, S. Krapick, C. Silberhorn, and G. Weihs, Liquid-nitrogen cooled, free-running single-photon sensitive detector at telecommunication wavelengths, Appl. Phys. B 118, 489 (2015), DOI: 10.1007/s00340-015-6019-y.

2014

  • Z. Vörös, and G. Weihs, Rayleigh scattering in coupled microcavities: theory, J. Phys. Cond. Mat. 26, 485303 (2014), DOI: 10.1088/0953-8984/26/48/485303.
  • I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, Quantum non-Gaussian Depth of Single-Photon States, Phys. Rev. Lett. 113, 223603 (2014), DOI: 10.1103/PhysRevLett.113.223603.  
  • T. Huber, A. Predojevic, M. Khoshnegar, D. Dalacu, P. J. Poole, H. Majedi, and G. Weihs, Polarization Entangled Photons from Quantum Dots Embedded in Nanowires, Nano Lett. 14, 7107 (2014), DOI: 10.1021/Nl503581d.  
  • H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, Time-bin entangled photons from a quantum dot, Nature Commun. 5 (2014), DOI: 10.1038/ncomms5251. 
  • S. Portolan, L. Einkemmer, Z. Vörös, G. Weihs & P. Rabl, Generation of hyper-entangled photon pairs in coupled microcavities, New Journal of Physics 16, 063030 (2014). DOI: 10.1088/1367-2630/16/6/063030
  • T. Kauten, B. Pressl, T. Kaufmann, and G. Weihs, Measurement and modeling of the nonlinearity of photovoltaic and Geiger-mode photodiodes., Rev. Sci. Instrum. 85, 063102 (2014), DOI: 10.1063/1.4879820.
  • G. Weihs, User Friendly Photon Pairs, Physics 7, 49 (2014). DOI: 10.1103/Physics.7.49
  • C. Erven, N. Ng, N. Gigov, R. Laflamme, S. Wehner, and G. Weihs, An experimental implementation of oblivious transfer in the noisy storage model, Nat. Commun. 5 (2014), DOI: 10.1038/ncomms4418
  • C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. L. Higgins, Z. Yan, C. J. Pugh, J. P. Bourgoin, R. Prevedel, L. K. Shalm, L. Richards, N. Gigov, R. Laflamme, G. Weihs, T. Jennewein, and K. J. Resch, Experimental three-photon quantum nonlocality under strict locality conditions, Nature Photonics 8, 292 (2014). DOI: 10.1038/nphoton.2014.50
  • A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. Solomon, R. Filip, and G. Weihs, Efficiency vs. multi-photon contribution test for quantum dots, Opt. Express 22, 4789-4798 (2014). DOI: 10.1364/OE.22.004789
  • T. Jennewein, J. P. Bourgoin, B. Higgins, C. Holloway, E. Meyer-Scott, C. Erven, B. Heim, Z. Yan, H. Huebel, G. Weihs, E. Choi, I. D'Souza, D. Hudson, and R. Laflamme, QEYSSAT: a mission proposal for a quantum receiver in space, in Proceedings of Advances in Photonics of Quantum Computing, Memory, and Communication VII, Z. U. Hasan, P. R. Hemmer, H. Lee, and C. M. Santori, eds. (2014), Proc. SPIE 8997, p. 89970A, DOI: 10.1117/12.2041693. 

2013

  • B. Pressl, G. Weihs, Notes on evanescent wave Bragg-reflection waveguides, in Emerging Technologies in Security and Defence; and Quantum Security II; and Unmanned Sensor Systems X, E. M. Carapezza; K. L. Lewis; M. T. Gruneisen; M. Dusek; R. C. Hollins; J. G. Rarity; T. J. Merlet, Editors, Proceedings of SPIE Vol. 8899 (SPIE, Bellingham, WA 2013), 88990Q. DOI: 10.1117/12.2030833
  • R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, Inherent polarization entanglement generated from a monolithic semiconductor chip, Sci. Rep. 3, 2314 (2013), DOI: 10.1038/srep02314.
  • T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. S. Solomon and G. Weihs, Measurement and modification of biexciton-exciton time correlations, Opt. Express 21, 9890-9898 (2013). DOI: 10.1364/OE.21.009890.
  • H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, Deterministic Photon Pairs and Coherent Optical Control of a Single Quantum Dot, Phys. Rev. Lett. 110, 135505 (2013), DOI: 10.1103/PhysRevLett.110.135505.
  • G. Weihs, Welcher Weg war das Ziel?, Physik-Journal 12, (1) 16 (2013).

2012

  • A. Predojević, S. Grabher and G. Weihs, Pulsed Sagnac source of polarization entangled photon pairs, Opt. Express, 20, 25022-25029 (2012). DOI: 10.1364/OE.20.025022
  • R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, Monolithic Source of Photon Pairs, Phys. Rev. Lett. 108, 153605 (2012), DOI: 10.1103/PhysRevLett.108.153605.
  • P. Mai, B. Pressl, M. Sassermann, Z. Vörös, G. Weihs, et al., Multi-dimensional laser spectroscopy of  exciton polaritons with spatial light modulators, Appl. Phys. Lett. 100, 072109 (2012), DOI: 10.1063/1.3687180.
  • I. Söllner, B. Gschösser, P. Mai, B. Pressl, Z. Vörös, and G. Weihs, Testing Born's Rule in Quantum Mechanics for Three Mutually Exclusive Events, Found. Phys. online first (2012), DOI: 10.1007/s10701-011-9597-5.

