Projects
Computation For A New Age Of Resource Aware Architecture: Waste-Sourced And Fast-Growing Bio-Based Materials (RAW). 11.2024-10.2027
The architecture, engineering, and construction (AEC) sector must urgently adopt circular practices using natural materials to reduce its significant contribution to climate change. However, the variability in quality and availability of these materials makes them unsuitable for the industry’s current need for highly uniform supplies. To make them fit AEC uses wasteful processes of selection and homogenization, which jeopardize the carbon reduction goals. The RAW project proposes a breakthrough resource model for AEC fostering a steep change in the way we design and fabricate our built environment, overcoming the fundamental limits that the natural variability sets within bio-based material streams for the green transformation of the industry.
More information: https://royaldanishacademy.com/en/case/raw
Alpine Solutions for the Transition of the textile and plastic Equipment industry and the harmonization of interregional 5R strategies (ASTER). 9.2024-8.2027
Textile and plastic materials are crucial to the Alpine Region's economy, which includes major European producers of sports and outdoor clothing, equipment, and infrastructure. However, significant waste arises during production and at the end of a product's life. To address this issue, the project partners evaluate the current framework and solutions for waste prevention and management. They then develop common practices, policies, and regulations tailored for the Alps. By mobilising stakeholders with a shared goal, ASTER aims to improve the prevention and management of textile and plastic waste in the Alps by providing pathways to harmonise policies and regulations across the region.
More information: https://www.alpine-space.eu/project/aster
Flexible Function-Monitored and Recyclable Contacts for Smart Textiles (flexCONTACT). 3.2023-2.2026
Despite massive research activities to integrate conductive structures into textiles, recent developments still have significant weaknesses, including wear and end-of-life issues. One of the main problems is the contacts between components as well as material separation and recycling. The flexCONTACT project addresses such problems of flexible electrical contacts, i.e. the choice of polymers for the interposer and the adhesion between the textile substrate and the conductive material. Parallel cyclic material testing ensures optimal characterization for potential applications and improves resource consumption through durability and separation after use. Software-supported measurements and simulations sharpen the focus on the causes of rapid wear. In addition to the "design for recycling" approach, separation solutions are also created for particularly deeply integrated components.
More information: https://projekte.ffg.at/projekt/4641747
Intelligent traceability of wood as a basis for a sustainable circular economy (trace-wood). 2.2023-1.2026
The primary goal of the research project is to evaluate the principle suitability of marking technologies for seamless tracking of the wood material flow along the value chain. The wood marking technology to be developed acts as a digital fingerprint and links intralogistic process steps and product life cycles. Unique codes, linked with machine data, provide real-time information directly from the forest, can be detected in the industry in a machine-readable manner, provide new quality data for wood processing and are embedded in a comprehensive, secure IT architecture.
More information: https://www.trace-wood.at/
Nachhaltige Siebdruckfarben für Textil- und Papierdruck koloriert mit Pigmenten aus Pflanzenfarbstoffen (PiColor Spin-off). 1.2024-6.2025
Auf dem Weg zur Kreislaufwirtschaft werden nachhaltige und umweltfreundliche Siebdruckfarben und Pflanzenpigmente für Textil- und Papierdruck entwickelt. Die enge Zusammenarbeit bei den Forschungsarbeiten mit der beteiligten Industrie bewirkt, dass Produkte entstehen die industriell anwendbar sind. Im Fokus des Entwicklungsprozesses stehen, die Umstellung von petrochemische auf nachwachsende Rohstoffe, das drastische Reduzieren von chemischen Syntheseschritten und der Erhalt der biologischen Abbaubarkeit aller Bestandteile. Diese neuen Siebdruckfarben und Pflanzenpigmente haben den Vorteil, dass der CO2-Fußabdruck minimiert oder sogar CO2 neutral wird, keine umweltbelastende Abfälle entlang der Wertschöpfungskette entstehen und zu 99% nur pflanzliche und synthetische natur-idente Rohstoffe zur Herstellung verwendet werden.
