Hanna Oppelmayer, PhD


Oppelmayer, Hanna

E-Mail: hanna.oppelmayer@uibk.ac.at

Tel.: +43 512 507 53875
Fax: +43 512 507 53899

Technikerstraße 13, room 726
6020 Innsbruck
Austria

Group: Stochastics


About myself

I am a post-doctoral researcher at the University of Innsbruck working in the research group of Stochastics.

Research

My major interests are random walks on groups or other structures and their boundaries. Boundaries can be understood as a way of compactifying the random walks. A very powerful object in this category is the so-called Furstenberg Poisson boundary, which builds bridges between several areas of mathematics, in particular Group Theory, Probability Theory, Ergodic Theory, Dynamics and Operator Algebra Theory. One of the main tools to understand these boundaries is Entropy.  In a broader frame, I investigate stationary ergodic measure spaces (non-singular actions). Boundaries are one instance of such spaces.

 

Teaching at the University of Innsbruck

  • VO & PS Statistik WS 2022 and WS 2023 (Bachelor Mathematics)
  • VO Stochastic 1 SoSe 2023 (Bachelor Mathematics)
  • PS Stochastic 1 SoSe 2024  (teacher candidates)
  • PS Linear Algebra WS 2024

Education

BSc & MSc University of Vienna, Austria Roland Zweimüller (master thesis advisor)
PhD   Chalmers University of Technology, Sweden Michael Björklund
research visit   Northwestern University, USA Yair Hartman
Post Doc  TU Graz, Austria Wolfgang Woess
research visit   Université Paris Est Créteil, France  Sara Brofferio
Post Doc   Ben Gurion University of the Negev, Israel Yair Hartman
Post Doc   University of Innsbruck, Austria Ecaterina Sava-Huss

Grants

  • Early Stage Funding 2022
  • AIANI 2022
  • Knut and Alice Wallenberg Foundation: Travel Grant 2016

Publications and Preprints

[1] Boundary entropy spectra as finite subsums. 
H. Oppelmayer,
Stochastics and Dynamics, Vol. 21, No. 6 (2021) 2150038, World Scientific Publishing Company,
https://www.worldscientific.com/doi/abs/10.1142/S0219493721500386

[2 ] Kudo-continuity of conditional entropies. 
M. Björklund, Y. Hartman, H. Oppelmayer,
Ann. Inst. H. Poincaré Probab. Statist.  59(3):  1677-1687  (August 2023).  
https://doi.org/10.1214/22-AIHP1313

[3 ] Random walks on dense subgroups of locally compact groups.
M. Björklund, Y. Hartman, H. Oppelmayer,
Trans. Amer. Math. Soc. 376 (2023), 7045-7085.
https://doi.org/10.1090/tran/8970
 
[4] On the amenable subalgebras of group von Neumann algebras.
T. Amrutam, Y. Hartman, H. Oppelmayer
Journal of Functional Analysis (2024) 110718.
https://doi.org/10.1016/j.jfa.2024.110718

[5] Unique ergodicity for random noninvertible maps on an interval.
S. Brofferio, H. Oppelmayer, T. Szarek
preprint
https://arxiv.org/abs/2401.12361
 
[6] Relative stationary dynamical systems.
T. Amrutam, M. Klötzer, H. Oppelmayer
preprint
http://arxiv.org/abs/2405.17122
 
[7] Proximality, stability, and central limit theorem for random maps on an interval.
S. C. Hille, K. Horbacz, H. Oppelmayer, T. Szarek
preprint
https://arxiv.org/abs/2408.07398
 
[8] Unique ergodicity for noninvertible function systems on an interval.
S. C. Hille, H. Oppelmayer, T. Szarek
preprint
 
 
 
Master Thesis: https://utheses.univie.ac.at/detail/35394
 
 

 
Nach oben scrollen