2010

  • U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, and G. Weihs, Ruling Out Multi-Order Interference in Quantum Mechanics, Science 329, 418 (2010), DOI: 10.1126/science.1190545.
  • E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, Quantum entanglement distribution with 810 nm photons through telecom fibers, Appl. Phys. Lett. 97 (2010), DOI: 10.1063/1.3460920.

2009

  • C. Erven, X. F. Ma, R. Laflamme, and G. Weihs, Entangled quantum key distribution with a biased basis choice, New J. Phys. 11 (2009), DOI: 10.1088/1367-2630/11/4/045025.
  • E. Bocquillon, C. Couteau, M. Razavi, R. Laflamme, and G. Weihs, Coherence measures for heralded single-photon sources, Phys. Rev. A 79 (2009), DOI: 10.1103/PhysRevA.79.035801.
  • D. N. Biggerstaff, R. Kaltenbaek, D. R. Hamel, G. Weihs, T. Rudolph, and K. J. Resch, Cluster-State Quantum Computing Enhanced by High-Fidelity Generalized Measurements, Phys. Rev. Lett. 103 (2009), DOI: 10.1103/PhysRevLett.103.240504.

2008

  • P. K. Mohseni, G. Lawson, C. Couteau, G. Weihs, A. Adronov, and R. R. LaPierre, Growth and Characterization of GaAs Nanowires on Carbon Nanotube Composite Films: Toward Flexible Nanodevices, Nano Lett. 8, 4075 (2008), DOI: 10.1021/nl802003m.
  • C. Erven, C. Couteau, R. Laflamme, and G. Weihs, Entangled quantum key distribution over two free-space optical links, Opt. Express 16, 16840 (2008), DOI: 10.1364/oe.16.016840.
  • C. Erven, C. Couteau, R. Laflamme, and G. Weihs, Entanglement Based Free-Space Quantum Key Distribution, in Photonics North 2008, R. Vallee, and M. Piche, eds. (2008).
  • C. Chen, N. Braidy, C. Couteau, C. Fradin, G. Weihs, and R. LaPierre, Multiple quantum well AlGaAs nanowires, Nano Lett. 8, 495 (2008), DOI: 10.1021/nl0726306.