More information: https://projekte.ffg.at/projekt/5120730
Pflanzenpigmente als nachhaltige und biologisch abbaubare Farbmittel zur Kolorierung von Textil und Papier (PiColor). 1.2022-12.2023
Das Ziel dieses Projektes ist um die Herstellung von Pflanzenpigmenten zu erforschen und zu optimieren und um die Pflanzenpigmente zur Kolorierung von Cellulose-haltige Materialien (Textil, Papier/Karton) einzusetzen. Zentral bei dieser Entwicklung steht die Nutzung von nachhaltigen und biologisch abbaubare Rohstoffe. Die Farbpalette wird hauptsächlich aus Pigmente basierend auf Reststoffen aus der Forst- und Landwirtschaft und der Lebensmittelindustrie, sowie aus weiteren Pflanzen außerhalb der Nahrungsmittelkette zusammengestellt. Dabei ist insbesondere die experimentelle Entwicklung von blauen und roten Farbtönen notwendig, um die Farbpalette entsprechend zu erweitern. Bindersysteme auf Basis von Stärke, Zellulose oder Harze und Öle, werden entwickelt um das Kolorieren der Cellulose-haltige Materialien zu ermöglichen. Diese Bindersysteme haben im Vergleich zu den synthetischen Binder den Vorteil, dass diese nicht zur Mikroplastik-Problematik beitragen. Zusätzlich wird die Masseeinfärbung von Viskosefasern mit den Pflanzenpigmenten entwickelt. Als Ergebnis werden gemeinsam mit den Unternehmenspartnern marktfähige Demonstratoren hergestellt, wie zum Beispiel bedruckte Papiertaschen, T-Shirts und Lebensmittelnetze, und die Zusammenarbeit zwischen den Projektpartner wird eine Basis gründen für ein Netzwerk von Wissenschaftler, Industrien und alle beteiligte entlang der Wertschöpfungskette der Pflanzenpigmente. Im Ganzen wird das einen innovativen Beitrag zu einer modernen Kreislaufwirtschaft leisten.
More information: https://www.uibk.ac.at/textilchemie/picolor/
Textile Competence Center Vorarlberg 2 (TCCV2), 4.2021-3.2025
As a COMET K-project, TCCV2 delivers in-depth scientific knowledge in interfaces and hybrids structures (Area 1), textile-applied electrochemistry, textile-based energy storage systems and e-textiles (Area 2), bio-based, sustainable textile concepts and textile circularity (Area 3), but also concrete product concepts and demonstrators in composite materials, e-textiles, energy storage systems as well as high performance textile-based products.
The COMET Project “Textile Competence Center Vorarlberg 2 – FFG 882502” is funded within COMET – Competence Centers for Excellent Technologies – by BMK, BMDW as well as co-financing federal province Vorarlberg. The COMET programme is managed by FFG.
Microsized Conductive lines and structural Coloration on Textiles (ConCoTex), 2021-2022
The main target of the project is to develop an innovative and robust bottom-up process that will enable miniaturized conductive patterns in textiles without sacrificing their comfort and stretchable properties. A secondary goal of the project will be the generation of visible structures, structural coloration or machine-readable patterns through laser-induced nanoparticles and micro-structuring surfaces. The adopted methodology will be the following: (1) Development of microsized (10 µm in width or smaller) conductive lines on textiles of high electrical conductivity, while maintaining textile comfort and stretchability. This will be achieved by localized metallization on textiles via confined copper electroless deposition initiated from laser-induced Ag seeds. (2) Generation of visible structures, structural coloration or machine-readable patterns on textiles. This will be achieved by the generation of plasma and laser-induced optical diffraction patterns on textiles, and optimization of the plasmonic scattering effect through control of nanoparticle sizes and their positions on textiles.
More information: https://projekte.ffg.at/projekt/3867118
Embroidered electrodes for high-performance redox flow batteries (EMBROIDER-POWER)
This is a partnership between a small enterprise (Texible GmbH) and the Research Institute of Textile Chemistry and Textile Physics as a Key Enabling Technologies Center (KET) to develop stack prototypes to demonstrate the capability of embroidery to create high-performance electrodes for Redox Flow Batteries. With this technology, the partnership aims to produce large electrodes geared to achieve greater mass-transfer rates with more uniform current distributions, and therefore greater battery performance as compared to conventional systems.
