Reloading in Barodesy
Objectives
- Development of Barodesy
- Incoorporation of the intergranular strain concept
- Improved reloading extension
- Numerical implementation and application of Barodesy
Team
The Project is funded by the research grant of the Austrian Science Fund (FWF) P 28934-N32 : Reloading in Barodesy |
Project Description
Constitutive models are physical theories which link stresses with the resulting deformation and thus should enable a realistic simulation of material behavior. Constitutive modelling is a core subject in geotechnical engineering, as the quality of every numerical simulation depends on the used model. Barodesy, a constitutive model for soil, shows similarities to hypoplasticity and differs from the mainstream approach of elasto-plasticity. It is characterized by its mathematical simplicity and captures many important aspects of soil behavior.
The question ‘what information can be stored in soil?’ can be expressed as follows in mathematical terms: ‘what are the independent variables in a constitutive model?’ In the present form of barodesy, the memory of soil is stored only in two state variables, stress and void ratio. It is astonishing to note how many effects can be described with such a ‘poor’ memory. However, in some cases it is not possible to distinguish between monotonic loading and reloading and consequently it is not possible to describe cyclic loading paths. The aim of this proposal is to extend barodesy to capture reloading. In soil mechanics it is known that changing the direction of loading will lead to a temporary increase of stiffness compared to monotonic loading. The direction of deformation is described by the so-called stretching tensor. Thus, a change of stretching should yield a temporary increase of stiffness.
The underlying hypothesis is that constitutive models, and in this case barodesy, can be designed on the basis of so-called tensorial relations. It is expected to establish a relation that will provide a new and simple way to model (in terms of mathematics) irreversible mechanical behavior. The already introduced barodesy is a convincing new paradigm, and this proposal aims at closing a gap in this respect. The extended barodetic equation will be compared with experimental data as well as with other constitutive models. It is expected to achieve scientific progress in the field of constitutive modelling.
Publications
Journal articles (peer-reviewed)
-
Tafili, Merita; Medicus, Gertraud; Bode, Manuel; Fellin, Wolfgang (online first): Comparison of two small-strain concepts: ISA and intergranular strain applied to barodesy.
In: Acta Geotechnica. (DOI) (Web link) -
Bode, Manuel; Fellin, Wolfgang; Mašín, David; Medicus, Gertraud; Ostermann, Alexander (2020): An intergranular strain concept for material models formulated as rate equations. In: International Journal for Numerical and Analytical Methods in Geomechanics 44/7, pp. 1003 - 1018. (Full-text) (DOI) (Web link)
-
Bode, Manuel; Medicus, Gertraud; Fellin, Wolfgang (2020): Erweiterte Anwendung der Barodesie für Finite Elemente Berechnungen. In: geotechnik. Organ der Deutschen Gesellschaft für Geotechnik 43/4, pp. 262 - 274. (Full-text) (DOI) (Web link)
-
Medicus, Gertraud; Schneider-Muntau, Barbara (2019): Simulations of Fine-Meshed Biaxial Tests with Barodesy. In: Geosciences 9/1, No. 20. (DOI) (Web link)
-
Medicus, Gertraud; Schneider-Muntau, Barbara; Kolymbas, Dimitrios (2019): Second-order work in barodesy.
In: Acta Geotechnica 14, pp. 1483 - 1493. (DOI) (Web link) -
Medicus, G.; Fellin, W.; Schranz, F. (2018): Konzepte der Barodesie.
In: Bautechnik 95/9, pp. 620 - 638. (URN) (DOI) (Web link)
Journal Article (Proceedings Paper)
- Tschuchnigg, Franz; Medicus, Gertraud; Schneider-Muntau, Barbara (2019): Slope stability analysis: Barodesy vs linear elastic - perfectly plastic models.
In: E3S Web of Conferences 92/16014. (DOI)
Proceedings (Full Paper)
-
Bode, M.; Fellin, W.; Medicus, G. (2021): Application of Barodesy - Extended by the Intergranular Strain Concept.
In: Barla, M.; Di Donna, A.; Sterpi, D.: International Conference of the International Association for Computer Methods and Advances in Geomechanics. Challenges and Innovations in Geomechanics. Proceedings of the 16th International Conference of IACMAG - Volume 1. Conference 5-8 May 2021, Turin. Cham: Springer Nature (= Lecture Notes in Civil Engineering, 125)., ISBN 978-3-030-64513-7, pp. 365 - 372. (DOI) (Web link) -
Medicus, Gertraud; Bode, Manuel; Tschuchnigg, Franz; Schneider-Muntau, Barbara (2021): Plane Strain Failure for Different Constitutive Models.
In: Barla, M.; Di Donna, A.; Sterpi, D.: International Conference of the International Association for Computer Methods and Advances in Geomechanics. Challenges and Innovations in Geomechanics. Proceedings of the 16th International Conference of IACMAG - Volume 1. Conference 5-8 May 2021, Turin. Cham: Springer Nature (= Lecture Notes in Civil Engineering, 125)., ISBN 978-3-030-64513-7, pp. 498 - 506. (DOI) (Web link) -
Schneider-Muntau, Barbara; Medicus, Gertraud; Desrues, Jacques; Andò, Edward; Viggiani, Gino (2021): Investigation of Uncertainty in Strength Parameter Identification.