2007 and earlier

  • A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, Happy centenary, photon (vol 433, pg 230, 2005), Nature 446, 342 (2007), DOI: 10.1038/nature05274.
  • G. Weihs, and C. Erven, Entangled free-space quantum key distribution, in Proceedings of Quantum Communications Realized, Y. Arakawa, M. Sasaki, and H. Sotobayashi, eds. (2007), Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie) 6780, pp. 78013, DOI: 10.1117/12.734947.
  • G. Weihs, Coherence by measurement, Nat. Phys. 3, 687 (2007), DOI: 10.1038/nphys737.
  • G. Weihs, Quantum mechanics - The truth about reality, Nature 445, 723 (2007), DOI: 10.1038/445723a.
  • G. Weihs, A test of Bell's inequality with spacelike separation, in Foundations of Probability and Physics - 4, G. Adenier, A. Y. Khrennikov, and C. A. Fuchs, eds. (2007), pp. 250.
  • Chen, S. Shehata, C. Fradin, R. LaPierre, C. Couteau, and G. Weihs, Self-directed growth of AlGaAs core-shell nanowires for visible light applications, Nano Lett. 7, 2584 (2007), DOI: 10.1021/nl070874k
  • G. Weihs, Parametric down-conversion in photonic crystal waveguides, Int. J. Mod. Phys. B 20, 1543 (2006), DOI: 10.1142/s0217979206034121.
  • S. Groblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, Experimental quantum cryptography with qutrits, New J. Phys. 8 (2006), DOI: 10.1088/1367-2630/8/5/075
  • Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, Happy centenary, photon, Nature 433, 230 (2005), DOI: 10.1038/nature03280
  • G. Weihs, H. Deng, D. Snoke, and Y. Yamamoto, Polariton lasing in a microcavity, phys. stat. solid. (a) 201, 625 (2004), DOI: 10.1002/pssa.200304061.
  • Shelykh, K. V. Kavokin, A. V. Kavokin, G. Malpuech, P. Bigenwald, et al., Semiconductor microcavity as a spin-dependent optoelectronic device, Phys. Rev. B 70 (2004), DOI: 10.1103/PhysRevB.70.035320
  • Y. Zhang, G. Solomon, G. Weihs, and Y. Yamamoto, Experimental extract and empirical formulas of refractive indices of GaAs and AlAs at high temperature by HRXRD and optical reflectivity measurement, Journal of Crystal Growth 251, 777 (2003), DOI: 10.1016/s0022-0248(02)02207-8.
  • G. Weihs, H. Deng, R. Huang, M. Sugita, F. Tassone, and Y. Yamamoto, Exciton-polariton lasing in a microcavity, Semi. Sci. Tech. 18, S386 (2003), DOI: 10.1088/0268-1242/18/10/313.
  • Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum, Phys. Rev. Lett. 91 (2003), DOI: 10.1103/PhysRevLett.91.227902.
  • J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, Experimental entanglement purification of arbitrary unknown states, Nature 423, 417 (2003), DOI: 10.1038/nature01623.
  • T. Jennewein, G. Weihs, and A. Zeilinger, Photon Statistics and Quantum Teleportation Experiments, J. Phys. Soc. Jap. 72, 168 (2003).
  • R. D. Gill, G. Weihs, A. Zeilinger, and M. Zukowski, Comment on "Exclusion of time in the theorem of Bell" by K. Hess and W. Philipp, Europhys. Lett. 61, 282 (2003), DOI: 10.1209/epl/i2003-00230-6.
  • S. Gasparoni, J. W. Pan, G. Weihs, and A. Zeilinger, On the way to an experimental realization of entanglement purification, in Quantum Communication, Measurement and Computing, Proceedings, J. H. Shapiro, and O. Hirota, eds. (2003), pp. 67.
  • H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, Polariton lasing vs. photon lasing in a semiconductor microcavity, Proc. Natl. Acad. Sci. 100, 15318 (2003), DOI: 10.1073/pnas.2634328100.
  • Brukner, J. W. Pan, C. Simon, G. Weihs, and A. Zeilinger, Probabilistic instantaneous quantum computation, Phys. Rev. A 67 (2003), DOI: 10.1103/PhysRevA.67.034304.
  • G. Weihs, Bell's theorem for space-like separation, in Quantum [Un]Speakables: From Bell to Quantum Information, R. A. Bertlmann, and A. Zeilinger, eds. (Springer, Berlin, 2002), pp. 155.
  • Vaziri, G. Weihs, and A. Zeilinger, Experimental two-photon, three-dimensional entanglement for quantum communication, Phys. Rev. Lett. 89 (2002), DOI: 10.1103/PhysRevLett.89.240401.
  • Vaziri, G. Weihs, and A. Zeilinger, Superpositions of the orbital angular momentum for applications in quantum experiments, J. Opt. B 4, S47 (2002), DOI: 10.1088/1464-4266/4/2/367.
  • R. D. Gill, G. Weihs, A. Zeilinger, and M. Zukowski, No time loophole in Bell's theorem: The Hess-Philipp model is nonlocal, P Natl Acad Sci USA 99, 14632 (2002), DOI: 10.1073/pnas.182536499.
  • H. Fan, G. Weihs, K. Matsumoto, and H. Imai, Cloning of symmetric d-level photonic states in physical systems, Phys. Rev. A 66 (2002), DOI: 10.1103/PhysRevA.66.024307.
  • H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons, Science 298, 199 (2002), DOI: 10.1126/science.1074464.
  • Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Entanglement of the orbital angular momentum states of photons, Nature 412, 313 (2001), DOI: 10.1038/35085529.
  • Simon, G. Weihs, and A. Zeilinger, Optimal quantum cloning via stimulated emission, Phys. Rev. Lett. 84, 2993 (2000), DOI: 10.1103/PhysRevLett.84.2993.
  • Simon, G. Weihs, and A. Zeilinger, Optimal quantum cloning and universal NOT without quantum gates, J. Mod. Opt. 47, 233 (2000), DOI: 10.1080/09500340008244038.
  • J. Kempe, C. Simon, and G. Weihs, Optimal photon cloning, Phys. Rev. A 62, art. no. (2000).
  • T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, Quantum cryptography with entangled photons, Phys. Rev. Lett. 84, 4729 (2000), DOI: 10.1103/PhysRevLett.84.4729.
  • T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, A fast and compact quantum random number generator, Rev. Sci. Instrum. 71, 1675 (2000), DOI: 10.1063/1.1150518.
  • Simon, G. Weihs, and A. Zeilinger, Quantum cloning and signaling, Acta. Phys. Slov. 49, 755 (1999).
  • P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, et al., High-efficiency quantum interrogation measurements via the quantum Zeno effect, Phys. Rev. Lett. 83, 4725 (1999), DOI: 10.1103/PhysRevLett.83.4725.
  • G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Violation of Bell's inequality under strict Einstein locality conditions, Phys. Rev. Lett. 81, 5039 (1998), DOI: 10.1103/PhysRevLett.81.5039.
  • G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, Two-photon interference in optical fiber multiports, Phys. Rev. A 54, 893 (1996), DOI: 10.1103/PhysRevA.54.893.
  • G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, All-fiber three-path Mach-Zehnder interferometer, Opt. Lett. 21, 302 (1996), DOI: 10.1364/ol.21.000302.


Nach oben scrollen