The partnership is funded by the European Commission under the program European light industries innovation and technology (ELIIT) Project: https://ec.europa.eu/growth/tools-databases/eliit_en
Biotechnological Enzymatic Modification of Lignocellulosic Natural Fibres, 2020-2023
Hauptziel des Forschungsvorhabens ist die Entwicklung eines auf Basis von Enzymen biotechnologischen Modifizierungsverfahrens für natürliche Lignocellulosefasern. Das Forschungsvorhaben stellt daher die Entwicklung einer umweltfreundlichen Modifizierungsmethode für europäische biobasierte natürliche Fasern dar. Die Technologie wird erheblich dazu beitragen, das Problem mit der Faserweichheit und Verarbeitbarkeit von Lignocellulosefasern zu lösen.
The overall objective of the project proposal is to develop a biotechnological enzyme-based modification process for natural lignocellulose stem fibres. Thus, the proposal represents the development of an eco-friendly modification method for European bio-based natural lignocellulosic fibres. The technology will significantly contribute to debottleneck the issue with the fibre softness and processability of stem fibre.
More information: https://projekte.ffg.at/projekt/3696174
Increased surface functionality through enzymatic treatments of bio-based and conventional polyesters, 2019-2021
The research aims to develop enzymatic treatments of polyester fibres from conventional petroleum-base as well as bio-base to biodegradable polymers in order to generate functional groups on the fibre surface for different modifications.
Funded under the Cornet program: https://www.cornet.online/
Centre for Promoting Vascular Health in the Ageing Community (VASCage-C), 2019–2023
Mit VASCage-C wollen wir ein führendes Forschungszentrum mit dem Schwerpunkt Gefäßalterung realisieren, in dem 15 erfahrene Wissenschaftspartner und 36 forschungsorientierte Firmen gemeinsam die Vision verfolgen, durch anwendungsnahe Forschung, innovative Produktentwicklung und raschen Technologietransfer in den klinischen Bereich die Lebenserwartung und insbesondere die gesunde Lebensspanne zu verlängern. Die zwei Schwerpunkte von VASCage fokussieren auf die Themen „Gefäßgesundheit“ (Area A) und „Klinische Schlaganfall-Forschung“ (Area B), beide werden von der horizontalen Area „Epidemiologie, klinische Studien und Public Health“ (Area E) unterstützt.
The overall goals of VASCage-C are to maintain and improve vascular health and to enable better coping with the consequences of vascular disease in the ageing community. These objectives are best served by a comprehensive and integrative approach spanning the vascular ageing process from its early stages in the young to full-born vessel pathology in the elderly. VASCage-C comprises 16 strongly connected individual projects allocated to Area A (Cardiometabolic Health) and to Area B on Clinical Stroke Research, addressing the prime field of vascular ageing in terms of health-economic burden. Area B strives for improvements in stroke diagnosis, therapy, and recovery while Area A adds a preventive domain - together shaping a complete modern stroke care pathway. Areas A and B are strongly supported by the horizontal Area E (Epidemiology, Clinical Trials and Public Health) with its three 100% strategic projects.
More information: https://projekte.ffg.at/projekt/3089749
Personal protection through sensor surfaces on smart high-performance fibres (Smart RESCyou), 2019–2022
Das Projektziel sind Forschungsarbeiten zur Entwicklung einer neuen Generation von Oberflächensensoren auf Hochleistungsfasern. Ziel ist die Integration von textilbasierten Sensoren in Schutzbekleidung von Rettungskräften. Der Focus der Arbeiten wird auf der Entwicklung von Temperatur-, Infrarot- und Gassensoren zur Anzeige von Gefährdungssituationen im Rettungseinsatz.
The aim of the project is to develop a “next generation” of functional sensor coatings with the aim to develop new multifunctional coatings for sensors to be integrated into personal protective garment. As an outcome of the project demonstrators for sensor coatings on high performance material will be provided. The focus of the sensor elements will be set in the measurement of temperature and infrared irradiation as well as corrosive gases in the surrounding atmosphere.
More information: https://projekte.ffg.at/projekt/3241366
Embroidered electrodes for the fundamental understanding of redox flow cells (EmbelRed), 01.10.2018 - 30.09.2021
The use of intermittent renewable energy systems like solar and wind power in the electrical grid requires efficient energy storage systems to become viable. Redox Flow Batteries (RFBs) are a promising alternative for a safe, sustainable and cost-effective renewable storage energy system. The performance of the RFB systems depends on the operating conditions and characteristics of the cell (key components materials). Most of the existing analyses are obtained from RFBs with carbon-based electrodes, such as carbon felts or carbon paper, mainly due to their availability. The complexities of their morphological characteristics and the spatial distribution of properties make very difficult the detailed investigation of the physical and chemical processes occurring at the electrode surface. A new systematic approach combining empirical results with fundamental theory and formulation of models is required. We intend to fill this need with the means of a new technology that allows the fabrication of flexible customized electrodes based on technical embroidery to produce electrode geometries from simple (e.g. a grid made of conductive wires) to more complex patterns (e.g. a grid composed of multiple layers of varying patterns), as well as combinations of conductive wires with non-conductive yarns).