In: Barla, M.; Di Donna, A.; Sterpi, D.: International Conference of the International Association for Computer Methods and Advances in Geomechanics. Challenges and Innovations in Geomechanics. Proceedings of the 16th International Conference of IACMAG - Volume 1. Conference 5-8 May 2021, Turin. Cham: Springer Nature (= Lecture Notes in Civil Engineering, 125)., ISBN 978-3-030-64513-7, pp. 277 - 284. (DOI) (Web link) -
Medicus, Gertraud (2019): State Boundaries der Barodesie.
In: Deutsche Gesellschaft für Geotechnik e.V. (DGGT): Fachsektionstagen Geotechnik – Interdisziplinäres Forum 2019. Tagungsband, 29. - 30. Oktober 2019. Fürth: Wildner + Designer GmbH., ISBN 978-3-946039-06-8, pp. 438 - 443. (Web link) -
Medicus, Gertraud; Fellin, Wolfgang; Kolymbas, Dimitrios; Schranz, Fabian (2019): Concepts of Barodesy.
In: Wu, Wei: Desiderata Geotechnica. China Europe Conference on Geotechnical Engineering, 13.-16. August 2018. Cham: Springer International Publishing (= Springer Series in Geomechanics and Geoengineering)., ISBN 978-3-030-14987-1, pp. 99 - 112. (Full-text) (DOI) (Web link)
Proceedings Article (Abstract)
-
Bode, M.; Fellin, W.; Mašín, D.; Medicus, G.; Ostermann, A. (2019): Application of the intergranular strain concept to barodesy.
In: Benahmed, Nadia; Wautier, Antoine: 30th ALERT Workshop Poster Session. Poster Session. Grenoble: Grenoble Institute of Technology (INP)., ISBN 978-2-9561359-5-1, pp. 16 - 17. (Web link) -
Medicus, Gertraud; Schneider-Muntau, Barbara; Desrues, Jacques; Andò, Edward; Viggiani, Cino (2019): Peak strength influenced by scattering density - Simulations with hypoplasticity.
In: Benahmed, Nadia; Wautier, Antoine: 30th ALERT Workshop Poster Session. Poster Session. Grenoble: Grenoble Institute of Technology (INP)., ISBN 978-2-9561359-5-1, pp. 14 - 15. (Web link) -
Medicus, G.; Schneider-Muntau, B. (2018): Stress-dilatancy in barodesy.
In: Pietruszczak, Stan; Pande, Gyan; Tamagnini, Claudio: 4 th International Symposium on Computational Geomechanics (ComGeo IV). Book of Extended Abstracts. 2-4 May 2018, Palazzo Bernabei, Assisi, Italy,. Rhodes: International Centre for Computational Engineering (IC2E)., ISBN 978-960-98750-3-5, pp. 22 - 23. (Web link)
Conference Lecture (Upon Registration)
-
Lecturer(s): Medicus, G. Co-author(s): Bode, M.; Tschuchnigg, F.; Schneider-Muntau, B.: Der ebene Verzerrungszustand für verschiedene Materialmodelle - Einfluss der Modelle auf den Sicherheitsfaktor in der Festigkeitsreduktionsmethode.
3. Bodenmechanik Tagung der Deutschen Gesellschaft für Geotechnik e.V. (DGGT), virtuell, 2021-04-21. (Web link) -
Lecturer(s): Medicus, Gertraud: State Boundaries der Barodesie.
Fachsektionstage Geotechnik - 2. Bodenmechanik-Tagung, Würzburg, 2019-10-30. (Web link) -
Lecturer(s): Tschuchnigg, Franz Co-author(s): Medicus, Gertraud; Schneider-Muntau, Barbara: Slope stability analysis: Barodesy vs linear elastic - perfectly plastic models.
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019), Glasgow, 2019-06-27. (Web link) -
Lecturer(s): G. Medicus, G. Co-author(s): Schneider-Muntau, B.: Stress-dilatancy in barodesy.
4th International Symposium on Computational Geomechanics (ComGeo IV), Assisi, 2018-05-04. (Web link) -
Lecturer(s): Schneider-Muntau, B. Co-author(s): Tschuchnigg, F.; Medicus, G.; Fellin, W.: Comparison of different strength reduction techniques on slope stability calculations.
4th International Symposium on Computational Geomechanics (ComGeo IV), Assisi, 2018-05-02. (Web link)
Poster Presentation
-
Lecturer(s): Tafili, Merita Co-author(s): Medicus, Gertraud; Bode, Manuel; Fellin, Wolfgang: Comparison of two small-strain concepts: ISA and intergranular strain applied to barodesy.
32nd ALERT Workshop, Aussois, 2021-09-27. (Web link) -
Lecturer(s): Bode, M. Co-author(s): Fellin, W; Mašín, D.; Medicus, G.; Ostermann, A.: Application of the intergranular strain concept to barodesy.
30th ALERT Workshop and School, Aussois, 2019-09-30. (Link to poster, Web link) -
Lecturer(s): Medicus, Gertraud Co-author(s): Schneider-Muntau, Barbara; Desrues, Jacques; Andò, Edward; Viggiani, Cino: Peak strength influenced by scattering density - Simulations with hypoplasticity.
30th ALERT Workshop and School, Aussois, 2019-09-30. (Link to poster, Web link) -
Lecturer(s): Medicus, Gertraud Co-author(s): Schneider-Muntau, Barbara; Fellin, Wolfgang: Applications of barodesy.
28th ALERT Workshop, Aussois, 2017-10-02.
Utilities and Links
- Barodesy
- Implementation of Barodesy in FE Code - UMAT for Abaqus and PLAXIS on soilmodels.com