The project is funded under the FWF Hertha Firnberg Programme (project number T-1041).
Methoden zur Kompensation von Alterungseffekten bei Smart Textiles (SMART-TEX AGING), 2019 – 2021
Das Projekt SMART-TEX AGING untersucht die Ursachen und Auswirkungen von Alterungseffekten bei Smart Textiles und entwickelt Methoden, um diese Effekte zu kompensieren. Die Einflüsse von Tragebelastungen, Waschbedingungen, Zug- und Druckänderungen verändern zwar die gemessenen Sensorwerte teilweise irreversibel, intelligente Algorithmen und Musterkennungssoftware können jedoch wieder auf die Herstellungszustände rückschließen. Das interdisziplinäre Projekt benötigt Expertise in den Domänen Physik, Chemie, Elektronik, Software und künstlicher Intelligenz.
The SMART-TEX AGING project explore the causes and impacts of aging effects in smart textiles and develops methods to compensate these effects. Although the influences of wearing, washing conditions, tensile and pressure changes modify the measured sensor values in part irreversibly, intelligent algorithms and pattern recognition software can once again restore the production conditions. The interdisciplinary project requires expertise in the domains of physics, chemistry, electronics, software and artificial intelligence.
More information: https://projekte.ffg.at/projekt/3344696
Interaktion und Wirkung von innovativen Textilqualitäten auf die Hygienefaktoren im Sinnerschen Kreislauf (saferTEX), 1.01.2019 - 31.12.2020
Krankenhauskeime sind mitunter gefährliche Erreger, die eine nosokomiale, d.h im Krankenhaus erworbene, Infektion verursachen können. Patienten, die von diesen Infektionen betroffen sind, haben gravierende gesundheitliche Probleme, die bestenfalls mit einem längeren Krankenhausaufenthalt einhergehen. Trotz gut ausgearbeiteten Hygieneplänen kommt es zu einem weiteren Anstieg an Hygienerisiken in Gesundheitseinrichtungen. Eine weitere Optimierung der Hygienepraktiken und dahinterliegende Prozesse sind entscheidend für die Vorbeugung von Übertragungen von Infektionen. Innovative Textilien sind ein fixer Bestandteil in den gängigen Hygienepraktiken. Der Einsatz von innovativen Textilien bedingt unterschiedliche Interaktionen und Wechselwirkungen. So werden z.B. nicht nur Schmutz und Bakterien, sondern oft auch Wirkstoffe (wie z.B. quartäre Ammoniumverbindungen) aus dem Reinigungs-und Desinfektionsmitteln von den Textilien gebunden. Neue Ideen unter Einbindung von Endnutzern und Designern zur Sicherstellung der Infektionsprophylaxe sind deshalb unumgänglich.
Ziel des Projektes ist es, das Hygiene-Netzwerk weiter auszubauen, um eine maximale Prozesssicherheit beim Einsatz von unterschiedlichen innovativen Textilqualitäten in Kombination mit Reinigungs- und Desinfektionsmitteln zu erlangen.
More information: https://projekte.ffg.at/projekt/3061538
NanoStretch, 02.2018 - 01.2021
The realisation of stretchable conductive textiles is the basic requirement for the integration of miniaturised sensors in a textile structure, e.g. for humidity, temperature, pressure, gas sensors etc., as well as for connection concepts of sensors in large area textile sensor networks.
The basic concept of the project proposal is a permanent electroless metal coating of the fibre surface based on a nanosized metal seed layer template. Through formation of conductive coating layers of metal in the dimension of some hundreds of nanometer, conductive properties will be provided on the surface of insulating polymer fibres. Under tension the mobility of the fibres in the textile structure will allow continuous contact thus elastic structures with conductive properties will be delivered.
The research project will deliver scientific basic understanding of the formation mechanisms of nanostructured metal seed templates and the permanent conductive structures, on one hand. It will also focus on the development of an environmental friendly and economical technology to implement the technical concept to defined applications, on the other hand.
The project is funded by the FFG under the FTI - Program "Produktion der Zukunft"
Meditex, 01.2018 - 12.2019
The aim of the research project Meditex is to develop novel elastic textiles with the additional possibility of integrating sensors that meet the requirements of biocompatibility. The new technology will bring together the expertise of textile companies and medical device manufacturers and increase the competitiveness of both sectors through a common network. The main challenge in the project is to translate the requirements of medical device manufacturers with new biocompatible starting materials into suitable textile structure and processing processes.
The project is funded by the FFG under the COIN - Program "Netzwerke"
Implementation of biopolymeric gels for the temporary occlusion of vessels in medicine, 2017 - 2020
The project consists of synthesizing and characterizing a novel non-toxic biopolymer hydrogel, that gels in vivo, exhibits long-term stability, and which can be degraded intentionally. Several medical uses for such a hydrogel may be imagined. The gel will be investigated in mechanical and rheological characteristics as interaction with physiological fluids. Specific interest will be focused on stability, degradation mechanisms and injectability. The project, which will run from 2017-2020, is funded by the office of the Vice Rector for Research of the University of Innsbruck with a doctoral stipend under the “Nachwuchsförderung der Universität Innsbruck - 2017" program and the science departement of the State of Vorarlberg.
Embroidered electrodes for high-performance Li-ion batteries (3D-LiB), 2017 - 2018
Rechargeable lithium ion (Li-ion) batteries are promising candidates to store efficiently electrical energy for a wide range of applications. In this project, an improvement on the volumetric energy densities of embroidered LiFePO4 cathodes will be investigated by optimizing the slurry recipe, the coating process and layout of the embroidered current collectors. The electrochemical performance of the different cathodes will be evaluated and a first exploration for the utilization of the embroidered current collectors in other electrode materials (e.g. graphite anodes) will be performed. The project is funded by the Office of the Vice-Rector for Research of the University of Innsbruck, under the program "Nachwuchsfördermittel aus der Nachwuchsförderung der LFU - 2017".
K-Project: Textile Competence Center Vorarlberg (TCCV), 04.2017 - 03.2021
The overall vision of the TCCV is to conduct cutting-edge research in the field of smart textiles, textile-based composites, and high-performance textile materials, and thereby to become one of Europe’s flagship R&D centers in the respective fields. Research endeavours will bundle the existing competencies of the textile manufacturers together with those of the scientific community, especially the Research Institute for Textile Chemistry and Textile Physics. With this, a critical mass of expertise and dedicated research resources will be established at a physical research center in the region of Vorarlberg. Driven by global trends in mobility, communications, and health and safety, the research and development activities will be directed towards the areas of textile reinforced composites; integration of sensors, adaptive materials and electrical devices in the textile structures; and high-performance textiles.
New-Pro-Beton: Netzwerk additive Herstellungsprozesse für Betonbauteile, 01.2017 - 12.2108
Durch die Integration von textilen Bewehrungsmaterialien in einen Betondruckprozess könnte ein entscheidender und maßgebender Schritt zur industriellen Vorfertigung von Betonbauteilen gelingen, um auch hier eine Zugkraftübertragung eines 3D-gefertigten Bauteils zu ermöglichen. Projektziel ist die Integration der direkten Verarbeitung von Endlosfasern in den Druckprozess, der unmittelbare Einsatz von Wickeltechniken oder formangepassten textilen Bewehrungsstrukturen in den Prozess der Formbildung. Diese Anforderungen stellen eine große Herausforderung an die Prozess- und Materialentwicklung von Beton und Bewehrung dar, sind jedoch die entscheidende Voraussetzung für die erfolgreiche Realisierung einer ökonomischen Herstellung leistungsfähigerer komplexer Bauteile aus bewehrtem Beton. Die im Projekt gewonnenen Erkenntnisse werden die Grundlagen für marktfähige Anwendungen liefern.
BMVIT endowed chair "Production of advanced textile materials and lightweight composites", 2016 - 2021
The BMVIT endowed chair "Advanced Manufacturing" was established to broaden the research competencies of the institute in both basic and applied research. Apart from the existing, very strong research areas in textile chemistry and technology, additional research fields in technical textiles, textile composites, and polymer materials are being established and developed at the institute. Based on strong funding from BMVIT, University of Innsbruck, the Government of Vorarlberg, EFRE, and associated industrial partners, one of the major focuses is expansion of the research competencies and infrastructure for a deeper cooperation between academia and industry. The strong involvement of the BMVIT endowed chair in teaching at the Masters degree programme “Material and Nano Sciences” at the University of Innsbruck, and on developing new research topics for PhD research, is contributing to increase human capital by producing highly qualified young scientists for the Austrian industry. Furthermore, the BMVIT endowed chair is also acting to integrate the institute’ research activities into Austrian as well as international research networks and thus, to strengthen the position of Austria as a location for strong and innovative research.
Ambitex - Textile Integrated Sensor Network for Monitoring of Ambient Parameters, 2017 – 2018
Im Rahmen des kooperativen Forschungsprojekts werden neue Strategien zur Herstellung textilintegrierter Sensoren für Temperatur- und Feuchtemessung erforscht. Durch Kombination von Stickereitechnologie und Textildrucktechniken werden flexible miniaturisierte Sensoren erzeugt und unter simulierten Anwendungsbedingungen erprobt. Für die Partnerunternehmen ergibt sich aus der Forschungskooperation ein neuer Zugang zu interdisziplinärer Forschung zu flexiblen textilintegrierten Sensoren. Durch die breite Anwendbarkeit der Technologie ist eine hohe wirtschaftliche Bedeutung gegeben, Zielmärkte im Forschungsprojekt sind Sensoren für Klimamessung in Pflegebetten sowie Sensoren für Anwendungen in der Bautechnik.
Erforschung textiler Emulsionsfilterkonzepte für verbesserte Wasserabscheidung in Krafftstofffiltern über die Lebensdauer (KRATOS), 2016 - 2018
In diesem Projekt werden die Ursachen des Leistungsverlustes von Wasserabscheidesystemen in der Dieselfiltration untersucht. Durch innovative Material- und Produktkonzeptveränderung, basierend auf den zu erwartenden Erkenntnissen zur Oberflächenbenetzung von Fasern und Faserbündeln, Dieselkomponentenadsorption und der Emulsionsstabilität, soll die Wasserabscheideleistung dieser Dieselfiltrationssysteme erhöht and über Lebensdauer konstant gehalten werden können. Um dieses Ziel zu erriechen müssen gegenwärtige industrielle und wissenschaftliche Erkenntnisse kombiniert, Ursachen erforscht, neue Lösungsstrategien entwickelt und in einem innovativen Konzept umgesetzt werden. Das Projekt ist durch das FFG Basisprogramm gefördert.
Texible GmbH, 2016 - Present
Das Start-up Texible wurde 2016 als Ausgründung der Universität Innsbruck von Textilforschern und Textilunternehmern gegründet. Die Gründer sind davon überzeugt, dass die Textilien der Zukunft weit mehr Funktionen als Witterungsschutz und Design haben werden. Die Potentiale der textilen Wertschöpfungskette und ihrer Herstellungstechnologien sind riesig, stehen jedoch noch ganz am Anfang. Unsere Aufgabe ist der Technologietransfer von Forschungsergebnissen hin zu technischen Textilien mit spezifischen Anforderungen.
Competence Center: Sports Textiles
The objective of this project is to develop an integrative interdisciplinary research programme tailored for innovation and development in the field of sportswear, sports accessories and sports equipment. The consortium comprises commercial enterprises specialising in individual steps of the manufacturing chain and/or individual areas of application, research institutes specialising in the fields of sports medicine and physiology, biomechanics, microbiology, and materials/textiles research, and professional athletes. The concentrated and coherent multidisciplinary research programme involving the active participation of institutions from academia and industry sectors will generate benefits by:
- initiating the production of high added-value products based on innovative materials thereby strengthening the competitiveness of participating enterprises,
- transferring of new technologies to commercial partners helping them attain market leadership in high performance knowledge-based products, and
- improving the ability of European manufacturers to react to changing markets and to compete against low-cost production from other parts of the world.
AlpSporTec - Sportausrüstung in Alpiner Umgebung, 01.2017 – 06.2019
Der Bergsport ist für den Tourismus im alpinen Raum von entscheidender Bedeutung und stellt eine bedeutende ökonomische Größe dar. Die mit seiner Ausübung einhergehenden Sicherheitsrisiken können durch spezifische Ausrüstung maßgeblich beeinflusst werden. Vor dem Hintergrund, die Gefahr von Verletzungen minimieren und gleichzeitig den Komfort von Bergsportlern erhöhen zu wollen, setzt sich das vorliegende Projekt 3 Ziele:
- Die Entwicklung einer textilen Faser zur Verwendung in Kletterseilen, die ihre Farbe in Abhängigkeit der UV-Strahlungsexposition und der damit einhergehenden Materialalterung ändert und dem Kletterer dadurch anzeigt, wann das Seil aus Sicherheitsgründen zu ersetzen ist.
- Die Erforschung der Reibung von Textilien auf Schnee und Eis, mit dem Ziel, Gewebe zu entwickeln, die im Falle von Stürzen (bspw. im alpinen Skilauf) zur effizienten Geschwindigkeitsreduktion beitragen und dadurch das Verletzungsrisiko verringern.
- Den Tragekomfort von Bergsportbekleidung durch die Entwicklung und Erforschung innovativer textiler Materialien, die günstige thermoregulatorischen Eigenschaften aufweisen und gleichzeitig Schutz vor Umwelteinflüssen sowie die zur Ausübung der Sportarten nötige Bewegungsfreiheit gewährleisten, zu erhöhen.
Zur Realisierung dieser Ziele tritt ein länderübergreifendes Konsortium mit einzigartiger Expertise in Biomechanik, Leistungsphysiologie, Textilwissenschaft und Industrial Engineering zusammen.
More information: http://www.alpsportec.eu/
Netzwerk waschbare Sensortextilien (NewS)
The NewS project focuses on research into new technologies to produce composite textiles which function as washable sensors. New embroidery techniques will also be used to integrate sensor functions in bedding textiles. In a care home for the elderly, washable sensor-textiles will be tested for usability and lifetime expectancy. The interdisciplinary tasks require the cooperation of all relevant companies in the production, application and maintenance of the product.
TEXon - Development of Uni-directional, Curved, Textile Reinforced Concrete Shells using 3D Textile Structures
The use of textile materials for concrete reinforcement allows for the production of lightweight concrete elements. Technical embroidery techniques available permit the production of flexible, 3D reinforcement structures manufactured from technical fibres including AR-glass and carbon fibres; such elements will allow the reinforcement of curved concrete elements.
Research Studio Smart Technical Embroideries, 2011 - present
The project deals with the innovation potential of technical embroidery. Together with Smart Embroideries Austria, an association of 16 embroidery companies, the team develops new technologies, products and applications for embroidered structures in the technical field.
Textiles for Ageing Society
The aim of the EU-funded project is to bring together the elderly, social and medical care institutions, research institutions, technology transfer institutions and manufacturers to identify: specific requirements of the elderly and care institutions; latest developments in materials science and technology that will help meet these requirements; and strategies to incorporate developments in the manufacturing chain. The goal is to improve or innovate products and/or processes to meet the specific clothing and textile needs of a growing sector of the European population.
K Project: Sports Textiles
A joint research activity, coordinated by the Centre of Technology of Ski and Alpine Sports, to investigate and develop new concepts for sports textiles. Other partners are the University of Innsbruck Department of Sport Science, the Medical University of Innsbruck Division of Molecular Biology, and 10 textile and fibre processing companies.
The research activities focus on different selected aspects:
- performance improvement in competitive sports by cooling, compression, air resistance.
- optimisation of benefit to risk ratio in recreational sports: cooling and heat storage, textile support for muscles and/or joints, rain-proof and breathable fabrics for different conditions.
The scientific work includes multidisciplinary analysis and optimisation of sports textiles from the textile fibre to the complete garment with methods of textile physics and chemistry, biomechanics, microbiology and sports physiology.
European Polysaccharide Network of Excellence (EPNOE)
The EU-funded network connects 16 academic and research institutions and a large number of companies focusing on polysaccharide and polysaccharide-related business. The aims are to organize education in polysaccharide science, to perform basic and applied research for the development of new products based on or containing polysaccharides, and to offer a networking platform enabling close interaction with industry.
Shaping and Transformation in the Engineering of Polysaccharides, 2008 - 2012
The four-year Marie Curie Initial Training Network aimed at gaining fundamental understanding of non-covalent interactions in polysaccharide structures in order to developing ways and means of overcoming their influence on polysaccharide conversion.
Christian-Doppler Laboratory for "Textile and Fibre Chemistry in Cellulosics”
The research in the project, which ran from 2002-2008, focused on the behaviour and properties of cellulose fibres through the full textile pipeline. Besides physical and chemical properties, attention was also paid to microbiological properties and medical applications. The investigations concentrated on:
- synthesis of chemically modified man-made cellulosic fibres and textiles
- identification of important structural parameters of fibres and observation of these parameters during textile processing and consumer use
- formation of a scientific knowledge base about the wear and performance properties of fibres including medical applications
- study of microbial properties of fibres and textiles
Electrochemistry in textile processes
Due to the different conditions applied in dyehouses the scientific investigation and technical development concentrates at this time in the following fields of application:
- indirect reduction for dyeing with vat dyes
- indirect reduction for exhaust dyeing with sulfur dyes and sulfur vat dyes
- direct reduction of sulfur dyes for continuous dyeing
- direct electrochemical reduction of reactive dyes for decolorization of waste water
- in-situ production of bleach agents for denim wash-down
In an industrial cooperation with DyStar, Frankfurt Germany the TET (Technology Team Electrochemistry Textile) was formed. This undertakes research and development activites with numerous industrial partners, e.g. Eilenburger Umwelttechnik, Germany; Benninger AG, Switzerland; Getzner Textil, Austra; Riedl und Tietz Textil, Germany; Orta Anadolu, Turkey; Lilienweiß Textil, Germany; Thüringisches Institut für Textil- und Kunst-Forschung, Univ. Wuppertal, Germany. This know-how pool intends to scale-up the technology and support the introduction into in textile dye-houses. See Eureka Project E!2625 ECDVAT.
Formaldehyde-free crosslinking systems
To impart durable press properties to cotton fabrics it is necessary to crosslink the cellulose chains by means of a crosslinking agent. Due to the fact that formaldehyde is regarded to be carcinogenic, textile finishers are trying to replace formaldehyde-emitting crosslinking agents. Therefore, investigations are focused on the development of formaldehyde-free finishing systems which fulfill the desired technical requirements. Furthermore, analytical methods are applied to study the reaction of the crosslinking agent with the cellulosic material.
Natural dyes for textile dyeing
The introduction of natural dyes for textile dyeing operations into technical dyeing processes is studied. The study combines considerations of agricultural demands and productivity, with requirements defined frome the application of natural dyes in full scale textile dyeing processes. The latest project was in cooperation with the Institute for Applied Ecology, Vienna, entitled Colors of Nature in the framework of the program Fabrik der Zukunft.
Besides these main fields of research activities several other topics are worked on with industrial partners:
- Recycling of wasted caustic soda from the mercerizing process:
A process for the removal of dispersed impurities from reboiled mercerizing liquors by means of flotation was developed up to technical scale. The process was patented and the technical equipment is now built in license by a Swiss manufacturer of evaporation plants. - Determination of heavy metals in textile effluents:
In cooperation with ten Vorarlberger dyehouses the content of heavy metals in their effluent was determined. This investigation yielded basic information on possibilities for a minimization of the pollution by the dyehouses. - Examination of main parameters of the mercerizing process:
In cooperation with a textile manufacturer the main parameters for an optimized mercerization step for knitted goods were examined. By the measurement of the contraction of the cotton fibre by swelling in the caustic soda valuable information on critical steps in the rinsing procedure could be received. - Development of liquid detergents and optimization of the detergent products for special applications.
- Laboratory scale indigo dyeing with new cellulosic fibres (man-made fibres).
- Substitution of chlorinated hydrocarbons in wool shrinking processes by aqueous systems.
- Recycling of biological degradable sizes by ultrafiltration.
- Development of textile products with new properties/new look for textile manufacturers.
- Synthesis and characterisation of azoic dyes.
- Formation of theoretical models for optimisation of technical processes.
Textiles Forschen und Entwickeln in Vorarlberg - Von Faser und Farbe zum fertigen Produkt
Im Projekt "VORTEX" wurde die Produktionskette in der Textilherstellung für Kinder und Jugendliche praktisch und theoretisch begreifbar gemacht. Dabei wurde auf die drei Themenstränge Naturfasern und Naturfarben, Nachwachsende Rohstoffe am Bau und Synthetische Fasern und Fluoreszenz eingegangen. Im Zuge dessen wurde auch der Zugang zum textilen Forschen und Entwickeln attraktiviert.